On close-to-convex functions satisfying a differential inequality

Sukhwinder Singh Billing

Abstract

Let $\mathcal{C}_{\alpha}(\beta)$ denote the class of normalized functions f, analytic in the open unit disk \mathbb{E} which satisfy the condition $$
\Re\left[(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{\phi^{\prime}(z)}\right]>\beta, z \in \mathbb{E}
$$ where $\frac{f(z) f^{\prime}(z)}{z} \neq 0, z \in \mathbb{E}, \phi$ is starlike and α, β are pre-assigned real numbers. In 1977, Chichra, P. N. [1] introduced and studied the class $\mathcal{C}_{\alpha}=\mathcal{C}_{\alpha}(0)$. He proved the members of class \mathcal{C}_{α} are close-to-convex for $\alpha \geq 0$. We here prove that functions in class $\mathcal{C}_{\alpha}(\beta)$ are close-to-convex for $-\frac{\alpha}{2} \Re\left(\frac{z \phi^{\prime}(z)}{\phi(z)}\right) \leq \beta<1, \alpha \geq 0$ and the result is sharp in the sense that the constant β cannot be replaced by a real number smaller than $-\frac{\alpha}{2} \Re\left(\frac{\phi(z)}{z \phi^{\prime}(z)}\right)$. We claim that our result improves the result of Chichra, P. N. [1].

Mathematics Subject Classification (2010): 30C80, 30C45.
Keywords: Analytic function, convex function, starlike function, close-to-convex.

1. Introduction

Let \mathcal{A} be the class of functions f, analytic in $\mathbb{E}=\{z:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. Let \mathcal{S}^{*} and \mathcal{K} denote the classes of starlike and convex functions respectively analytically defined as follows:

$$
\mathcal{S}^{*}=\left\{f \in \mathcal{A}: \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{E}\right\}
$$

and

$$
\mathcal{K}=\left\{f \in \mathcal{A}: \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in \mathbb{E}\right\}
$$

This is well-known that

$$
\begin{equation*}
f(z) \in \mathcal{K} \Leftrightarrow z f^{\prime}(z) \in \mathcal{S}^{*} \tag{1.1}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be close to convex if there is a real number $\alpha,-\pi / 2<$ $\alpha<\pi / 2$ and a convex function g (not necessarily normalized) such that

$$
\Re\left(e^{i \alpha} \frac{f^{\prime}(z)}{g^{\prime}(z)}\right)>0, z \in \mathbb{E}
$$

In view of the relation (1.1), the above definition takes the following form in case g is normalized. A function $f \in \mathcal{A}$ is said to be close to convex if there is a real number $\alpha,-\pi / 2<\alpha<\pi / 2$, and a starlike function ϕ such that

$$
\Re\left(e^{i \alpha} \frac{z f^{\prime}(z)}{\phi(z)}\right)>0, z \in \mathbb{E}
$$

It is well-known that every close-to-convex function is univalent. In 1934/35, Noshiro [3] and Warchawski [4] obtained a simple but elegant criterion for univalence of analytic functions. They proved that if an analytic function f satisfies $\Re f^{\prime}(z)>0$ for all z in \mathbb{E}, then f is close-to-convex and hence univalent in \mathbb{E}.
Let $\mathcal{C}_{\alpha}(\beta)$ denote the class of normalized analytic functions f which satisfy the condition

$$
\Re\left[(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{\phi^{\prime}(z)}\right]>\beta, z \in \mathbb{E}
$$

where $\frac{f(z) f^{\prime}(z)}{z} \neq 0, z \in \mathbb{E}, \phi$ is starlike and α, β are pre-assigned real numbers. The class $\underset{\mathcal{C}_{\alpha}}{z}=\mathcal{C}_{\alpha}(0)$ was introduced and studied by Chichra, P. N. [1] in 1977. He called the members of class \mathcal{C}_{α} as α - close-to-convex functions. Infact, he proved the following result.

