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On applications of Andrica-Badea and Nagy
inequalities in spectral graph theory

Igor Milovanović, Emina Milovanović and Edin Glogić

Abstract. Applications of Andrica-Badea and Nagy inequalities for determining
bounds of graph invariants of undirected, connected graphs are investigated. We
consider bounds of the following invariants: the first Zagreb index, general Randić
index, Laplacian linear spread and normalized Laplacian spread of graphs.
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1. Introduction

Andrica and Badea (see [1]) have proved the following result.

Let p1, p2, . . . , pn be non-negative real numbers and a1, a2, . . . , an and b1, b2, . . . , bn
real numbers with the properties

0 < r1 ≤ ai ≤ R1 < +∞ and 0 < r2 ≤ bi ≤ R2 < +∞

for each i = 1, 2, . . . , n. Further, let S be a subset of In = {1, 2, . . . , n} which minimizes
the expression ∣∣∣∣∣∑

i∈S
pi −

1

2

n∑
i=1

pi

∣∣∣∣∣ . (1.1)

Then ∣∣∣∣∣
n∑

i=1

pi

n∑
i=1

piaibi −
n∑

i=1

piai

n∑
i=1

pibi

∣∣∣∣∣
≤ (R1 − r1)(R2 − r2)

∑
i∈S

pi

(
n∑

i=1

pi −
∑
i∈S

pi

)
(1.2)

In [17] Nagy has proved the following result:
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Let a1, a2, . . . , an are real numbers with the property r ≤ ai ≤ R, for each i =
1, 2, . . . , n. Then

n

n∑
i=1

a2i −

(
n∑

i=1

ai

)2

≥ n

2
(R− r)2. (1.3)

In this paper we consider bounds of some graph invariants and prove that they
are direct corollaries of inequalities (1.2) and (1.3). Some of the obtained bounds are
better than those obtained in the literature so far.

In the next section we recall some results from spectral graph theory needed for
our work.

2. Laplacian and normalized laplacian spectrum of graph

Let G = (V,E), V = {1, 2, . . . , n}, be undirected connected graph with n vertices
and m edges, with sequence of vertex degrees d1 ≥ d2 ≥ · · · ≥ dn > 0, di = d(i),
i = 1, 2, . . . , n. Denote with A adjacency matrix of G. Its eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn represent ordinary eigenvalues of graph G. If D = diag(d1, d2, . . . , dn) is
diagonal matrix of vertex degrees, then L = D−A is the Laplacian matrix of the G.
Eigenvalues of L, µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 represent Laplacian eigenvalues of
graph G. The main properties of these eigenvalues are (see [3, 7, 8, 15])

n−1∑
i=1

µi =

n∑
i=1

di = 2m and

n−1∑
i=1

µ2
i =

n∑
i=1

d2i +

n∑
i=1

di = M1 + 2m, (2.1)

where M1 =
∑n

i=1 d
2
i is the first Zagreb index (see [13]).

Because the graph G is assumed to be connected, it has no isolated vertices
and therefore the matrix D−1/2 is well–defined. Then L∗ = D−1/2LD−1/2 is the
normalized Laplacian matrix of the graph G. Its eigenvalues are ρ1 ≥ ρ2 ≥ · · · ≥
ρn−1 > ρn = 0. Main properties of these eigenvalues are given by (see [19])

n−1∑
i=1

ρi = n and

n−1∑
i=1

ρ2i = n+ 2R−1, (2.2)

where R−1 =
∑
{i,j}∈E(didj)

−1 is the general Randić index (see [6, 18]).

3. Main result

In the following theorem we prove the inequality that establishes lower and upper
bounds for invariant M1 in terms of parameters n, m, d1 and dn.

Theorem 3.1. Let G = (V,E) be undirected connected graph with n, n ≥ 2, vertices
and m edges. Then

4m2

n
+

1

2
(d1 − dn)2 ≤M1 ≤

4m2

n
+ nα(n)(d1 − dn)2, (3.1)
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where

α(n) =
1

n

⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
=

1

4

(
1− (−1)n+1 + 1

2n2

)
=

{
1
4 , if n is even
n2−1
4n2 , if n is odd

Equality holds if and only if G is regular graph.

