## On close-to-convex functions satisfying a differential inequality

Sukhwinder Singh Billing

**Abstract.** Let  $C_{\alpha}(\beta)$  denote the class of normalized functions f, analytic in the open unit disk  $\mathbb{E}$  which satisfy the condition

$$\Re\left[(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\frac{(zf'(z))'}{\phi'(z)}\right] > \beta, \ z \in \mathbb{E},$$

where  $\frac{f(z)f'(z)}{z} \neq 0$ ,  $z \in \mathbb{E}$ ,  $\phi$  is starlike and  $\alpha$ ,  $\beta$  are pre-assigned real numbers. In 1977, Chichra, P. N. [1] introduced and studied the class  $C_{\alpha} = C_{\alpha}(0)$ . He proved the members of class  $C_{\alpha}$  are close-to-convex for  $\alpha \ge 0$ . We here prove that functions in class  $C_{\alpha}(\beta)$  are close-to-convex for  $-\frac{\alpha}{2}\Re\left(\frac{z\phi'(z)}{\phi(z)}\right) \le \beta < 1$ ,  $\alpha \ge 0$  and the result is sharp in the sense that the constant  $\beta$  cannot be replaced by a real number smaller than  $-\frac{\alpha}{2}\Re\left(\frac{\phi(z)}{z\phi'(z)}\right)$ . We claim that our result improves the result of Chichra, P. N. [1].

Mathematics Subject Classification (2010): 30C80, 30C45.

Keywords: Analytic function, convex function, starlike function, close-to-convex.

## 1. Introduction

Let  $\mathcal{A}$  be the class of functions f, analytic in  $\mathbb{E} = \{z : |z| < 1\}$  and normalized by the conditions f(0) = f'(0) - 1 = 0. Let  $\mathcal{S}^*$  and  $\mathcal{K}$  denote the classes of starlike and convex functions respectively analytically defined as follows:

$$\mathcal{S}^* = \left\{ f \in \mathcal{A} : \Re\left(\frac{zf'(z)}{f(z)}\right) > 0, \ z \in \mathbb{E} \right\},$$

and

$$\mathcal{K} = \left\{ f \in \mathcal{A} : \Re \left( 1 + \frac{z f''(z)}{f'(z)} \right) > 0, \ z \in \mathbb{E} \right\}$$

This is well-known that

$$f(z) \in \mathcal{K} \Leftrightarrow zf'(z) \in \mathcal{S}^*.$$
(1.1)

A function  $f \in \mathcal{A}$  is said to be close to convex if there is a real number  $\alpha, -\pi/2 < \alpha < \pi/2$  and a convex function g (not necessarily normalized) such that

$$\Re\left(e^{i\alpha}\frac{f'(z)}{g'(z)}\right) > 0, \ z \in \mathbb{E}.$$

In view of the relation (1.1), the above definition takes the following form in case g is normalized. A function  $f \in \mathcal{A}$  is said to be close to convex if there is a real number  $\alpha, -\pi/2 < \alpha < \pi/2$ , and a starlike function  $\phi$  such that

$$\Re\left(e^{i\alpha}\frac{zf'(z)}{\phi(z)}\right) > 0, \ z \in \mathbb{E}.$$

It is well-known that every close-to-convex function is univalent. In 1934/35, Noshiro [3] and Warchawski [4] obtained a simple but elegant criterion for univalence of analytic functions. They proved that if an analytic function f satisfies  $\Re f'(z) > 0$  for all z in  $\mathbb{E}$ , then f is close-to-convex and hence univalent in  $\mathbb{E}$ .

Let  $C_{\alpha}(\beta)$  denote the class of normalized analytic functions f which satisfy the condition

$$\Re\left[(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\frac{(zf'(z))'}{\phi'(z)}\right] > \beta, \ z \in \mathbb{E},$$

where  $\frac{f(z)f'(z)}{\tilde{\mathcal{C}}_{\alpha}} \neq 0$ ,  $z \in \mathbb{E}$ ,  $\phi$  is starlike and  $\alpha$ ,  $\beta$  are pre-assigned real numbers. The class  $\tilde{\mathcal{C}}_{\alpha}^{z} = \mathcal{C}_{\alpha}(0)$  was introduced and studied by Chichra, P. N. [1] in 1977. He called the members of class  $\mathcal{C}_{\alpha}$  as  $\alpha$ - close-to-convex functions. Infact, he proved the following result.

