SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Departament of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Object Oriented Programming							
2.2 Course coordinator Lect. PhD Czibula Istvan Gergely							
2.3 Seminar coordinator Lect. PhD Czibula Gabriela Gergely							
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	2 lab
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	·
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					19
Preparation for seminars/labs, homework, papers, portfolios and essays					24
Tutorship					14
Evaluations					18
Other activities:					-
3.7 Total individual study hours		105			

3.7 Total individual study hours	105
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of Programming, Data Structures
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	Laboratory with computers; C++ and QT programming language
activities	environment

6. Specific competencies acquired

- S	Understanding the concepts of object oriented programming.
Professional competencies	 Understanding the role of inheritance, polymorphism, dynamic binding and generic structures in building reusable code.
Pro	• Good programming skills in C++ and QT.
ncies	 The ability to apply the acquired concepts, principles and techniques in solving real world problems.
npetei	Responsible execution of lab assignments.
al con	Application of efficient and rigorous working rules.
vers	Manifest responsible attitudes toward the scientific and didactic fields.
Transversal competencies	Respecting the professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To prepare an object-oriented design of small/medium scale problems and to learn C++ and QT.
7.2 Specific objective of the discipline	 To demonstrate the differences between traditional imperative design and object-oriented design. To explain class structures as fundamental, modular building blocks. To understand the role of inheritance, polymorphism, dynamic binding and generic structures in building reusable code. To explain and to use defensive programming strategies, employing formal assertions and exception handling. To write small/medium scale C++ programs using QT. To use classes written by other programmers when constructing their systems.

8. Content

8.1 Course	Teaching methods	Remarks
1. The Object Oriented Programming Paradigm.	Interactive exposure	
• Basic elements of C++ language.	Explanation	
• Lexical elements. Operators. Conversions.	Conversation	
Data types. Variables. Constants.	• Examples	
• Visibility scope and lifetime of the variables.	Didactical	
Namespaces.	demonstration	
• C++ Statements.		
 Function declaration and definition. Function 		
overloading. Inline function.		
2. Modular programming in C++.	• Interactive exposure	
• Functions. Parameters.	Explanation	
Header files. Libraries.	 Conversation 	
 Modular implementations of ADTS. 	• Examples	
• Using the void pointer to achieve genericity.	Didactical	

	demonstration
3. Derived data types and user data types, dynamic	Interactive exposure
allocation in C++.	• Explanation
Data types: array and struct.	• Conversation
 Data types: analy and struct. Data types: pointer and reference. 	Didactical
 Memory allocation and deallocation. 	demonstration
 Pointers to functions and pointers void. 	demonstration
4. Object oriented programming in C++.	a Interactive expenses
 Classes and objects. 	Interactive exposure Evaluation
 Members of a class. Access modifiers. 	ExplanationConversation
	• Didactical
• UML diagrams for classes (members,	demonstration
accessibility). 5. Inheritance	- Interactive expenses
0: 1:1: D: 1:1	Interactive exposure Evaluation
	ExplanationConversation
Substitution principle. Maked avarmiding.	
Method overriding.	• Didactical
Multiple inheritance. Specialization/generalization relation, LIMI	demonstration
Specialization/generalization relation - UML representation	
representation. 6. Input/output operation.	- Interactive expenses
 I/O streams. I/O Hierarchies of classes. 	Interactive exposure Evaluation
	• Explanation
• Format. Manipulators.	• Conversation
• Text files.	• Didactical
7 OT Toolkit	demonstration
7. QT Toolkit.	• Interactive exposure
QT tools and modules. OT Installation.	• Explanation
• QT Installation.	• Conversation
• Examples	• Didactical
0. OT	demonstration
8. QT	• Interactive exposure
• Signals and slots.	• Explanation
• QWidget.	• Conversation
• Examples	• Didactical
	demonstration
9. Working with QT Designer in Eclipse (1)	Interactive exposure
Design of GUI Market desil. But had Good study.	• Explanation
Master detail – Product. Case study	• Conversation
	• Didactical
10 W 1: '41 OTD : ' E !' (2)	demonstration
10. Working with QT Designer in Eclipse (2)	Interactive exposure
Master detail – Product. Case study	• Explanation
MVC pattern	• Conversation
	• Didactical
11 D : "	demonstration
11. Design patterns	Interactive exposure
• Creational, structural, behavioral design patterns.	• Explanation
• Examples.	• Conversation
STL library.	• Didactical
• Container classes.	demonstration
12. STL library	Interactive exposure
• STL iterators.	Explanation

STL allgorithms	• Conversation
	• Didactical
	demonstration
13. POS (Point Of Sale) application	• Interactive exposure
Façade, Strategy design patterns	• Explanation
Composite design pattern	• Conversation
	• Didactical
	demonstration
14. Revision	Interactive exposure
	• Conversation

Bibliography

- 1. B. Stroustup, The C++ Programming Language, Addison Wesley, 1998.
- 2. Bruce Eckel, Thinking in C++, www.bruceeckel.com
- 3. Alexandrescu, Programarea moderna in C++. Programare generica si modele de proiectare aplicate, Editura Teora, 2002
- 4. M. Frentiu, B. Parv, Elaborarea programelor. Metode si tehnici moderne, Ed. Promedia, Cluj-Napoca, 1994.
- 5. E. Horowitz, S. Sahni, D. Mehta, Fundamentals of Data Structures in C++, Computer Science Press, Oxford, 1995.
- 6. K.A. Lambert, D.W. Nance, T.L. Naps, Introduction to Computer Science with C++, West Publishing Co., New-York, 1996.

