| Geometrii neeuclidiene | Noneuclidean geometry | 
| trul | |||||
| (Mathematics) | 
| Cadre didactice indrumatoare | Teaching Staff in Charge | 
| Conf. Dr. VARGA Csaba Gyorgy, csvarga@cs.ubbcluj.ro | 
| Obiective | Aims | 
| Cursul are ca scop constructia principalelor instrumente necesare in studiul geometriilor neeuclidiene din punct de vedere diferential si din punct de vedere sintetic. Cursul este orientat in urmatoarele directii: fibratul tangent, metrica Riemann, conexiunea Levi-Civita, geodezice, tensorul de curbura a lui Riemann, curbura sectionala, spatii cu curbura constanta, geometria eliptica, geometria hiperbolica, modele euclidiene. | The main purpose of the course consists in construction of the principal instruments which are necessary in studying the the Non-Euclidian geometry. The following notions and results are studied: Riemannian metric,  Levi-Civita conexion, geodesics, Riemannian curvature tensor, sectional curvature, space of constant curvature, elliptic geometry, hyperbolic geometry, euclidian models. | 
| 1. Fibratul tangent 2. Metrica Riemann 3. Conexiunea Levi-Civita 4. Geodezice 5. Tensorul e curbura a lui Riemann 6. Curbura sectionala 7. Spatii cu curbura constanta 8. Geometria eliptica 9. Geometria hiperbolica 10. Modele euclidiene | 
| 1. M.P. do Carmo, Riemannian geometry, Birkhauser, 1992 2. S. Gallot, D. Hulin, J. Lafontain, Riemannian geometry, Springer-Verlag, Berlin, 1990 3. H.S.M. Coxeter, Non-Euclidian Geometry, Math. Assoc. of America , 1998 4. B.V. Cutuzov, Geometria lui Lobacevschi si elementele de baza ale geometriei, Editura Tehnica, 1952 5. I.M. Jaglom, Galilei relativitasi elv, Gondolat, Budapest, 1985 | 
| Evaluare | Assessment | 
| Examen | Exam |