**Theorem 1.1.** Let  $f(z) \in C_{\alpha}$  and  $\alpha \geq 0$ . Then f(z) is close-to-convex in  $\mathbb{E}$ .

In the present paper, we establish the result that functions in  $C_{\alpha}(\beta)$  are close-to-convex for  $-\frac{\alpha}{2}\Re\left(\frac{z\phi'(z)}{\phi(z)}\right) \leq \beta < 1, \ \alpha \geq 0$ . Our result is the best possible in the sense that

the constant  $\beta$  cannot be replaced by a real number smaller than  $-\frac{\alpha}{2}\Re\left(\frac{\phi(z)}{z\phi'(z)}\right)$ . We also claim that our result improves the result of Chichra, P. N. [1]. To prove our main result, we shall use the following lemma of Miller [2].

**Lemma 1.2.** Let  $\mathbb{D}$  be a subset of  $\mathbb{C} \times \mathbb{C}$  ( $\mathbb{C}$  is the complex plane) and let  $\phi : \mathbb{D} \to \mathbb{C}$ be a complex function. For  $u = u_1 + iu_2$ ,  $v = v_1 + iv_2$  ( $u_1, u_2, v_1, v_2$  are reals), let  $\phi$ satisfy the following conditions: (i)  $\phi(u, v)$  is continuous in  $\mathbb{D}$ (ii)  $(1, 0) \in \mathbb{D}$  and  $\Re[\phi(1, 0)] > 0$  and (iii)  $\Re[\phi(iu_2, v_1)] \leq 0$  for all ( $iu_2, v_1$ )  $\in \mathbb{D}$  such that  $v_1 \leq -(1 + u_2^2)/2$ . Let  $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$  be regular in the open unit disk  $\mathbb{E}$ , such that (p(z), zp'(z))  $\in \mathbb{D}$  for all  $z \in \mathbb{E}$ . If

$$\Re[\phi(p(z), zp'(z))] > 0, \ z \in \mathbb{E},$$

then  $\Re p(z) > 0, z \in \mathbb{E}$ .

## 2. Main result

**Theorem 2.1.** Let  $\alpha$  and  $\beta$  be real numbers such that  $\alpha \geq 0$  and

$$-\frac{\alpha}{2}\Re\left(\frac{\phi(z)}{z\phi'(z)}\right) \le \beta < 1$$

for a starlike function  $\phi$ . Assume that  $f \in \mathcal{A}$  satisfies

$$\Re\left[(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\frac{(zf'(z))'}{\phi'(z)}\right] > \beta, \ z \in \mathbb{E},$$
(2.1)

563

then  $\Re\left(\frac{zf'(z)}{\phi(z)}\right) > 0$  in  $\mathbb{E}$  and hence f is close-to-convex and hence univalent in  $\mathbb{E}$ . The result is sharp in the sense that the constant  $\beta$  on the right hand side of (2.1) cannot be replaced by a real number smaller than  $-\frac{\alpha}{2}\Re\left(\frac{\phi(z)}{z\phi'(z)}\right)$ .

*Proof.* Let  $p(z) = 1 + p_1 z + p_2 z^2 + ...$  be analytic in  $\mathbb{E}$  such that for all  $z \in \mathbb{E}$ , we write

$$\frac{zf'(z)}{\phi(z)} = p(z)$$

Then,

$$(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\frac{(zf'(z))'}{\phi'(z)} = p(z) + \alpha zp'(z)\frac{\phi(z)}{z\phi(z)}.$$

Therefore, condition (2.1) is equivalent to

$$\Re\left(\frac{1}{1-\beta}p(z) + \frac{\alpha}{1-\beta}zp'(z)\frac{\phi(z)}{z\phi'(z)} - \frac{\beta}{1-\beta}\right) > 0, \ z \in \mathbb{E}.$$
(2.2)

For  $\mathbb{D} = \mathbb{C} \times \mathbb{C}$ , define  $\Phi(u, v) : \mathbb{D} \to \mathbb{C}$  as under:

$$\Phi(u,v) = \frac{1}{1-\beta}u + \frac{\alpha}{1-\beta}v\frac{\phi(z)}{z\phi'(z)} - \frac{\beta}{1-\beta}, \ z \in \mathbb{E}.$$

