SYLLABUS

1.1 Higher education	Babe Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component-Based Programming - english
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	scipline		Data Mining				
2.2 Course coordinator Lect. Dr. Anca Andreica								
2.3 Seminar coordinator				Lect. Dr. Anca Andreica				
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Optional	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 lab+
				seminar/laboratory	1 project
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					10
Evaluations					14
Other activities:					
3.7 Total individual study hours 144					
3.8 Total hours per semester 200					
3.9 Number of ECTS credits 8					

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	• Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	•

5.2. for the seminar /lab	Laboratory with computers
activities	

6. Specifi	c competencies acquired
es al	 Practical skills referring to modelling and solving real-world problems
Professional competencies	• Ability to work in teams, assuming different execution and leading roles, performing professional tasks with autonomy and responsibility
Transversal competencies	• The students will learn various data analysis techniques, and will apply these techniques for solving data mining problems using special software systems and tools.
L 00	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To learn data mining concepts, methods and techniques, from a database perspective.
7.2 Specific objective of the discipline	• The students will learn various data analysis techniques, and will apply these techniques for solving data mining problems using special software systems and tools.
	• A perception of data mining as a strong application field, as well as a significant database research domain, will be formed.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction; Types of data explored in data mining; Data mining functionalities; Patterns; Data mining from a database perspective; Data mining applications	Exposure, description, explanation, examples, discussion of case studies	
2-3. Concept description; Definitions; Data generalization and summarization-based characterization; Analytical characterization: attribute relevance analysis; Class comparison: discriminating between classes; Descriptive statistical measures in large databases	Exposure, description, explanation, examples, discussion of case studies	
4. Data preprocessing; Data cleaning; Data transformation and integration; Data reduction	Exposure, description, explanation, examples, discussion of case studies	
5-6. Association rules; Problem definition; Algorithms for mining single-dimensional boolean association rules; Algorithms for mining multi-level association	Exposure, description, explanation, examples, discussion of case studies	

rules, multi-dimensional association rules, association rules with constraints; Correlation analysis	
7-9. Classification and prediction; Problem definition; Classification using k-nearest neighbor method; Classification using decision tree induction; Classification and estimation using neural networks; Bayesian classification	Exposure, description, explanation, examples, discussion of case studies
10-11. Clustering (cluster analysis); Problem definition; Types of data in cluster analysis; Clustering methods; Outliers detection	Exposure, description, explanation, examples, discussion of case studies
12. Data mining standards and software	Exposure, description, explanation, examples, discussion of case studies
13-14. Students theoretical reports presentations	

Bibliography

1. S. Chakrabarti et al, Data Mining. Know It All, Morgan Kaufmann, 2009.

2. K. Cios, W. Pedrycz, R. Swiniarski, L. Kurgan, Data Mining. A Knowledge Discovery Approach, Springer, 2007.

3. J. Han, M. Kamber, Data Mining: Concepts and Techniques, 2nd Edition, Morgan Kaufmann, 2006.

4. P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison Wesley, 2006.

5. D. Larose, Discovering Knowledge in Data. An Introduction to Data Mining, John Wiley & Sons, 2005.

6. Han, J., Kamber, M., Data Mining: Concepts and Techniques, 1st Edition, Morgan Kaufmann, 2000.

7. Weka system and documentation (http://www.cs.waikato.ac.nz/ml/weka/). Weka is a suite of machine learning / data mining software. It contains Java implementation for various mining algorithms, data preprocessing filters, and experimentation capabilities. Weka is free open-source software under the GNU General Public License (GPL).

8.2 Laboratory	Teaching methods	Remarks
1. Data preprocessing	Practical projects	
2. Data Mining software tools		
3. WEKA software		
4-6. Data mining applications		
7. Students project presentations		

Bibliography

1. S. Chakrabarti et al, Data Mining. Know It All, Morgan Kaufmann, 2009.

2. K. Cios, W. Pedrycz, R. Swiniarski, L. Kurgan, Data Mining. A Knowledge Discovery Approach, Springer, 2007.

3. J. Han, M. Kamber, Data Mining: Concepts and Techniques, 2nd Edition, Morgan Kaufmann, 2006.

4. P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison Wesley, 2006.

5. D. Larose, Discovering Knowledge in Data. An Introduction to Data Mining, John Wiley & Sons, 2005.

6. Han, J., Kamber, M., Data Mining: Concepts and Techniques, 1st Edition, Morgan Kaufmann, 2000. 7. Weka system and documentation (http://www.cs.waikato.ac.nz/ml/weka/). Weka is a suite of machine learning / data mining software. It contains Java implementation for various mining algorithms, data preprocessing filters, and experimentation capabilities. Weka is free open-source software under the GNU General Public License (GPL).

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad; •
- The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	- know the basic principle	Written exam	50%
	of the domain;		
10.5 Lab activities	- data mining problems	Laboratory work	50%
	solving		
10.6 Minimum perform	ance standards		
^			
> At least grade 5	at both written exam and labora	tory work.	

Date

24.04.2013

Lect. Dr. Anca Andreica

Signature of seminar coordinator

Signature of course coordinator

Lect. Dr. Anca Andreica

Date of approval

Signature of the head of department

.....

.....