Multisymplectic connections on supermanifolds

Masoud Aminizadeh and Mina Ghotbaldini

Abstract. In this paper we show that on any multisymplectic supermanifold there exist a connection compatible to the multisymplectic form.

Mathematics Subject Classification (2010): 58A50, 53D05.

Keywords: Multisymplectic supermanifolds, multisymplectic connections.

1. Introduction

Multisymplectic structures in field theory play a role similar to that of symplectic structures in classical mechanics. In the other hand supergeometry plays an important role in physics. In [2] and [3], the authors studied geometry of symplectic connections and in [1], the author studied symplectic connections on supermanifold. In this paper we study multisymplectic connections on supermanifolds.

A supermanifold \mathcal{M} of dimension n|m is a pair $(M, \mathcal{O}_{\mathcal{M}})$, where M is a Hausdorff topological space and $\mathcal{O}_{\mathcal{M}}$ is a sheaf of commutative superalgebras with unity over \mathbb{R} locally isomorphic to $\mathbb{R}^{m|n} = (\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n} \otimes \Lambda_{\eta^1, \dots, \eta^m})$, where $\mathcal{O}_{\mathbb{R}^n}$ is the sheaf of smooth functions on \mathbb{R}^n and $\Lambda_{\eta^1, \dots, \eta^m}$ is the grassmann superalgebra of m generators (for more details see [5]).

If \mathcal{M} is a supermanifold of dimension n|m, we define the tangent sheaf as follows,

$$\mathcal{T}_{\mathcal{M}}(U) = Der(\mathcal{O}_{\mathcal{M}}(U)),$$

the $\mathcal{O}_{\mathcal{M}}(U)$ -supermodule of derivations of $\mathcal{O}_{\mathcal{M}}(U)$. $\mathcal{T}_{\mathcal{M}}$ is locally free of dimension n|m. The sections of $\mathcal{T}_{\mathcal{M}}$ are called vector fields.

Definition 1.1. If ξ be a locally free sheaf of $\mathcal{O}_{\mathcal{M}}$ -supermodules on \mathcal{M} , a connection on ξ is a morphism $\nabla : \mathcal{T}_{\mathcal{M}} \otimes_{\mathbb{R}} \xi \to \xi$ of sheaves of supermodules over \mathbb{R} such that

$$\nabla_{fX}v = f\nabla_{X}v, \ \nabla_{X}fv = (Xf) + (-1)^{\widetilde{X}\widetilde{f}}f\nabla_{X}v \ and \ \widetilde{\nabla_{X}v} = \widetilde{v} + \widetilde{X},$$

for all homogeneous function f, vector fields X and section v of ξ . (In the case $\xi = \mathcal{T}_{\mathcal{M}}$ we speak of a connection on \mathcal{M}).

We define the torsion of a connection ∇ on $\mathcal{T}_{\mathcal{M}}$ by

$$T(X,Y) = \nabla_X Y - (-1)^{\widetilde{X}\widetilde{Y}} \nabla_Y X - [X,Y].$$

Definition 1.2. A graded Riemannian metric on supermanifold \mathcal{M} is a graded-symmetric non-degenerate $\mathcal{O}_{\mathcal{M}}$ -linear morphism of sheaves

$$g: \mathcal{T}_{\mathcal{M}} \otimes \mathcal{T}_{\mathcal{M}} \to \mathcal{O}_{\mathcal{M}}.$$

A supermanifold equipped with graded Riemannian metric is called a Riemannian supermanifold. If \mathcal{M} is a Riemannian supermanifold with Riemannian metric g, we call a connection ∇ metric if $\nabla g = 0$.

On a suppermanifold M with a Riemannian metric g, there exist a unique torsion free and metric connection ∇^0 , which will be called the Levi-Civita connection of the metric(see [4]).

2. Multisymplectic connections on supermanifolds

Let us consider a multisymplectic supermanifold of degree k (\mathcal{M}, ω) , i.e. a supermanifold \mathcal{M} with a closed non-degenerate graded differential k-form ω .

Definition 2.1. A multisymplectic connection on \mathcal{M} is a connection for which:

i) The torsion tensor vanishes, i.e.

$$\nabla_X Y - (-1)^{\widetilde{X}\widetilde{Y}} \nabla_Y X = [X, Y].$$

ii) It is compatible to the multisymplectic form, i.e. $\nabla \omega = 0$.

To prove the existence of such a connection, take ∇^0 to be the Levi-Civita connection associated to a metric g on \mathcal{M} . Consider tensor N on \mathcal{M} defined by

$$\nabla_{Y_0}^0 \omega(Y_1, Y_2, ..., Y_k) = (-1)^{\widetilde{\omega} \widetilde{Y_0}} \omega(N(Y_0, Y_1), Y_2, ..., Y_k).$$

We shall proof some properties of N.

