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Some extensions of the Open Door Lemma

Ming Li and Toshiyuki Sugawa

Abstract. Miller and Mocanu proved in their 1997 paper a greatly useful result
which is now known as the Open Door Lemma. It provides a sufficient condition
for an analytic function on the unit disk to have positive real part. Kuroki and
Owa modified the lemma when the initial point is non-real. In the present note,
by extending their methods, we give a sufficient condition for an analytic function
on the unit disk to take its values in a given sector.
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1. Introduction

We denote by H the class of holomorphic functions on the unit disk

D = {z : |z| < 1}
of the complex plane C. For a ∈ C and n ∈ N, let H[a, n] denote the subclass of
H consisting of functions h of the form h(z) = a + cnz

n + cn+1z
n+1 + · · · . Here,

N = {1, 2, 3, . . . }. Let also An be the set of functions f of the form f(z) = zh(z) for
h ∈ H[1, n].

A function f ∈ A1 is called starlike (resp. convex) if f is univalent on D and if
the image f(D) is starlike with respect to the origin (resp. convex). It is well known
(cf. [1]) that f ∈ A1 is starlike precisely if qf (z) = zf ′(z)/f(z) has positive real part
on |z| < 1, and that f ∈ A1 is convex precisely if ϕf (z) = 1+zf ′′(z)/f ′(z) has positive
real part on |z| < 1. Note that the following relation holds for those quantities:

ϕf (z) = qf (z) +
zq′f (z)

qf (z)
.

It is geometrically obvious that a convex function is starlike. This, in turn, means the
implication

Re

[
q(z) +

zq′(z)

q(z)

]
> 0 on |z| < 1 ⇒ Re q(z) > 0 on |z| < 1
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for a function q ∈ H[1, 1]. Interestingly, it looks highly nontrivial. Miller and Mocanu
developed a theory (now called differential subordination) which enables us to deduce
such a result systematically. See a monograph [4] written by them for details.

The set of functions q ∈ H[1, 1] with Re q > 0 is called the Carathéodory class
and will be denoted by P. It is well recognized that the function

q0(z) = (1 + z)/(1− z)

(or its rotation) maps the unit disk univalently onto the right half-plane and is ex-
tremal in many problems. One can observe that the function

ϕ0(z) = q0(z) +
zq′0(z)

q0(z)
=

1 + z

1− z
+

2z

1− z2
=

1 + 4z + z2

1− z2

maps the unit disk onto the slit domain V (−
√

3,
√

3), where

V (A,B) = C \ {iy : y ≤ A or y ≥ B}

for A,B ∈ R with A < B. Note that V (A,B) contains the right half-plane and has the
“window” (Ai,Bi) in the imaginary axis to the left half-plane. The Open Door Lemma
of Miller and Mocanu asserts for a function q ∈ H[1, 1] that, if q(z) + zq′(z)/q(z) ∈
V (−
√

3,
√

3) for z ∈ D, then q ∈ P. Indeed, Miller and Mocanu [3] (see also [4])
proved it in a more general form. For a complex number c with Re c > 0 and n ∈ N,
we consider the positive number

Cn(c) =
n

Re c

[
|c|
√

2Re c

n
+ 1 + Im c

]
.

In particular, Cn(c) =
√
n(n+ 2c) when c is real. The following is a version of the

Open Door Lemma modified by Kuroki and Owa [2].

Theorem A (Open Door Lemma). Let c be a complex number with positive real part
and n be an integer with n ≥ 1. Suppose that a function q ∈ H[c, n] satisfies the
condition

q(z) +
zq′(z)

q(z)
∈ V (−Cn(c), Cn(c̄)), z ∈ D.

Then Re q > 0 on D.