Proof. For ai = di, i = 1, 2, . . . , n, R = d1 and r = dn, the inequality (1.3) transforms
into

n

n∑
i=1

d2i −

(
n∑

i=1

di

)2

≥ n

2
(d1 − dn)2,

i.e. according to (2.1), into

nM1 − 4m2 ≥ n

2
(d1 − dn)2, (3.2)

wherefrom the left part of inequality (3.1) is obtained.
For pi = 1, i = 1, 2, . . . , n and S = {1, 2, . . . , k} ⊂ In, the expression (1.1)

reaches the minimum for k =
⌊
n
2

⌋
. Now for S = {1, 2, . . . , bn2 c}, pi = 1, ai = bi = di,

i = 1, 2, . . . , n, r1 = r2 = dn and R1 = R2 = d1, the inequality (1.2) becomes

n

n∑
i=1

d2i −

(
n∑

i=1

di

)2

≤ (d1 − dn)2
⌊n

2

⌋(
n−

⌊n
2

⌋)
i.e.

nM1 − 4m2 ≤ n2(d1 − dn)2α(n) (3.3)

where

α(n) =
1

n

⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
=

1

4

(
1− (−1)n+1 + 1

2n2

)
=

{
1
4 , if n is even
n2−1
4n2 , if n is odd

.

From (3.3) right side of inequality (3.1) immediately follows.
Equalities in (3.2) and (3.3) hold if and only if d1 = d2 = · · · = dn, so the

equalities in (3.1) hold if and only if G is a regular graph. �

Remark 3.2. Since (d1 − dn)2 ≥ 0, left inequality in (3.1) is stronger than

M1 ≥
4m2

n
(3.4)

which was proved in [9].

Remark 3.3. In [2] the invariant irrEB(G) =
√

nM1

4m2 − 1 as the irregularity measure

of graph was introduced. In [11] another irregularity measure irrg(G) = d1

dn
− 1 was

defined. According to (3.1) we can establish the following relationship between these
two measures √

ndn
8m2

irrg(G) ≤ irrEB(G) ≤
√
n2dnα(n)

4m2
irrg(G).
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The linear Laplacian spread of graph G is defined as µ1 − µn−1. The following
theorem establishes lower and upper bounds for this invariant in terms of parameters
n, m and M1.

Theorem 3.4. Let G = (V,E) be undirected connected graph with n, n ≥ 2, vertices
and m edges. Then√

(n− 1)(M1 + 2m)− 4m2

(n− 1)2α(n− 1)
≤ µ1 − µn−1 ≤

√
2((n− 1)(M1 + 2m)− 4m2)

n− 1
. (3.5)

where

α(n− 1) =
1

n− 1

⌊
n− 1

2

⌋(
1− 1

n− 1

⌊
n− 1

2

⌋)
=

1

4

(
1− (−1)n + 1

2(n− 1)2

)
.

Equalities hold if and only if G is a complete graph, G ∼= Kn.

Proof. For n := n−1, ai = µi, i = 1, 2, . . . , n−1, R = µ1 and r = µn−1, the inequality
(1.3) becomes

(n− 1)

n−1∑
i=1

µ2
i −

(
n−1∑
i=1

µi

)2

≥ (n− 1)

2
(µ1 − µn−1)2

i.e. according to (2.1) we have

(n− 1)(M1 + 2m)− 4m2 ≥ (n− 1)

2
(µ1 − µn−1)2 (3.6)

wherefrom right side of (3.5) is obtained.
For n := n − 1, pi = 1, ai = bi = µi, i = 1, 2, . . . , n − 1, r1 = r2 = µn−1 and

R1 = R2 = µ1, the inequality (1.2) transforms into

(n− 1)

n−1∑
i=1

µ2
i −

(
n−1∑
i=1

µi

)2

≤ (µ1 − µn−1)2
⌊
n− 1

2

⌋(
n− 1−

⌊
n− 1

2

⌋)
i.e.

(n− 1)(M1 + 2m)− 4m2 ≤ (µ1 − µn−1)2(n− 1)2α(n), (3.7)

where

α(n− 1) =
1

n− 1

⌊
n− 1

2

⌋(
1− 1

n− 1

⌊
n− 1

2

⌋)
=

{
1
4 if n is even
n(n−2)
4(n−1)2 , if n is odd

.

