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Some new subclasses of bi-univalent functions
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Abstract. The purpose of the present paper is to obtain the initial coefficients for
normalized analytic functions f in the open unit disk U with its inverse g = f−1

belonging to the classes Hn
σ (φ), STnσ (α, φ), Mn

σ (α, φ) and Lnσ(α, φ). Relevant
connections of the results presented here with various known results are briefly
indicated. Finally, we give an open problem for the readers.
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1. Introduction

Let A denote the class of functions f of the form

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and satisfy the nor-
malization condition f(0) = f ′(0) − 1 = 0. Let S be the subclass of A consisting
of functions of the form (1.1) which are also univalent in U . The Koebe one-quarter
theorem [4] ensures that the image of U under every univalent function f ∈ A con-
tains a disk of radius 1

4 . Thus every univalent function f has an inverse f−1 satisfying

f−1(f(z)) = z, (z ∈ U) and f(f−1(w)) = w, (|w| < r0(f), r0(f) ≥ 1/4). A function
f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U . Let σ
denote the class of bi-univalent functions defined in the unit disk U .

A domain U ⊂ C is convex if the line segment joining any two points in U lies
entirely in U , while a domain is starlike with respect to a point w0 ∈ U if the line
segment joining any point of U to w0 lies inside U . A function f ∈ A is starlike if f(U)
is a starlike domain with respect to origin, and convex if f(U) is convex. Analytically

f ∈ A is starlike if and only if <
{
zf ′(z)
f(z)

}
> 0, whereas f ∈ A is convex if and

only if <
{

1 + zf ′′(z)
f ′(z)

}
> 0. The classes consisting of starlike and convex functions

are denoted by ST and CV respectively. The classes ST (α) and CV (α) of starlike
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and convex functions of order α , 0 ≤ α < 1, are respectively characterized by

<
{
zf ′(z)
f(z)

}
> α and <

{
1 + zf ′′(z)

f ′(z)

}
> α. Ma and Minda [8] unified various subclasses

of starlike and convex functions by using subordination. Now we recall the definition
of subordination

An analytic function f is subordinate to an analytic function g, written f(z) ≺
g(z), provided there is an analytic function w defined on U with w(0) = 0 and
|w(z)| < 1 satisfying f(z) = g(w(z)).

Lewin [7] investigated the class σ of bi-univalent functions and obtained the
bound for the second coefficient. Several researchers have subsequently studied similar
problems in this direction (see [2], [5], [6], [10], [12], [13]). Brannan and Taha [2] con-
sidered certain subclasses of bi-univalent functions, similar to the familiar subclasses
of univalent functions consisting of strongly starlike, starlike and convex functions.
They introduced bi-starlike functions and bi-convex functions and obtained estimates
on the initial coefficients. Recently, Srivastava et al. [12] introduced and investigated
subclasses of the bi-univalent functions and obtained bounds for the initial coefficients.
The results of [12] were generalized in [5], [6], [10] and [13].

Very recently Ali et al. [1] estimates on the initial coefficients for bi-starlike of
Ma-Minda type and bi-convex of Ma-Minda type functions are obtained. In this paper,
we generalized these results by using Salagean operator and obtain sharp estimates
on coefficient for function classes Hn

σ (φ), STnσ (α, φ), Mn
σ (α, φ) and Lnσ(α, φ).

2. Coefficient estimates

In the sequel, it is assumed that φ is an analytic function with positive real part
in the disk U , satisfying φ(0) = 1, φ′(0) > 0 and φ(U) is symmetric with respect to
the real axis. Such a function has a series expansion of the form

φ (z) = 1 +B1z +B2z
2 +B3z

3 + . . . , (B1 > 0) . (2.1)

A function f ∈ σ is said to be in the class Hn
σ (φ) if the following subordination hold:

Dnf(z)

z
≺ φ (z)

and

Dng (w)

w
≺ φ (w) , g (w) = f−1 (w) ,

where Dn stands for the Salagean operator introduced by Salagean [11] for function
f of the form

f (z) = z +

∞∑
k=2

akz
k



Some new subclasses of bi-univalent functions 545

analytic in the open unit disk U as follows

D0f(z) = f(z)

D1f(z) = zf ′(z)

. . . . . .

Dnf(z) = D(Dn−1f(z))

Thus

Dnf(z) = z +

∞∑
k=2

knakz
k.

For functions in the class Hn
σ (φ), we obtain the following result.