Theorem 1.1. Let $f(z) \in \mathcal{C}_{\alpha}$ and $\alpha \geq 0$. Then $f(z)$ is close-to-convex in \mathbb{E}.
In the present paper, we establish the result that functions in $\mathcal{C}_{\alpha}(\beta)$ are close-to-convex for $-\frac{\alpha}{2} \Re\left(\frac{z \phi^{\prime}(z)}{\phi(z)}\right) \leq \beta<1, \alpha \geq 0$. Our result is the best possible in the sense that the constant β cannot be replaced by a real number smaller than $-\frac{\alpha}{2} \Re\left(\frac{\phi(z)}{z \phi^{\prime}(z)}\right)$. We also claim that our result improves the result of Chichra, P. N. [1]. To prove our main result, we shall use the following lemma of Miller [2].

Lemma 1.2. Let \mathbb{D} be a subset of $\mathbb{C} \times \mathbb{C}(\mathbb{C}$ is the complex plane) and let $\phi: \mathbb{D} \rightarrow \mathbb{C}$ be a complex function. For $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}\left(u_{1}, u_{2}, v_{1}, v_{2}\right.$ are reals), let ϕ satisfy the following conditions:
(i) $\phi(u, v)$ is continuous in \mathbb{D}
(ii) $(1,0) \in \mathbb{D}$ and $\Re[\phi(1,0)]>0$ and
(iii) $\Re\left[\phi\left(i u_{2}, v_{1}\right)\right] \leq 0$ for all $\left(i u_{2}, v_{1}\right) \in \mathbb{D}$ such that $v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$.

Let $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ be regular in the open unit disk \mathbb{E}, such that $\left(p(z), z p^{\prime}(z)\right) \in \mathbb{D}$ for all $z \in \mathbb{E}$. If

$$
\Re\left[\phi\left(p(z), z p^{\prime}(z)\right)\right]>0, z \in \mathbb{E}
$$

then $\Re p(z)>0, z \in \mathbb{E}$.

2. Main result

Theorem 2.1. Let α and β be real numbers such that $\alpha \geq 0$ and

$$
-\frac{\alpha}{2} \Re\left(\frac{\phi(z)}{z \phi^{\prime}(z)}\right) \leq \beta<1
$$

for a starlike function ϕ. Assume that $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\Re\left[(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{\phi^{\prime}(z)}\right]>\beta, z \in \mathbb{E} \tag{2.1}
\end{equation*}
$$

then $\Re\left(\frac{z f^{\prime}(z)}{\phi(z)}\right)>0$ in \mathbb{E} and hence f is close-to-convex and hence univalent in \mathbb{E}. The result is sharp in the sense that the constant β on the right hand side of (2.1) cannot be replaced by a real number smaller than $-\frac{\alpha}{2} \Re\left(\frac{\phi(z)}{z \phi^{\prime}(z)}\right)$.

Proof. Let $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ be analytic in \mathbb{E} such that for all $z \in \mathbb{E}$, we write

$$
\frac{z f^{\prime}(z)}{\phi(z)}=p(z)
$$

Then,

$$
(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{\phi^{\prime}(z)}=p(z)+\alpha z p^{\prime}(z) \frac{\phi(z)}{z \phi(z)}
$$

Therefore, condition (2.1) is equivalent to

$$
\begin{equation*}
\Re\left(\frac{1}{1-\beta} p(z)+\frac{\alpha}{1-\beta} z p^{\prime}(z) \frac{\phi(z)}{z \phi^{\prime}(z)}-\frac{\beta}{1-\beta}\right)>0, z \in \mathbb{E} . \tag{2.2}
\end{equation*}
$$

For $\mathbb{D}=\mathbb{C} \times \mathbb{C}$, define $\Phi(u, v): \mathbb{D} \rightarrow \mathbb{C}$ as under:

$$
\Phi(u, v)=\frac{1}{1-\beta} u+\frac{\alpha}{1-\beta} v \frac{\phi(z)}{z \phi^{\prime}(z)}-\frac{\beta}{1-\beta}, z \in \mathbb{E}
$$