7. L. Negrescu, Limbajul C++, Ed. Albastra, Cluj-Napoca 1996.

8.2 Seminar	Teaching methods	Remarks
		The seminar is
		structured as 2 hours
		classes every two week
1. Simple problems in C++. Functions. Function	• Interactive exposure	
parameters. Variables (local and global) and their	Explanation	
visibility. Vectors (uni and multi dimensional) and	• Conversation	
structures.	Didactical	
	demonstation	
2. ADT Container with generic elements (void*):	Interactive exposure	
visible representation and hidden representation.	• Explanation	
	• Conversation	
	Didactical	
	demonstation	
3. Classes. Simple classes. Operator overloading.	Interactive exposure	
Classes with objects as data members.	• Explanation	
	• Conversation	
	Didactical	
	demonstation	
4. Classes of type dynamic list and iterators.	Interactive exposure	
Inheritance.	• Explanation	
	 Conversation 	
	Didactical	
	demonstation	
5. Abstract classes and interfaces. Polymorphism	• Interactive exposure	
	Explanation	
	 Conversation 	
	• Didactical	
	demonstation	
6. Classes: template and exceptions	Interactive exposure	
	 Explanation 	
	• Conversation	

	Didactical demonstation	
7. Complex problems implementing by following the UML diagram. Design patterns. Preparation for the written exam.	 Interactive exposure Explanation Conversation Didactical demonstation 	
8.3 Laboratory	Teaching methods	Remarks
		 The lab is structured as 2 hours classes every week. The lab documents are due one week after the lab theme has been given and the lab programs are due two weeks later.
1. Installation of MinGW and Eclipse CDT	 Lab assignment 	
Specification, design and implementation of simple problems in C/C++. General aspects of C/C++ language.	ExplanationConversation	
2. Modular programming in C++	Lab assignmentExplanationConversation	
3. Feature driven software development process	Lab assignmentExplanationConversation	
4. Feature driven software development process	Lab assignmentExplanationConversation	
5. Feature driven software development process	•	
6. Layered architecture	 Lab assignment Explanation Conversation	
7. Layered architecture	Lab assignmentExplanationConversation	
8. Layered architecture	Lab assignmentExplanationConversation	
9. Text files	 Lab assignment Explanation Conversation	
10. GUI using QT	 Lab assignment Explanation Conversation	
11. Repository.	 Lab assignment Explanation Conversation	
12. STL containers, iterators and algorithms	Lab assignment	

	ExplanationConversation
13. Lab delivery time (see remark above)	Lab assignmentExplanationConversation
14. Lab delivery time (see remark above)	Lab assignmentExplanationConversation

Bibliography

- 1. B. Stroustup, The C++ Programming Language, Addison Wesley, 1998.
- 2. Bruce Eckel, Thinking in C++, www.bruceeckel.com
- 3. Alexandrescu, Programarea moderna in C++. Programare generica si modele de proiectare aplicate, Editura Teora, 2002
- 4. M. Frentiu, B. Parv, Elaborarea programelor. Metode si tehnici moderne, Ed. Promedia, Cluj-Napoca, 1994.
- 5. E. Horowitz, S. Sahni, D. Mehta, Fundamentals of Data Structures in C++, Computer Science Press, Oxford, 1995.
- 6. K.A. Lambert, D.W. Nance, T.L. Naps, Introduction to Computer Science with C++, West Publishing Co., New-York, 1996.
- 7. L. Negrescu, Limbajul C++, Ed. Albastra, Cluj-Napoca 1996.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The course exists in the studying program of all major universities in Romania and abroad.
- The content of the course is considered the software companies as important for average programming skills

10. Evaluation

10. Evaluation			T
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	The correctness and completeness of the accumulated knowledge and the capacity to design and implement correct C++ programs	Written exam (in the regular session)	40%
10.5 Seminar/Lab activities	Be able to design, test and debug a C++ program using QT	Practical evaluation (in the regular session)	30%
	Correctness of C++ programs and lab documentations	-documentation -portofolio -continuous observations	30%

10.6 Minimum performance standards

- Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems in C++ programming language.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date	Signature of course coordinator	Signature of seminar coordinator	
30.04.2013	Lect. dr. Istvan Gergely Czibula	Lect. dr. Istvan Gergely Czibula	
Date of approval	Signature of the head of department		
	Prof. dr. Ba	zil Pârv	