Remark 1.1. In the original statement of the Open Door Lemma in [3], the slit domain
was erroneously described as V (−Cn(c), Cn(c)). Since Cn(c̄) < Cn(c) when Im c > 0,
we see that V (−Cn(c̄), Cn(c̄)) ⊂ V (−Cn(c), Cn(c̄)) ⊂ V (−Cn(c), Cn(c)) for Im c ≥ 0
and the inclusions are strict if Im c > 0. As the proof will suggest us, seemingly the
domain V (−Cn(c), Cn(c̄)) is maximal for the assertion, which means that the original
statement in [3] and the form of the associated open door function are incorrect for a
non-real c. This, however, does not decrease so much the value of the original article [3]
by Miller and Mocanu because the Open Door Lemma is mostly applied when c is real.
We also note that the Open Door Lemma deals with the function p = 1/q ∈ H[1/c, n]
instead of q. The present form is adopted for convenience of our aim.
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The Open Door Lemma gives a sufficient condition for q ∈ H[c, n] to have
positive real part. We extend it so that | arg q| < πα/2 for a given 0 < α ≤ 1. First
we note that the Möbius transformation

gc(z) =
c+ c̄z

1− z
maps D onto the right half-plane in such a way that gc(0) = c, where c is a complex
number with Re c > 0. In particular, one can take an analytic branch of log gc so that
| Im log gc| < π/2. Therefore, the function q0 = gαc = exp(α log gc) maps D univalently
onto the sector | argw| < πα/2 in such a way that q0(0) = cα. The present note is
based mainly on the following result, which will be deduced from a more general result
of Miller and Mocanu (see Section 2).

Theorem 1.2. Let c be a complex number with Re c > 0 and α be a real number with
0 < α ≤ 1. Then the function

Rα,c,n(z) = gc(z)
α +

nαzg′c(z)

gc(z)
=

(
c+ c̄z

1− z

)α
+

2nα(Re c)z

(1− z)(c+ c̄z)

is univalent on |z| < 1. If a function q ∈ H[cα, n] satisfies the condition

q(z) +
zq′(z)

q(z)
∈ Rα,c,n(D), z ∈ D,

then | arg q| < πα/2 on D.

We remark that the special case when α = 1 reduces to Theorem A (see the
paragraph right after Lemma 3.3 below. Also, the case when c = 1 is already proved
by Mocanu [5] even under the weaker assumption that 0 < α ≤ 2 (see Remark 3.6).
Since the shape of Rα,c,n(D) is not very clear, we will deduce more concrete results as
corollaries of Theorem 1.2 in Section 3. This is our principal aim in the present note.

2. Preliminaries

We first recall the notion of subordination. A function f ∈ H is said to be
subordinate to F ∈ H if there exists a function ω ∈ H[0, 1] such that |ω| < 1 on D
and that f = F ◦ ω. We write f ≺ F or f(z) ≺ F (z) for subordination. When F is
univalent, f ≺ F precisely when f(0) = F (0) and f(D) ⊂ F (D).

Miller and Mocanu [3, Theorem 5] (see also [4, Theorem 3.2h]) proved the fol-
lowing general result, from which we will deduce Theorem 1.2 in the next section.

Lemma 2.1 (Miller and Mocanu). Let µ, ν ∈ C with µ 6= 0 and n be a positive
integer. Let q0 ∈ H[c, 1] be univalent and assume that µq0(z) + ν 6= 0 for z ∈ D and
Re (µc+ ν) > 0. Set Q(z) = zq′0(z)/(µq0(z) + ν), and

h(z) = q0(z) + nQ(z) = q0(z) +
nzq′0(z)

µq0(z) + ν
. (2.1)

Suppose further that

(a) Re [zh′(z)/Q(z)] = Re [h′(z)(µq0(z) + ν)/q′0(z)] > 0, and
(b) either h is convex or Q is starlike.
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If q ∈ H[c, n] satisfies the subordination relation

q(z) +
zq′(z)

µq(z) + ν
≺ h(z), (2.2)

then q ≺ q0, and q0 is the best dominant. An extremal function is given by

q(z) = q0(zn).

In the investigation of the generalized open door function Rα,c,n, we will need
to study the positive solution to the equation

x2 +Ax1+α − 1 = 0, (2.3)

where A > 0 and 0 < α ≤ 1 are constants. Let F (x) = x2 +Ax1+α − 1. Then F (x) is
increasing in x > 0 and F (0) = −1 < 0, F (+∞) = +∞. Therefore, there is a unique
positive solution x = ξ(A,α) to the equation. We have the following estimates for the
solution.

Lemma 2.2. Let 0 < α ≤ 1 and A > 0. The positive solution x = ξ(A,α) to equation
(2.3) satisfies the inequalities

(1 +A)−1/(1+α) ≤ ξ(A,α) ≤ (1 +A)−1/2 (< 1).

