SYLLABUS

in internation regarding the programme				
1.1 Higher education	Babes-Bolyai University, Cluj-Napoca			
institution				
1.2 Faculty	Mathematics and Computer Science			
1.3 Department	Mathematics			
1.4 Field of study	Computer Science			
1.5 Study cycle	Licence			
1.6 Study programme /				
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of th	e d	iscipline	Ca	lculus			
2.2 Course coo	ordi	nator		Conf. dr. Breckne	r Brigitte)	
2.3 Seminar coordinator			Conf. dr. Breckner Brigitte				
2.4. Year of	1	2.5	1	2.6. Type of	written	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	4	Of which: 3.5 course	2	3.6	2
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					34
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					10
Evaluations					10
Other activities:					-
3.7 Total individual study hours		94			1
3.8 Total hours per semester		150			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	•
4.2. competencies	•

6

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

-	
Professional competencies	Ability to apply the notions and methods of Calculus in solving real life problems.
Transversal competencies	Ability to apply the mathematical methods and the analysis of models in order to implement specific and efficient algorithms in several branches of industry or science.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquiring knowledge about the algebraic and topological structure of the Euclidean space IR^n and the basic notions and results concerning the differential and integral calculus of real-valued functions of several real variables.
7.2 Specific objective of the discipline	•

8. Content

8.1 Course	Teaching methods	Remarks
1. The system of real numbers (upper and lower bound of a set; minimum and maximum of a set; infimum and supremum of a set; the infimum principle, the supremum principle and its consequences; the sets of natural numbers, the set integer numbers, the set of rational numbers, and the set of irrational numbers; the extended set of real numbers).		
 2. The set of real numbers (absolute value and distance; neighborhood of a point). Sequences of real numbers (definition of the limit and its characterizations; uniqueness of the limit; subsequence of a sequence; sandwich theorem; the connection between the existence of the limit of a sequence and the boundedness of the sequence). 		
3. Sequences of real numbers (existence of the limit for monotone sequences; applications: the irrational number e; fundamental sequences; Cauchy's convergence criterion). Series of real numbers (the sum of a series; operations with convergent series; properties of convergent series).		
4. Series of real numbers (convergence/divergence criteria for series:		

Cauchy's general criterion, Cauchy's	
condensation criterion, comparison criteria, the root criterion, Kummer's criterion and its	
consequences, D'Alembert's and Raabe-	
Duhamel's criteria; absolutely convergent	
series; the Leibniz criterion for alternant	
series).	
5. Real-valued functions of a single real variable	
(limits; continuous functions; differentiable	
functions).	
6. Real-valued functions of a single real variable	
(primitives and indefinite integrals; Riemann	
integrability).	
7. Real-valued functions of a single real variable	
(improper integrals: convergence criteria for	
improper integrals).	
8. The euclidean space R ⁿ (algebraic structure;	
inner product and norm; topological structure).	
9. Sequences in R ⁿ (limit of a sequence;	
operations with convergent sequences). Real-	
valued functions of several real variables	
(limits; operations with functions which have	
a limit; continuity; operations with continuous	
functions; Weierstrass' theorem).	
10. Vector-valued functions of several real	
variables (limits; continuity). Differential	
calculus in R ⁿ (the derivative of a vector-	
valued function of a single real variable; the mean value theorem for vector-valued	
functions of a single real variable). 11. Differential calculus in R^n (first order and	
higher order partial derivatives of real-valued	
functions of several real variables; C ¹ -	
functions; the Schwarz theorem).	
12. Differential calculus in R^n (differentiability of	
real-valued functions of several real variables;	
the mean value theorem; operations with	
differentiable functions; second order	
differentiability).	
13. Differential calculus in R ⁿ (local optima of	
real-valued functions of several real variables;	
necessary and sufficient conditions for local	
optima).	
14. Integral calculus in R ⁿ (Riemann integrability	
of real-valued functions of several real	
variables over compact intervals in R^n).	
Bibliography	

Bibliography

1. BRECKNER W. W.: Analiza matematica. Topologia spatiului R^n, Universitatea din Cluj-Napoca, Cluj-Napoca, 1985.

2. COBZAS S.: Analiza matematica (Calcul diferential), Presa Universitara Clujeana, Cluj-Napoca, 1998.

3. MEGAN M.: Analiza matematica, vol. 1,2. Editura Mirton, Timisoara, 1999.

4. MURESAN, M.: A Concret Approach to Classical Analysis, Springer, New York, 2008.

5. OBERGUGGENBERGER M. And OSTERMANN A.: Analysis for Computer Scientists, Foundations, Methods, and Algorithms, Springer, 2011.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. The system of real numbers (upper and lower		
bound of a set; minimum and maximum of a		
set; infimum and supremum of a set) and the		
induction principle.		
2. Sequences of reals (operations with convergent		
sequences; typical examples for		
convergent/divergent sequences; computation		
of limits).		
3. Series of reals (the irrational number e as the		
sum of some remarkable series; telescopical		
series; computation of the sum of concrete		
series of reals).		
4. Series of reals (application of the presented		
convergence/divergence criteria to check the		
convergence/divergence of some series).		
5. Real-valued functions of a single real variable		
(limits; continuous functions; differentiable		
functions).		
6. Real-valued functions of a single real variable		
(primitives and indefinite integrals; Riemann		
integrability).		
7. Real-valued functions of a single real variable		
(improper integrals: convergence criteria for		
improper integrals).		
8. Exercises and problems related to the algebraic		
and topological structure of R^n.		
9. Limits of sequences in R ⁿ . Real-valued		
functions of several real variables (limits,		
continuity).		
10. Vector-valued functions of several real		
variables (limits; continuity). Differential		
calculus in R ⁿ (the derivative of a vector-		
valued function of a single real variable).		
11. Differential calculus in R^n (first order and		
higher order partial derivates of real-valued		
functions of several real variables).		
12. Differential calculus in R^n (the chain rule).		
13. Computing local optima of real-valued		
functions of several real variables.		
14. Computing double and triple integrals over		
compact intervals.		
*		
Bibliography 1. DUCA D. L. si F. DUCA: Exercitii si probleme de ano	liza matematica vol. I	ci II. Casa Cartii da Stiinta
1. DUCA D. I. si E. DUCA: Exercitii si probleme de ana	inza matemática, vol. I	si ii, Casa Cartii de Suinta,
Cluj-Napoca, 2007, 2009.		

2. TRIF T.: Probleme de calcul diferential si integral in R^n, Casa Cartii de Stiinta, Cluj-Napoca, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of this course is designed to satisfy the expectations of several networks of professionals of recognised expertise. The results of our students validate this statement.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Exam	Written exam	60%
10.5 Seminar/lab activities	Continuous evaluation	Evaluation of the weekly	20%
		activity	
	Midterm test (compulsory)	Midterm test	20%
10.6 Minimum performanc	e standards 5		
>			

Date	Signature of course coordinator	Signature of seminar coordinator
28.4.2013	Conf. dr. Brigitte Breckner	Conf. dr. Brigitte Breckner

Date of approval

Signature of the head of department

.....

Prof. dr. Octavian Agratini