Theorem 2.1. If f ∈ Hn
σ (φ) is given by

f (z) = z +

∞∑
k=2

akz
k, (2.2)

then

|a2| ≤
B1

√
B1√

|3nB2
1 − 22nB2 + 22nB1|

(2.3)

and

|a3| ≤
(

1

3n
+
B1

22n

)
B1. (2.4)

Proof. Let f ∈ Hn
σ (φ) and g = f−1. Then there are analytic functions u, v : U → U ,

with u(0) = v(0) = 0 , satisfying

Dnf (z)

z
= φ (u (z)) and

Dng (w)

w
= φ (v (w)) . (2.5)

Define the functions p1(z) and p2(z) by

p1 (z) =
1 + u (z)

1− u (z)
= 1 + c1z + c2z

2 + . . .

and

p2 (z) =
1 + v (z)

1− v (z)
= 1 + b1z + b2z

2 + . . .

or, equivalently,

u (z) =
p1 (z)− 1

p1 (z) + 1
=

1

2

(
c1z +

(
c2 −

c21
2

)
z2 + . . .

)
(2.6)

and

v (z) =
p2 (z)− 1

p2 (z) + 1
=

1

2

(
b1z +

(
b2 −

b21
2

)
z2 + . . .

)
. (2.7)

Then p1(z) and p2(z) are analytic in U with p1(0) = 1 = p2(0). Since u, v : U → U ,
the functions p1(z) and p2(z) have a positive real part in U , and |bi| ≤ 2 and |ci| ≤ 2.
In view of (2.5)-(2.7), clearly

Dnf (z)

z
= φ

(
p1 (z)− 1

p1 (z) + 1

)
(2.8)
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and
Dng (w)

w
= φ

(
p2 (w)− 1

p2 (w) + 1

)
. (2.9)

Using (2.5) and (2.7) together with (2.1), it is evident that

φ

(
p1 (z)− 1

p1 (z) + 1

)
= 1 +

1

2
B1c1z +

(
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

)
z2 + . . . (2.10)

and

φ

(
p2 (w)− 1

p2 (w) + 1

)
= 1 +

1

2
B1b1w +

(
1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1

)
w2 + . . . (2.11)

Since f ∈ σ has the Maclaurin series given by (2.2), a computation shows that its
inverse g = f−1 has the expansion

g (w) = f−1 (w) = w − a2w2 +
(
2a22 − a3

)
w3 + . . .

Since
Dnf (z)

z
= 1 + 2na2z + 3na3z

2 + . . .

and
Dng (w)

w
= 1− 2na2w +

(
2a22 − a3

)
3nw2 + . . . ,

it follows from (2.8)-(2.11) that

2na2 =
1

2
B1c1, (2.12)

3na3 =
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1 (2.13)

−2na2 =
1

2
B1b1 (2.14)

and

3n
(
2a22 − a3

)
=

1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1. (2.15)

From (2.12) and (2.14), it follows that

c1 = −b1. (2.16)

Now (2.13)-(2.16) yield

a22 =
B3

1 (b2 + c2)

4 (3nB2
1 − 22nB2 + 22nB1)

which, in view of the well-known inequalities |b2| ≤ 2 and |c2| ≤ 2 for functions
with positive real part, gives us the desired estimate on |a2| as asserted in (2.3). By
subtracting (2.15) from (2.13), further computations using (2.12) and (2.16) lead to

a3 =
B1 (c2 − b2)

4.3n
+
B2

1c
2
1

4.22n
,

and this yields the estimates given in (2.4). �
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Remark 2.2. If we put n = 1 in Theorem 2.1, then we obtain the corresponding result
of Ali et al. [1].

Remark 2.3. If we put n = 1 with φ (z) =
(

1+z
1−z

)γ
in Theorem 2.1, then we obtain

the corresponding result of Srivastava et al. [12].

Remark 2.4. If we put n = 1 with φ (z) = 1+(1−2γ)z
1−z in Theorem 2.1, then we obtain

the corresponding result of Srivastava et al. [12].

A function f ∈ σ is said to be in the class STnσ (α, φ), n ∈ N0, α ≥ 0, if the
following subordinations hold:

(1− α)Dn+1f (z) + αDn+2f (z)

Dnf (z)
≺ φ (z)

and
(1− α)Dn+1g (w) + αDn+2g (w)

Dng (w)
≺ φ (w) ; g(w) = f−1(w).

Note that STnσ (φ) ≡ STnσ (0, φ). For the functions in the class STnσ (α, φ), the following
coefficient estimates are obtained.

Theorem 2.5. Let f given by (2.2) be in the class STnσ (α, φ). Then

|a2| ≤
B1

√
B1√∣∣∣B2

1 (3n2 (1 + 3α)− 22n (1 + 2α)) + (B1 −B2) 22n(1 + 2α)
2
∣∣∣

and

|a3| ≤
B1 + |B2 −B1|

3n · 2 (1 + 3α)− 22n (1 + 2α)
.

