Universitatea "Babeş-Bolyai" din Cluj-Napoca

Facultatea de Matematică şi Informatică
FISA DISCIPLINEI

Analiză funcţională (2) Functional analysis (2)
Cod
Semes-
trul
Ore: C+S+L
Credite
Tipul
Sectia
MO005
6
2+1+0
4
optionala
Matematică-Informatică
(Mathematics-Computer Science)
MO005
6
2+1+0
5
optionala
Matematică
(Mathematics)
Cadre didactice indrumatoare Teaching Staff in Charge
Prof. Dr. COBZAŞ Stefan, scobzas@math.ubbcluj.ro
Conf. Dr. SÁNDOR Jozsef, jsandor@math.ubbcluj.ro
Obiective Aims
Prezentare rezultatelor de baza din teoria spatiilor vectoriale topologice si a celor local convexe si aprofundarea unor rezultate din teoria spatiilor normate, predate in primul semestru.
To present the basic results of the theory of topological vector spaces and of locally convex spaces and to deep some results on normed spaces, taught in the first semester.
Continut
1. Spatii vectoriale topologice (SVT.).
Definitie si proprietati fundamentale. Continuitatea aplicatiilor aditive intre SVT. Baze de vecinatati ale originii. Functionale liniare si hiperplane in SVT. Spatii seminormate. SVT de dimensiune finita-teorema lui Tihonov. Proprietati topologice ale multimilor convexe in SVT. Functionala lui Minkovski. si caracterizarea seminormelor. Continuitatea functionalei lui Minkowski. Metrizabilitate. Completitudine, compactitate si total marginire si SVT.
Nota: La seminarii se vor trata unele chestiuni de topologie generala-introducerea topologiilor cu ajutorul functiilor de vecinatati, siruri generalizate si filtre, produs de spatii topologice.

2.Spatii local convexe (SLC).
Notiunea de spatiu local convex. Topologia local convexa generata de o familie de seminorme. Baze local convexe si teorema lui J. von Neumann. Teorema lui Bourbaki de caracterizare a continuitatii aplicatiilor liniare intre SLC. Existenta unor functionale liniare si continue pe SLC. Topologii slabe pe spatii normate. Separarea multimilor convexe prin hiperplane inchise. Puncte extremale si teorema lui Krein-Milman.

3. Elemente de teoria distributiilor.
Limite inductive de spatii local convex. Spatiul fundamental al functiilor infinit derivabile. Notiunea de distributie. Distributii regulate si distributii singulare, distributii de ordin finit - exemple.Topologia spatiului distributiilor., convergenta sirurilor de distributii regulate. Aplicatii la rezolvarea unor ecuatii cu derivate partiale.

4. Teoreme de punct fix.
Contractii si teorema lui Banach de punct fix. Teoreme de punct fix pentru aplicatii neexpansive. Teoremele lui Brouwer, Schauder-Tihonov si Markov-Kakutani.

5. Operatori compacti intre spatii normate.
Criteriul lui Arzela-Ascoli de compactitate in C(T). Operatori compacti-proprietati fundamentale. Dualul unui operator. Teorema lui Schauder de compactitate a dualului unui operator compact. Teoria lui Riesz, spectrul unui operator compact.

6. Operatori pe spatii Hilbert.
Operatori simetrici, operatori unitari, proiectori, operatori pozitivi. Spectrele operatorilor pe spatii Hilbert.

Bibliografie
1. Cristescu R., Notiuni de analiza functionala liniara, Ed. Academiei, Bucuresti 1998. 2.M. Fabian et al., Functional analysis and infinite-dimensional geometry, Springer Verlag, Berlin-New York 2001.
3. Kantorovici L.V. si Akilov G.P., Analiza functionala, Editura Stiinntifica si Enciclopedica, Bucuresti 1986.
4. Kutateladze S., Fundamentals of functional analysis, Kluwer AP, Dordrecht 1996.
5. Megginson R.E., An introduction to Banach space theory, Springer Verlag, Berlin-New York 1998.
6. Muntean I. Analiza functionala, Litografiat Universitatea Babes-Bolyai, Cluj-Napoca 1993.
7. Muntean I., Analiza functionala-Capitole speciale, Litografiat Universitatea Babes-Bolyai, Cluj-Napoca 1990.
8. Schaeffer H.H., Wolf M.P., Topological vector spaces, Springer Verlag, Berlin-New York 1999.
Evaluare Assessment
Examen oral.
Exam.