Lemma 2.2. We have

i)
$$\omega(N(Y_0, Y_1), Y_2, ..., Y_k) = -(-1)^{\widetilde{Y_1}\widetilde{Y_2}}\omega(N(Y_0, Y_2), Y_1, ..., Y_k);$$

ii) $\omega(N(Y_0, Y_1), Y_2, ..., Y_k) + \sum_{i=1}^k (-1)^{i+\sum_{p
where the hats indicate omitted arguments.$

Proof. We first prove (i)

$$\begin{split} \omega(N(Y_0,Y_1),Y_2,...,Y_k) &= (-1)^{\widetilde{Y_0}\widetilde{\omega}} \nabla^0_{Y_0} \omega(Y_1,Y_2,...,Y_k) \\ &= -(-1)^{\widetilde{Y_0}\widetilde{\omega}+\widetilde{Y_1}\widetilde{Y_2}} \nabla^0_{Y_0} \omega(Y_2,Y_1,...,Y_k) \\ &= -(-1)^{\widetilde{Y_1}\widetilde{Y_2}} \omega(N(Y_0,Y_2),Y_1,...,Y_k). \end{split}$$

For proof (ii) we know $d\omega = 0$ so

$$0 = d\omega(Y_0, Y_1, ..., Y_k) = \sum_{i=0}^{k} (-1)^{i + \widetilde{Y}_i(\widetilde{w} + \sum_{p < i} \widetilde{Y}_p)} Y_i(\omega(Y_0, ..., \hat{Y}_i, ..., Y_k))$$

$$\begin{split} & + \sum_{i < j} (-1)^{j + \sum_{i < p < j} \overline{Y_{i}} \overline{Y_{p}}} \omega(Y_{0}, \dots, Y_{i-1}, [Y_{i}, Y_{j}], Y_{i+1}, \dots, \hat{Y_{j}}, \dots, Y_{k})} \\ & = \sum_{i = 0}^{k} (-1)^{i + \overline{Y_{i}}} (\overline{w} + \sum_{p < i} \overline{Y_{p}}) Y_{i} (\omega(Y_{0}, \dots, \hat{Y_{i}}, \dots, Y_{k})) \\ & + \sum_{i < j} (-1)^{j + \sum_{i < p < j} \overline{Y_{j}} \overline{Y_{p}}} \omega(Y_{0}, \dots, Y_{i-1}, \nabla_{Y_{i}}^{0} Y_{j} - (-1)^{\overline{Y_{i}} \widetilde{Y_{j}}} \nabla_{Y_{j}}^{0} Y_{i}, Y_{i+1}, \dots, \hat{Y_{j}}, \dots, Y_{k}) \\ & = \sum_{i = 0}^{k} (-1)^{i + \overline{Y_{i}}} (\overline{w} + \sum_{p < i} \overline{Y_{p}}) Y_{i} (\omega(Y_{0}, \dots, \hat{Y_{i}}, \dots, Y_{k})) \\ & + \sum_{i < j} (-1)^{j + \sum_{i < p < j} \overline{Y_{j}} \widetilde{Y_{p}}} \omega(Y_{0}, \dots, Y_{i-1}, \nabla_{Y_{i}}^{0} Y_{j}, Y_{i+1}, \dots, \hat{Y_{j}}, \dots, Y_{k}) \\ & - \sum_{i < j} (-1)^{j + \sum_{i < p < j} \overline{Y_{j}} \widetilde{Y_{p}}} \omega(Y_{0}, \dots, Y_{i-1}, \nabla_{Y_{i}}^{0} Y_{j}, Y_{i+1}, \dots, \hat{Y_{j}}, \dots, Y_{k}) \\ & = \sum_{i = 0}^{k} (-1)^{i + \overline{Y_{i}}} (\overline{w} + \sum_{p < i} \overline{Y_{p}}) Y_{i} (\omega(Y_{0}, \dots, \hat{Y_{i}}, \dots, Y_{k})) \\ & + \sum_{i < j} (-1)^{j + \sum_{i < p < j} \overline{Y_{j}} \overline{Y_{p}}} \omega(Y_{0}, \dots, Y_{i-1}, \nabla_{Y_{i}}^{0} Y_{j}, Y_{j+1}, \dots, \hat{Y_{i}}, \dots, Y_{k}) \\ & - \sum_{j < i} (-1)^{i + \sum_{i < p < i} \overline{Y_{i}} \overline{Y_{p}}} \omega(Y_{0}, \dots, Y_{j-1}, \nabla_{Y_{i}}^{0} Y_{j}, Y_{j+1}, \dots, \hat{Y_{i}}, \dots, Y_{k}) \\ & - \sum_{i < j} (-1)^{i + \sum_{i < p < i} \overline{Y_{i}} \overline{Y_{p}}} \omega(Y_{0}, \dots, Y_{j-1}, \hat{Y_{i}}, \dots, Y_{j-1}, \nabla_{Y_{i}}^{0} Y_{j}, Y_{j+1}, \dots, Y_{k}) \\ & - \sum_{j < i} (-1)^{i + \sum_{j \le p < i} \overline{Y_{i}} \overline{Y_{p}}} \omega(Y_{0}, \dots, Y_{j-1}, \nabla_{Y_{i}}^{0} Y_{j}, Y_{j}, Y_{j+1}, \dots, Y_{k}) \\ & - \sum_{j < i} (-1)^{i + \sum_{j \le p < i} \overline{Y_{i}} \overline{Y_{p}}} \omega(Y_{0}, \dots, Y_{j-1}, \nabla_{Y_{i}}^{0} Y_{j}, Y_{j}, Y_{j+1}, \dots, Y_{k}) \\ & - \sum_{j < i} (-1)^{i + \overline{Y_{i}}} (\overline{w} + \sum_{p < i} \overline{Y_{p}}) \omega(Y_{0}, \dots, Y_{j-1}, \nabla_{Y_{i}}^{0} Y_{j}, \dots, \hat{Y_{i}}, \dots, Y_{k}) \\ & - \sum_{i < 0} (-1)^{i + \overline{Y_{i}}} (\overline{w} + \sum_{p < i} \overline{Y_{p}}) \nabla_{Y_{i}}^{0} \omega(Y_{0}, \dots, Y_{i}, \dots, Y_{k}) \\ & = \sum_{i < 0} (-1)^{i + \overline{Y_{i}}} (\overline{w} + \sum_{p < i} \overline{Y_{p}}) \nabla_{Y_{i}}^{0} \omega(Y_{0}, \dots, \hat{Y_{i}}, \dots, Y_{k}) \\ & = \sum_{i < 0} (-1)^{i + \overline{Y_{i}}} (\overline{w} + \sum_{p < i} \overline{Y_{p}}) \nabla_{Y_{i}}^{0} \omega(Y_{0}, \dots, Y_{i}, \dots, Y_{k}) \\ & = \sum_{i < 0} (-1)^{i + \overline{Y_$$