Here, both inequalities are strict when 0 < α < 1.

Proof. Set ξ = ξ(A,α). Since the above F (x) is increasing in x > 0, the inequalities
F (x1) ≤ 0 = F (ξ) ≤ F (x2) imply x1 ≤ ξ ≤ x2 for positive numbers x1, x2 and the
inequalities are strict when x1 < ξ < x2. Keeping this in mind, we now show the
assertion. First we put x2 = (1 +A)−1/2 and observe

F (x2) =
1

1 +A
+

A

(1 +A)(1+α)/2
− 1 ≥ 1

1 +A
+

A

1 +A
− 1 = 0,

which implies the right-hand inequality in the assertion.
Next put x1 = (1 +A)−1/(1+α). Then

F (x1) =
1

(1 +A)2/(1+α)
+

A

1 +A
− 1 ≤ 1

1 +A
+

A

1 +A
− 1 = 0,

which implies the left-hand inequality. We note also that F (x1) < 0 < F (x2) when
α < 1. The proof is now complete. �

3. Proof and corollaries

Theorem 1.2 can be rephrased in the following.

Theorem 3.1. Let c be a complex number with Re c > 0 and α be a real number with
0 < α ≤ 1. Then the function

Rα,c,n(z) = gc(z)
α +

nαzg′c(z)

gc(z)
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is univalent on |z| < 1. If a function q ∈ H[cα, n] satisfies the subordination condition

q(z) +
zq′(z)

q(z)
≺ Rα,c,n(z)

on D, then q(z) ≺ gc(z)α on D. The function gαc is the best dominant.

Proof. We first show that the function Q(z) = αzg′c(z)/gc(z) is starlike. Indeed, we
compute

zQ′(z)

Q(z)
= 1− c̄z

c+ c̄z
+

z

1− z
=

1

2

[
c− c̄z
c+ c̄z

+
1 + z

1− z

]
.

Thus we can see that Re [zQ′(z)/Q(z)] > 0 on |z| < 1. Next we check condition (a)
in Lemma 2.1 for the functions q0 = gαc , h = Rα,c,n with the choice µ = 1, ν = 0. We
have the expression

zh′(z)

Q(z)
= qc(z)

α + n
zQ′(z)

Q(z)
.

Since both terms in the right-hand side have positive real part, we obtain (a). We now
apply Lemma 2.1 to obtain the required assertion up to univalence of h = Rα,c,n. In
order to show the univalence, we have only to note that the condition (a) implies that
h is close-to-convex, since Q is starlike. As is well known, a close-to-convex function
is univalent (see [1]), the proof has been finished. �

We now investigate the shape of the image domain Rα,c,n(D) of the generalized
open door function Rα,c,n given in Theorem 1.2. Let z = eiθ and c = reit for θ ∈
R, r > 0 and −π/2 < t < π/2. Then we have

Rα,c,n(eiθ) =

(
reit + re−iteiθ

1− eiθ

)α
+

2nαeiθ cos t

(1− eiθ)(eit + e−iteiθ)

=

(
r cos (t− θ/2)

sin (θ/2)
i

)α
+
i

2
· nα cos t

sin (θ/2) cos (t− θ/2)

= rαeπαi/2 (cos t cot (θ/2) + sin t)
α

+
i

2
· nα(1 + cot2 (θ/2)) cos t

cos t cot (θ/2) + sin t
.

Let x = cot (θ/2) cos t+sin t. When x > 0, we write Rα,c,n(eiθ) = u+(x)+ iv+(x) and
get the expressions

u+(x) = a(rx)α,

v+(x) = b(rx)α +
nα

2 cos t

(
x− 2 sin t+

1

x

)
,

where

a = cos
απ

2
and b = sin

απ

2
.

Taking the derivative, we get

v′+(x) =
nα

2x2 cos t

[
x2 +

2brα cos t

n
xα+1 − 1

]
.
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Hence, the minimum of v+(x) is attained at x = ξ(A,α), where A = 2brαn−1 cos t.
By using the relation (2.3), we obtain

min
0<x

v+(x) = v+(ξ) =
n

2 cos t

(
Aξα + αξ +

α

ξ

)
− nα tan t

=
n

2 cos t

(
(α− 1)ξ +

α+ 1

ξ

)
− nα tan t = U(ξ),

where

U(x) =
n

2 cos t

(
(α− 1)x+

α+ 1

x

)
− nα tan t.