Then $\Phi(u, v)$ is continuous in $\mathbb{D},(1,0) \in \mathbb{D}$ and $\Re(\Phi(1,0))=1>0$. Further, in view of (2.2), we get, $\Re\left[\Phi\left(p(z), z p^{\prime}(z)\right)\right]>0, z \in \mathbb{E}$. Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ where u_{1}, u_{2}, v_{1} and v_{2} are all real numbers. Then, for $\left(i u_{2}, v_{1}\right) \in \mathbb{D}$, with $v_{1} \leq-\frac{1+u_{2}^{2}}{2}$, we have

$$
\begin{aligned}
\Re \Phi\left(i u_{2}, v_{1}\right) & =\Re\left(\frac{1}{1-\beta} u_{2} i+\frac{\alpha}{1-\beta} v_{1} \frac{\phi(z)}{z \phi^{\prime}(z)}-\frac{\beta}{1-\beta}\right) \\
& \leq-\left[\frac{\alpha}{1-\beta} \frac{1+u_{2}^{2}}{2} \Re\left(\frac{\phi(z)}{z \phi^{\prime}(z)}\right)+\frac{\beta}{1-\beta}\right] \\
& \leq-\left[\frac{\alpha}{2(1-\beta)} \Re\left(\frac{\phi(z)}{z \phi^{\prime}(z)}\right)+\frac{\beta}{1-\beta}\right] \\
& \leq 0 .
\end{aligned}
$$

In view of (2.2) and Lemma 1.2, proof now follows.

Figure 2.1

Figure 2.2

To show that the constant β on the right hand side of (2.1) cannot be replaced by a real number smaller than $-\frac{\alpha}{2} \Re\left(\frac{\phi(z)}{z \phi^{\prime}(z)}\right)$, we consider the function $f(z)=z e^{z} \in \mathcal{A}$ and $\phi(z)=z \in \mathcal{S}^{*}$. Using Mathematica 9.0, we plot, in Figure 2.1, the image of the unit disk under the operator $(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{\phi^{\prime}(z)}$ taking $\alpha=2$. From this figure, we notice that minimum real part of $(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{\phi^{\prime}(z)}$ is smaller
than -1 (the calculated value of $-\frac{\alpha}{2} \Re\left(\frac{\phi(z)}{z \phi^{\prime}(z)}\right)$ for $\alpha=2$ and $\phi(z)=z$). In Figure 2.2 , we plot the image of unit disk under the operator $\frac{z f^{\prime}(z)}{\phi(z)}$. It is obvious that $\Re\left(\frac{z f^{\prime}(z)}{\phi(z)}\right) \ngtr 0$ for all z in \mathbb{E}. For example, the point $z=-\frac{1}{2}+i \frac{\pi}{4}$ is an interior point of \mathbb{E}, but at this point $\Re\left(\frac{z f^{\prime}(z)}{\phi(z)}\right)=-\frac{\pi-2}{4 \sqrt{2 e}}=-0.1224 \cdots<0$. This justifies our claim.

Remark 2.2. We claim that our result improves the result of Chichra, P. N. [1]. In fact, when we take $f(z)=-z-2 \log (1-z) \in \mathcal{A}, \phi(z)=z$ and $\alpha=2$ in Theorem 2.1, we notice that at $z=-1$,

$$
\Re\left[(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{\phi^{\prime}(z)}\right]=-1
$$

Thus the function f does not satisfy the hypothesis of Theorem 1.1 due to Chichra, P. N. [1] i.e. $f \notin \mathcal{C}_{\alpha}$ although $\Re\left(\frac{z f^{\prime}(z)}{\phi(z)}\right)=\Re\left(\frac{1+z}{1-z}\right)>0$ in \mathbb{E}. Hence the result of Chichra, P. N. [1] fails to conclude the close-to-convexity in this case whereas Theorem 2.1 concludes the same.

References

[1] Chichra, P.N., New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc., 62(1)(1977), 37-43.
[2] Miller, S.S., Differential inequalities and Carathéodory functions, Bull. Amer. Math. Soc., 81(1975), 79-81.
[3] Noshiro, K., On the theory of schlicht functions, J. Fac. Sci., Hokkaido Univ., 2(1934-35), 129-155.
[4] Warchawski, S.E., On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc., 38(1935), 310-340.

Sukhwinder Singh Billing
Department of Mathematics
Sri Guru Granth Sahib World University
Fatehgarh Sahib-140 406, Punjab, India
e-mail: ssbilling@gmail.com