Now we show that on any multisymplectic supermanifold there exist a connection compatible to the multisymplectic form.

Theorem 2.3. Let (\mathcal{M}, ω) be a multisymplectic supermanifold. Then on \mathcal{M} there is at least a multisymplectic connection.

Proof. We define now a new connection ∇ as follows

$$\nabla_X Y = \nabla_X^0 Y + \frac{1}{k+1} N(X,Y) + \frac{(-1)^{\widetilde{X}\widetilde{Y}}}{k+1} N(Y,X).$$

It is easy to show that ∇ is a torsion free connection. We show that the connection is compatible with the multisymplectic form ω , i.e. $\nabla \omega = 0$. We have

$$\begin{split} \nabla_{Y_0}\omega(Y_1,...,Y_k) &= Y_0(\omega(Y_1,...,Y_k)) \\ &- \sum_{i=1}^k (-1)^{\widetilde{Y_0}(\widetilde{\omega} + \sum_{p < i} \widetilde{Y_p})} \omega(Y_1,...,Y_{i-1},\nabla_{Y_0}Y_i,Y_{i+1},...,Y_k) \\ &= Y_0(\omega(Y_1,...,Y_k)) - \sum_{i=1}^k (-1)^{\widetilde{Y_0}(\widetilde{\omega} + \sum_{p < i} \widetilde{Y_p})} \omega(Y_1,...,Y_{i-1},\nabla_{Y_0}^0 Y_i \\ &+ \frac{1}{k+1} N(Y_0,Y_i) + \frac{(-1)^{\widetilde{Y_0}\widetilde{Y_i}}}{k+1} N(Y_i,Y_0),Y_{i+1},...,Y_k) \\ &= Y_0(\omega(Y_1,...,Y_k)) - \sum_{i=1}^k (-1)^{\widetilde{Y_0}(\widetilde{\omega} + \sum_{1 \le p < i} \widetilde{Y_p})} \omega(Y_1,...,Y_{i-1},\nabla_{Y_0}^0 Y_i,Y_{i+1},...,Y_k) \\ &- \frac{1}{k+1} \sum_{i=1}^k (-1)^{\widetilde{Y_0}(\widetilde{\omega} + \sum_{1 \le p < i} \widetilde{Y_p})} \omega(Y_1,...,Y_{i-1},N(Y_0,Y_i),Y_{i+1},...,Y_k) \\ &- \frac{1}{k+1} \sum_{i=1}^k (-1)^{\widetilde{Y_0}(\widetilde{\omega} + \sum_{1 \le p < i} \widetilde{Y_p})} \omega(Y_1,...,Y_{i-1},N(Y_i,Y_0),Y_{i+1},...,Y_k) \\ &= \nabla_{Y_0}^0 \omega(Y_1,...,Y_k) \\ &- \frac{1}{k+1} \sum_{i=1}^k (-1)^{i-1} (-1)^{\widetilde{Y_0}\widetilde{\omega} + \widetilde{Y_i}} \sum_{1 \le p < i} \widetilde{Y_p} \omega(N(Y_0,Y_i),Y_1,...,\hat{Y_i},...,Y_k) \\ &- \frac{1}{k+1} \sum_{i=1}^k (-1)^{i-1} (-1)^{\widetilde{Y_0}\widetilde{\omega} + \widetilde{Y_i}} \sum_{0 \le p < i} \widetilde{Y_p} \omega(N(Y_i,Y_0),Y_1,...,\hat{Y_i},...,Y_k) \\ &= (-1)^{\widetilde{Y_0}\widetilde{\omega}} \omega(N(Y_0,Y_1),Y_2,...,Y_k) - \frac{k}{k+1} (-1)^{\widetilde{Y_0}\widetilde{\omega}} \omega(N(Y_0,Y_1),Y_2,...,Y_k) \\ &= \frac{1}{k+1} (-1)^{\widetilde{Y_0}\widetilde{\omega}} (\omega(N(Y_0,Y_1),Y_2,...,Y_k) \\ \end{split}$$