Since the function U(x) is decreasing in 0 < x < 1, Lemma 2.2 yields the inequality

v+(ξ) = U(ξ) ≥ U((1 +A)−1/2)

=
n

2 cos t

(
α− 1√
1 +A

+ (α+ 1)
√

1 +A

)
− nα tan t.

We remark here that

U((1 +A)−1/2) > U(1) =
nα(1− sin t)

cos t
> 0;

namely, v+(x) > 0 for x > 0. When x < 0, letting y = −x = − cot (θ/2) cos t − sin t,
we write Rα,c,n(eiθ) = u−(y) + iv−(y). Then, with the same a and b as above,

u−(y) = a(ry)α,

v−(y) = −b(ry)α − nα

2 cos t

(
y + 2 sin t+

1

y

)
,

We observe here that u+ = u− > 0 and, in particular, we obtain the following.

Lemma 3.2. The left half-plane Ω1 = {w : Rew < 0} is contained in Rα,c,n(D).

We now look at v−(y). Since

v′−(y) = − nα

2y2 cos t

[
y2 +

2brα cos t

n
yα+1 − 1

]
,

in the same way as above, we obtain

max
0<y

v−(y) = v−(ξ) = − n

2 cos t

(
(α− 1)ξ +

α+ 1

ξ

)
− nα tan t

≤ − n

2 cos t

(
α− 1√
1 +A

+ (α+ 1)
√

1 +A

)
− nα tan t,

where ξ = ξ(A,α) and A = 2brαn−1 cos t. Note also that v−(y) < 0 for y > 0.
Since the horizontal parallel strip v−(ξ) < Imw < v+(ξ) is contained in the im-

age domain Rα,c,n(D) of the generalized open door function, we obtain the following.

Lemma 3.3. The parallel strip Ω2 described by

| Imw + nα tan t| < n

2 cos t

(
α− 1√
1 +A

+ (α+ 1)
√

1 +A

)
is contained in Rα,c,n(D). Here, t = arg c ∈ (−π2 ,

π
2 ) and A = 2

n |c|
α sin πα

2 cos t.
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When α = 1, we have u± = 0, that is, the boundary is contained in the imaginary
axis. Since ξ(A, 1) = (1 +A)−1/2 by Lemma 2.2, the above computations tell us

min v+ = (n/ cos t)(
√

1 +A− sin t) = Cn(c̄).

Similarly, we have

max v− = −(n/ cos t)(
√

1 +A+ sin t) = −Cn(c).

Therefore, we have

R1,c,n(D) = V (−Cn(c), Cn(c̄)).

Note that the open door function then takes the following form

R1,c,n(z) =
c+ c̄z

1− z
+

2n(Re c)z

(1− z)(c+ c̄z)

=
2Re c+ n

1 + cz/c̄
− n

1− z
− c̄,

which is the same as given by Kuroki and Owa [2, (2.2)]. In this way, we see that
Theorem 1.2 contains Theorem A as a special case.

Remark 3.4. In [2], they proposed another open door function of the form

R(z) =
2n|c|
Re c

√
2Re c

n
+ 1

(ζ − z)(1− ζ̄z)
(1− ζ̄z)2 − (ζ − z)2

− Im c

Re c
i,

where

ζ = 1− 2

ω
, ω =

c

|c|

√
2Re c

n
+ 1 + 1.

It can be checked that R(z) = R1,c,n(−ωz/ω̄). Hence, R is just a rotation of R1,c,n.

We next study the argument of the boundary curve of Rα,c,n(D). We will assume
that 0 < α < 1 since we have nothing to do when α = 1.

As we noted above, the boundary is contained in the right half-plane Rew > 0.
When x > 0, we have

v+(x)

u+(x)
=
b

a
+

nα

2arαxα cos t

[
x+

1

x
− 2 sin t

]
.

We observe now that v+(x)/u+(x)→ +∞ as x→ 0+ or x→ +∞. We also have(
v+
u+

)′
(x) =

nα

2arαxα+2 cos t

[
(1− α)x2 + 2αx sin t− (1 + α)

]
.