Proof. Let f ∈ STnσ (α, φ). Then there are analytic functions u, v : U → U , with
u(0) = v(0) = 0, satisfying

(1− α)Dn+1f (z) + αDn+2f (z)

Dnf (z)
= φ (u (z)) (2.17)

and
(1− α)Dn+1g (w) + αDn+2g (w)

Dng (w)
= φ (v (w)) ,

(
g = f−1

)
. (2.18)

Since
(1− α)Dn+1f (z) + αDn+2f (z)

Dnf (z)
= 1 + (1 + 2α) 2na2z

+
(
3n · 2 (1 + 3α) a3 − 22n (1 + 2α) a22

)
z2 + . . .

and
(1− α)Dn+1g (w) + αDn+2f (w)

Dng (w)
= 1− (1 + 2α) 2na2w

+
((

3n · 4 (1 + 3α)− 22n (1 + 2α)
)
a22 − 3n · 2 (1 + 3α) a3

)
w2 + . . . ,
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then (2.10),(2.11), (2.17) and (2.18) yield

2n(1 + 2α)a2 =
1

2
B1c1, (2.19)

3n2(1 + 3α)a3 − 22n(1 + 2α)a22 =
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1, (2.20)

−2n(1 + 2α)a2 =
1

2
B1b1, (2.21)

and(
3n · 4 (1 + 3α)− 22n (1 + 2α)

)
a22 − 3n · 2 (1 + 3α) a3 =

1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1.

(2.22)
Now, the required result follows by using the techniques as used in Theorem 2.1. �

Remark 2.6. If we put n = 0 in Theorem 2.5, then we obtain the corresponding result
of Ali et al. [1].

Next, if we put n = 0, φ (z) =
(

1+z
1−z

)γ
with α = 0, then we obtain corresponding

result of Brannan and Taha [2].

Next, a function f ∈ σ belongs to the class Mn
σ (α, φ), n ∈ N0, α ≥ 0, if the

following subordinations hold:

(1− α)
Dn+1f (z)

Dnf (z)
+ α

Dn+2f (z)

Dn+1f (z)
≺ φ (z)

and

(1− α)
Dn+1g (w)

Dng (w)
+ α

Dn+2g (w)

Dn+1g (w)
≺ φ (w) , g (w) = f−1 (w) .

For function in the class Mn
σ (α, φ), the following coefficient estimates hold.

Theorem 2.7. Let f given by (2.2) be in the class Mn
σ (α, φ). Then

|a2| ≤
B1

√
B1√

B2
1

(
2 · 3n (1 + 2α)− 22n (1 + 3α) + 22n(1 + α)

2
(B1 −B2)

) (2.23)

and

|a3| ≤
B1 + |B2 −B1|

2 (1 + 2α) 3n − (1 + 3α) 22n
. (2.24)

Proof. If f ∈Mn
σ (α, φ) , then there are analytic functions u, v : U → U , with u (0) =

v (0) = 0, such that

(1− α)
Dn+1f (z)

Dnf (z)
+ α

Dn+2f (z)

Dn+1f (z)
= φ (u (z)) (2.25)

and

(1− α)
Dn+1g (w)

Dng (w)
+ α

Dn+2g (w)

Dn+1g (w)
= φ (v (w)) . (2.26)
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Since

(1− α)
Dn+1f (z)

Dnf (z)
+ α

Dn+2f (z)

Dn+1f (z)
= 1 + (1 + α) 2na2z

+
(
2 (1 + 2α) 3na3 − (1 + 3α) 22na22

)
z2 + . . .

and

(1− α)
Dn+1g (w)

Dng (w)
+ α

Dn+2g (w)

Dn+1g (w)
= 1− (1 + α) 2na2w

+
((

4 (1 + 2α) 3n − (1 + 3α) 22n
)
a22 − 2 (1 + 2α) 3na3

)
w2 + . . . .

From (2.10), (2.11), (2.25) and (2.26) it follows that

(1 + α) 2na2 =
1

2
B1c1 (2.27)

2 (1 + 2α) 3na3 − (1 + 3α) 22na22 =
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1 (2.28)

− (1 + α) 2na2 =
1

2
B1b1 (2.29)

and(
4 (1 + 2α) 3n − (1 + 3α) 22n

)
a22−2 (1 + 2α) 3na3 =

1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1. (2.30)

Equation (2.27) and (2.29) yield

c1 = −b1. (2.31)

From (2.28), (2.30) and (2.31), it follows that

a22 =
B3

1 (b2 + c2)

4
(
B2

1 (2 · 3n (1 + 2α)− 22n (1 + 3α)) + 22n(1 + α)
2

(B1 −B2)
)

which yields the describe estimate on as describe in (2.23). As in the earlier proofs,
use of (2.28)-(2.31) shows that

a3 =
(B1/2) ((4 (1 + 2α) 3n − (1 + 3α) 2n) c2 + (1 + 3α) 2nb2) + b21 (1 + 2α) (B2−B1)

4 · 3n (1 + 2α) (2 (1 + 2α) 3n − (1 + 3α) 22n)
.