Then  $\Phi(u, v)$  is continuous in  $\mathbb{D}$ ,  $(1, 0) \in \mathbb{D}$  and  $\Re(\Phi(1, 0)) = 1 > 0$ . Further, in view of (2.2), we get,  $\Re[\Phi(p(z), zp'(z))] > 0$ ,  $z \in \mathbb{E}$ . Let  $u = u_1 + iu_2, v = v_1 + iv_2$  where  $u_1, u_2, v_1$  and  $v_2$  are all real numbers. Then, for  $(iu_2, v_1) \in \mathbb{D}$ , with  $v_1 \leq -\frac{1+u_2^2}{2}$ , we have

$$\begin{aligned} \Re \Phi(iu_2, v_1) &= \Re \left( \frac{1}{1-\beta} u_2 i + \frac{\alpha}{1-\beta} v_1 \frac{\phi(z)}{z \phi'(z)} - \frac{\beta}{1-\beta} \right) \\ &\leq - \left[ \frac{\alpha}{1-\beta} \frac{1+u_2^2}{2} \Re \left( \frac{\phi(z)}{z \phi'(z)} \right) + \frac{\beta}{1-\beta} \right] \\ &\leq - \left[ \frac{\alpha}{2(1-\beta)} \Re \left( \frac{\phi(z)}{z \phi'(z)} \right) + \frac{\beta}{1-\beta} \right] \\ &\leq 0. \end{aligned}$$

In view of (2.2) and Lemma 1.2, proof now follows.



Figure 2.1



Figure 2.2

To show that the constant  $\beta$  on the right hand side of (2.1) cannot be replaced by a real number smaller than  $-\frac{\alpha}{2} \Re \left( \frac{\phi(z)}{z\phi'(z)} \right)$ , we consider the function  $f(z) = z e^z \in \mathcal{A}$ and  $\phi(z) = z \in \mathcal{S}^*$ . Using Mathematica 9.0, we plot, in Figure 2.1, the image of the unit disk under the operator  $(1 - \alpha) \frac{zf'(z)}{\phi(z)} + \alpha \frac{(zf'(z))'}{\phi'(z)}$  taking  $\alpha = 2$ . From this figure, we notice that minimum real part of  $(1 - \alpha) \frac{zf'(z)}{\phi(z)} + \alpha \frac{(zf'(z))'}{\phi'(z)}$  is smaller than -1 (the calculated value of  $-\frac{\alpha}{2}\Re\left(\frac{\phi(z)}{z\phi'(z)}\right)$  for  $\alpha = 2$  and  $\phi(z) = z$ ). In Figure 2.2, we plot the image of unit disk under the operator  $\frac{zf'(z)}{\phi(z)}$ . It is obvious that  $\Re\left(\frac{zf'(z)}{\phi(z)}\right) \neq 0$  for all z in  $\mathbb{E}$ . For example, the point  $z = -\frac{1}{2} + i\frac{\pi}{4}$  is an interior point of  $\mathbb{E}$ , but at this point  $\Re\left(\frac{zf'(z)}{\phi(z)}\right) = -\frac{\pi-2}{4\sqrt{2e}} = -0.1224 \dots < 0$ . This justifies our claim.

**Remark 2.2.** We claim that our result improves the result of Chichra, P. N. [1]. In fact, when we take  $f(z) = -z - 2\log(1-z) \in \mathcal{A}$ ,  $\phi(z) = z$  and  $\alpha = 2$  in Theorem 2.1, we notice that at z = -1,

$$\Re\left[(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\frac{(zf'(z))'}{\phi'(z)}\right] = -1.$$

Thus the function f does not satisfy the hypothesis of Theorem 1.1 due to Chichra, P. N. [1] i.e.  $f \notin C_{\alpha}$  although  $\Re\left(\frac{zf'(z)}{\phi(z)}\right) = \Re\left(\frac{1+z}{1-z}\right) > 0$  in  $\mathbb{E}$ . Hence the result of Chichra, P. N. [1] fails to conclude the close-to-convexity in this case whereas Theorem 2.1 concludes the same.

## References

- Chichra, P.N., New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc., 62(1)(1977), 37-43.
- [2] Miller, S.S., Differential inequalities and Carathéodory functions, Bull. Amer. Math. Soc., 81(1975), 79-81.
- [3] Noshiro, K., On the theory of schlicht functions, J. Fac. Sci., Hokkaido Univ., 2(1934-35), 129-155.
- Warchawski, S.E., On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc., 38(1935), 310-340.

Sukhwinder Singh Billing Department of Mathematics Sri Guru Granth Sahib World University Fatehgarh Sahib-140 406, Punjab, India e-mail: ssbilling@gmail.com 565