Therefore, v+(x)/u+(x) takes its minimum at x = ξ, where

ξ =
−α sin t+

√
1− α2 cos2 t

1− α
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is the positive root of the equation (1 − α)x2 + 2αx sin t − (1 + α) = 0. It is easy to
see that 1 < ξ and that

T+ := min
0<x

v+(x)

u+(x)
=
v+(ξ)

u+(ξ)
=
b

a
+

nα

2arαξα cos t

[
ξ +

1

ξ
− 2 sin t

]
= tan

πα

2
+

n(ξ − ξ−1)

2arαξα cos t
.

When x = −y < 0, we have

v−(y)

u−(y)
= − b

a
− nα

2arαyα cos t

[
y +

1

y
+ 2 sin t

]
and (

v−
u−

)′
(y) =

−nα
2arαyα+2 cos t

[
(1− α)y2 − 2αy sin t− (1 + α)

]
.

Hence, v−(y)/u−(y) takes its maximum at y = η, where

η =
α sin t+

√
1− α2 cos2 t

1− α
.

Note that

T− := max
0<y

v−(y)

u−(y)
=
v−(η)

u−(η)
= − tan

πα

2
− n(η − η−1)

2arαηα cos t
.

Therefore, the sector {w : T− < argw < T+} is contained in the image Rα,c,n(D).
It is easy to check that T− < − tan(πα/2) < tan(πα/2) < T+. In particular T− <
arg cα = αt < T+. We summarize the above observations, together with Theorem 1.2,
in the following form.

Corollary 3.5. Let 0 < α < 1 and c = reit with r > 0,−π/2 < t < π/2, and n be a
positive integer. If a function q ∈ H[cα, n] satisfies the condition

−Θ− < arg

(
q(z) +

zq′(z)

q(z)

)
< Θ+

on |z| < 1, then | arg q| < πα/2 on D. Here,

Θ± = arctan

[
tan

πα

2
+

n(ξ± − ξ−1± )

2rαξα± cos(πα/2) cos t

]
,

and

ξ± =
∓α sin t+

√
1− α2 cos2 t

1− α
.

It is a simple task to check that x1−α − x−1−α is increasing in 0 < x. When
Im c > 0, we see that ξ− > ξ+ and thus Θ− > Θ+. It might be useful to note the

estimates ξ− <
√

(1 + α)/(1− α) < ξ+ and ξ− < 1/ sin t for Im c > 0.

Remark 3.6. When c = 1 and n = 1, we have

ξ := ξ± =
√

(1 + α)/(1− α), ξ − ξ−1 = 2α/
√

1− α2,
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and thus

Θ± = arctan

[
tan

πα

2
+

ξ − ξ−1

2ξα cos πα2

]
= arctan

[
tan

πα

2
+

α

cos πα2 (1− α)
1−α
2 (1 + α)

1+α
2

]

=
πα

2
+ arctan

 α cos πα2

(1− α)
1−α
2 (1 + α)

1+α
2 + α sin πα

2

 .
Therefore, the corollary gives a theorem proved by Mocanu [6].

Since the values Θ+ and Θ− are not given in an explicitly way, it might be
convenient to have a simpler sufficient condition for | arg q| < πα/2.

Corollary 3.7. Let 0 < α ≤ 1 and c with Re c > 0 and n be a positive integer. If a
function q ∈ H[cα, n] satisfies the condition

q(z) +
zq′(z)

q(z)
∈ Ω,

then | arg q| < πα/2 on D. Here, Ω = Ω1 ∪ Ω2 ∪ Ω3, and Ω1 and Ω2 are given in
Lemmas 3.2 and 3.3, respectively, and Ω3 = {w ∈ C : | argw| < πα/2}.

Proof. Lemmas 3.2 and 3.3 yield that Ω1 ∪ Ω2 ⊂ Rα,c,n(D). Since Θ± > πα/2, we
also have Ω3 ⊂ Rα,c,n(D). Thus Ω ⊂ Rα,c,n(D). Now the result follows from Theorem
1.2. �

See Figure 1 for the shape of the domain Ω together with Rα,c,n(D). We remark
that Ω = Rα,c,n(D) when α = 1.

Figure 1. The image Rα,c,n(D) and Ω for α = 1/2, c = 4 + 3i, n = 2.
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