Thus the proof of Theorem 2.7 is complete. �

Next, a function f ∈ σ is said to be in the class Lnσ(α, φ) n ∈ N0, α ≥ 0, if the
following subordinations hold:(

Dn+1f (z)

Dnf (z)

)α(
Dn+2f (z)

Dn+1f (z)

)1−α

≺ φ (z)

and (
Dn+1g (w)

Dng (w)

)α(
Dn+2g (w)

Dn+1g (w)

)1−α

≺ φ (w)

g (w) = f−1 (w) .

For function in this class, the following coefficient estimates are obtained
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Theorem 2.8. Let f given by (2.2) be in the class Lnσ(α, φ). Then

|a2| ≤
2B1

√
B1√∣∣∣2 (4 (3− α) 3n + (α2 + 5α− 8) 22nB2

1) + 4 · 22n(α− 2)
2

(B1 −B2)
∣∣∣ ,
(2.32)

and

|a3| ≤
2 (3− 2α) 3n (B1 + |B1 −B2|)

|3n (3− 2α) (4 (3− 2α) 3n + (α2 + 5α− 8) 22n)|
. (2.33)

Proof. Let f ∈ Lnσ(α, φ). Then there are analytic functions u, v : U → U , with
u (0) = v (0) = 0 , such that(

Dn+1f (z)

Dnf (z)

)α(
Dn+2f (z)

Dn+1f (z)

)(1−α)

= φ (u (z)) (2.34)

and (
Dn+1g (w)

Dng (w)

)α(
Dn+2g (w)

Dn+1g (w)

)(1−α)

= φ (v (w)) . (2.35)

Since (
Dn+1f (z)

Dnf (z)

)α(
Dn+2f (z)

Dn+1f (z)

)(1−α)

= 1 + 2n (2− α) a2z

+

(
3n · 2 (3− 2α) a3 +

(
α2 − 5α+ 8

2

)
22na22

)
z2 + . . .

and (
Dn+1g (w)

Dng (w)

)α(
Dn+2g (w)

Dn+1g (w)

)(1−α)

= 1− 2n (2− α) a2w

+

((
4 · (3− 2α) 3n +

α2 + 5α− 8

2

)
a22 − 3n · 2 (3− 2α) a3

)
w2 + . . .

from (2.10), (2.11), (2.34) and (2.35) it follows that

2n · (2− α) a2 =
1

2
B1c1 (2.36)

3n 2 (3− 2α) a3 +
(
α2 + 5α− 8

)
22n · a

2
2

2
=

1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1 (2.37)

−2n (2− α) a2 =
1

2
B1b1 (2.38)

and(
4 (3− 2α) 3n + 2n

(
α2 + 5α− 8

)
2

)
a22−3n ·2 (3− 2α) a3 =

1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1.

(2.39)
Now (2.36) and (2.38) clearly yield

c1 = −b1. (2.40)
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Equation (2.37), (2.39) and (2.40) lead to

a22 =
B3

1 (b2 + c2)

2 (4 (3− 2α) 3n + (α2 + 5α− 8) 22n)B2
1 + 4 · 22n(α− 2)

2
(B1 −B2)

which yields the desired estimate on |a2| as asserted in (2.32). Proceeding similarly
as in the earlier proof, using (2.37)-(2.40), it following that

a3 =
(B1/2)((8(3− 2α)3n + 22n(α2 + 5α− 8))c2 − 22n(α2 + 5α− 8)b2) + 3n2b21(3− 2α)(B1 −B2)

4 · 3n(3− 2α)(4(3− 2α)3n + (α2 + 5α− 8)22n)

which yields the estimate (2.33). �

Remark 2.9. If we put n = 0 in Theorem 2.7-2.8 then we obtain the corresponding
result of Ali et al. [1].

Remark 2.10. Sharp estimates for the coefficients |a2|, |a3| and other coefficients
of functions belonging to the classes investigated in this paper are yet open prob-
lems. Indeed it would be of interest even to find estimates (not necessarily sharp) for
|an|, n ≥ 4.
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