$$+\sum_{i=1}^{k} (-1)^{i+\widetilde{Y}_{i}} \sum_{p < i} \widetilde{Y_{p}} \omega(N(Y_{i}, Y_{0}), Y_{1}, ..., \hat{Y}_{i}, ..., Y_{k})) = 0.$$

Let now ∇ be a multisymplectic connection and $\nabla'_X Y = \nabla_X Y + S(X, Y)$, where S is a tensor field on \mathcal{M} . We have

Theorem 2.4. ∇' is a multisymplelectic connection if and only if S is supersymmetric and

$$\sum_{i} (-1)^{\sum_{p < i} \widetilde{Y_0} \widetilde{Y_p}} \omega(Y_1, ..., Y_{i-1}, S(Y_0, Y_i), Y_{i+1}, ..., Y_k) = 0.$$

Proof. If we want ∇' to be torsion free then

$$\nabla_Y X + S(X,Y) - (-1)^{\widetilde{X}\widetilde{Y}} \nabla_Y X - (-1)^{\widetilde{X}\widetilde{Y}} S(Y,X) = [X,Y].$$

So $S(X,Y) = -(-1)^{\widetilde{X}\widetilde{Y}}S(Y,X)$. If ∇' be compatible to the multisymplectic form ω . We have

$$0 = \nabla'_{Y_0} \omega(Y_1, ..., Y_k) = Y_0(\omega(Y_1, ..., Y_k))$$
$$-\sum_{i} (-1)^{\widetilde{Y_0}(\widetilde{\omega} + \sum_{p < i} \widetilde{Y_p})} \omega(Y_1, ..., Y_{i-1}, \nabla'_{Y_0} Y_i, Y_{i+1}, ..., Y_k)$$

$$= \nabla_{Y_0} \omega(Y_1, ..., Y_k) - (-1)^{\widetilde{Y_0}\widetilde{\omega}} (\Sigma_i(-1)^{\sum_{p < i} \widetilde{Y_0}\widetilde{Y_p}} \omega(Y_1, ..., Y_{i-1}, S(Y_0, Y_i), Y_{i+1}, ..., Y_k)).$$
 So

$$\sum_{i} (-1)^{\sum_{p < i} \widetilde{Y_0} \widetilde{Y_p}} \omega(Y_1, ..., Y_{i-1}, S(Y_0, Y_i), Y_{i+1}, ..., Y_k) = 0.$$

References

- [1] Blaga, P.A., Symplectic connections on supermanifolds: Existence and non-uniqueness, Stud. Univ. Babeş-Bolyai Math., **58**(2013), no. 4, 477-483.
- [2] Bieliavsky, P., Cahen, M., Gutt, S., Rawnsley, J., Schwachhofer, L., Symplectic connections, math/0511194.
- [3] Gelfand, I., Retakh, V., Shubin, M., Fedosov manifolds, Advan. Math., 136(1998), 104-140.
- [4] Goertsches, O., Riemannian supergeometry, Math. Z., 260, (2008), 557-593.
- [5] Leites, D.A., Introduction to the theory of supermanifolds, Russian Mathematical Surveys, **35**(1980), 1-64.

Masoud Aminizadeh

"Vali-e-Asr" University of Rafsanjan

Department of Mathematics

Rafsanjan, Iran

e-mail: m.aminizadeh@vru.ac.ir

Mina Ghotbaldini

"Vali-e-Asr" University of Rafsanjan

Department of Mathematics

Rafsanjan, Iran