SYLLABUS

се

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Software Systems Verification and Validation					idation		
2.2 Course coordinator PhD Lecturer Vescan Andreea							
2.3 Seminar coordinator PhD Lecturer Vescan Andreea							
2.4. Year of	3	2.5	6	2.6. Type ofE2.7 Type ofcompulsory			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.4	24
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					24
Preparation for seminars/labs, homework, papers, portfolios and essays					24
Tutorship					6
Evaluations					24
Other activities:					0
3.7 Total individual study hours		102			
3.8 Total hours per semester		150			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

1	
4.1. curriculum	•
4.2. competencies	•

6

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

Professional competencies	 Knowledge, understanding and use of basic concepts of theoretical Computer Science Ability to work independently in order to solve problems in defined professional contexts.
Transversal competencies	Improved programming abilities: debugging and correcting compilers errors

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• To understand what a correct algorithm is.	
discipline	• To gain knowledge of designing correct algorithms and proving their	
	correctness hand- in-hand.	
	• To learn the methods of program verification and validation.	
	• To become used with building correct programs from specifications.	
	• To acquire a modern programming style.	
7.2 Specific objective of the	• Students will know how and which are the steps of an inspection,	
discipline	either of the source code or specification of each stage of the	
	development of the software system.	
	• Students will know to create from the specification and design phase	
	test cases that will help them develop a better and robust software	
	system.	

•

8. Content

8.1 Course	Teaching methods	Remarks
1. Verification and validation (the concepts	Presentation, Didactic	
verification and validation);	demonstration,	
	Problematizations	
2. Program testing (1): the concept of Program testing;	Presentation, Didactic	
unit testing: testing criteria, blackbox	demonstration,	
and whitebox testing;	Problematizations	
3. Program testing(2): types of testing(integration T.,	Presentation, Didactic	
system T., regression T., acceptance T.),	demonstration,	
testing automatizing;	Problematizations	
4. Program inspection	Presentation, Didactic	
	demonstration,	
	Problematizations	
5. Symbolic execution	Presentation, Didactic	
	demonstration,	
	Problematizations	
6. Model checking	Presentation, Didactic	
	demonstration,	
	Problematizations	
7. The theory of program correctness. The evolution of	Presentation, Didactic	

the concept of program correctness.	demonstration,
The Contribution of Floyd, Hoare,	Problematizations
Dijkstra, Gries, Droomey, Morgan	
8. Program Specification. Floyd's method for	Presentation, Didactic
prooving correctness.	demonstration,
Dijkstra: the weakest precondition. Stepwise	Problematizations
refinement from specifications	
Hoare's axiomatisation method	
9. Comparing the verification methods (correctness-	Presentation, Didactic
inspection-testing-symbolic execution)	demonstration,
Verification and validation: How? Who?	Problematizations
When?	
10. Cleanroom. Program Quality.	Presentation, Didactic
	demonstration,
	Problematizations
11. Quality, SPI, SQA,CMM.	Presentation, Didactic
	demonstration,
	Problematizations
12. The consequences of the theory of program	Presentation, Didactic
correctness on programming. Programming style.	demonstration,
	Problematizations

Bibliography

- 1. BALANESCU T., Corectitudinea programelor, Editura tehnica, Bucuresti 1995.
- 2. DIJKSTRA, E., A constructive approach to the problem of program correctness, BIT, 8(1968), pg.174-186.
- 3. DIJKSTRA, E., Guarded commands, nondeterminacy and formal derivation of programs, CACM, 18(1975), 8, pg.453-457.
- 4. DROMEY G., Program Derivation. The Development of Programs From Specifications, Addison Wesley Publishing Company, 1989.
- 5. FRENTIU, M., Verificarea corectitudinii programelor, Ed.Univ."Petru-Maior", 2001.
- 6. GRIES, D., The Science of Programming, Springer-Verlag, Berlin, 1981.
- 7. HOARE, C.A.R., An axiomatic basis for computer programming, CACM, 12(1969), pg.576-580, 583.
- 8. Morgan, C., Programing from Specifications, Prentice Hall, NewYork, 1990.
- B. Internet

8.2 Seminar / laboratory	Teaching methods	Remarks
1. S1: Specifications and Inspection	Presentation,	
L1: Static analysis using ESCJava2, JML	Conversation,	
	Problematizations,	
	Discovery, Other	
	methods – individual	
	study, exercises	
S2: Test cases using Black-box Testing (BBT) and	Presentation,	
White-box (WBT)testing techniques	Conversation,	
L2:Black-box Testing	Problematizations,	
	Discovery, Other	
	methods – individual	
	study, exercises	
S3: Control paper 1 + BBT and WBT	Presentation,	
L3:White-Box Testing	Conversation,	

	Problematizations,
	Discovery, Other
	methods – individual
	study, exercises
S4: Model checking+ Correctneses	Presentation,
L4:Model cheking	Conversation,
	Problematizations,
	Discovery, Other
	methods – individual
	study, exercises
S5: Control paper 2 +Correctness	Presentation,
L5:Testing GUI, Web app.	Conversation,
	Problematizations,
	Discovery, Other
	methods – individual
	study, exercises
S6:Inspection	Presentation,
L6:Inspection	Conversation,
	Problematizations,
	Discovery, Other
	methods – individual
	study, exercises
Bibliography	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to apply testing methods for a software products, testing methods that are used in industry.
- Students will learn various verification and validation methods of a software system.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	At the end a written	Written examination	50		
	examination will give a				
	mark E.				
10.5 Seminar/lab activities	The activity at seminaries,	Control paper 1+ Control	25		
	consisting from	paper 2+ Seminar activity			
	participation in solving the				
	exercises and discussions,				
	will be appreciate by a				
	mark S.				
	A second mark L will be		25		
	given for the laboratories				
	work.				
10.6 Minimum performance standards					
Students will learn and apply testing methods for a software product.					

> Students will apply various methods for verification (testing, inspection, model checking) for establishing the

> correctness of an algorithm.

> At least grade 5 (from a scale of 1 to 10) at written exam and laboratory work and seminar activity.

Date	Signature of course coordinator	Signature of seminar coordinator
04.30.2013	Lect. PhD. Andreea Vescan,	Lect. PhD. Andreea Vescan

Date of approval

Signature of the head of department

.....

Prof. PhD. Bazil Parv