From (3.7) left part of inequality (3.5) is directly obtained.
Equalities (3.6) and (3.7) hold if and only if µ1 = µ2 = · · · = µn−1, hence

equalities in (3.5) hold if and only if G is a complete graph, G ∼= Kn. �

Remark 3.5. Right side of inequality (3.5) was proved in [16]. Since α(n− 1) ≤ 1
4 , for

each n, left side of inequality (3.5) is stronger than

µ1 − µn−1 ≥
2

n− 1

√
(n− 1)(M1 + 2m)− 4m2,

for even n. The above inequality was proved in [10] and [20].
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From inequality (3.4) and M1 ≤ m
(

2m
n−1 + (n− 2)

)
, proved in [5], and inequality

M1 ≥ 4m2

n , proved in [9], the following corollary of Theorem 3.4 holds.

Corollary 3.6. Let G = (V,E) be undirected connected graph with n, n ≥ 2, vertices
and m edges. Then

1

n− 1

√
2m(n(n− 1)− 2m)

nα(n− 1)
≤ µ1 − µn−1 ≤

√
2m(n(n− 1)− 2m)

n− 1
.

Equalities hold if and only if G is a complete graph, G ∼= Kn.

In the following theorem we determine lower and upper bounds for graph invari-
ant R−1 in terms of parameters n, ρ1 and ρn−1.

Theorem 3.7. Let G = (V,E) be undirected connected graph with n, n ≥ 2, vertices
and m edges. Then

n

2(n− 1)
+

1

4
(ρ1 − ρn−1)2 ≤ R−1 ≤

n

2(n− 1)
+

(n− 1)α(n− 1)

2
(ρ1 − ρn−1)2. (3.8)

Equalities hold if and only if G is a complete graph, G ∼= Kn.

Proof. for n := n− 1, ai = ρi, i = 1, 2, . . . , n− 1, r = ρn−1 and R = ρ1 the inequality
(1.3) becomes

(n− 1)

n−1∑
i=1

ρ2i −

(
n−1∑
i=1

ρi

)2

≥ n− 1

2
(ρ1 − ρn−1)2

i.e. according to (2.2)

(n− 1)(n+ 2R−1)− n2 ≥ n− 1

2
(ρ1 − ρn−1)2, (3.9)

wherefrom left side of inequality (3.8) is obtained.
For n := n − 1, pi = 1, ai = bi = ρi, i = 1, 2, . . . , n − 1, r1 = r2 = ρn−1 and

R1 = R2 = ρ1, inequality (1.3) transforms into

(n− 1)

n−1∑
i=1

ρ2i −

(
n−1∑
i=1

ρi

)2

≤ (ρ1 − ρn−1)2
⌊
n− 1

2

⌋(
n− 1−

⌊
n− 1

2

⌋)
,

i.e.

(n− 1)(n+ 2R−1)− n2 ≤ (n− 1)2α(n− 1)(ρ1 − ρn−1)2, (3.10)

wherefrom right part of inequality (3.8) is obtained.
Equalities in (3.9) and (3.10) hold if and only if ρ1 = ρ2 = · · · = ρn−1, therefore

equalities in (3.8) hold if and only if G is complete graph, G ∼= Kn. �

Remark 3.8. Since (ρ1 − ρn−1)2 ≥ 0, it follows that left side of inequality (3.8) is
stronger than inequality

R−1 ≥
n

2(n− 1)

which was proved in [14].
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Remark 3.9. Inequalities in (3.8) can be presented in an equivalent form as√
2(n− 1)R−1 − n
(n− 1)2α(n− 1)

≤ ρ1 − ρn−1 ≤
√

2(2(n− 1)R−1 − n)

n− 1
. (3.11)

For even n, left side of inequality (3.11) is stronger than inequality

ρ1 − ρn−1 ≥
2

n− 1

√
2(n− 1)R−1 − n,

which was proved in [4].

Acknowledgement. This work was supported by the Serbian Ministry of Education
and Science, Project No TR32012 and TR32009.

References
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