Second Hankel determinant for the class of Bazilevic functions

D. Vamshee Krishna and T. RamReddy

Abstract

The objective of this paper is to obtain a sharp upper bound to the second Hankel determinant $H_{2}(2)$ for the function f when it belongs to the class of Bazilevic functions, using Toeplitz determinants. The result presented here include two known results as their special cases.

Mathematics Subject Classification (2010): 30C45, 30C50.
Keywords: Analytic function, Bazilevic function, upper bound, second Hankel functional, positive real function, Toeplitz determinants.

1. Introduction

Let A denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

in the open unit disc $E=\{z:|z|<1\}$. Let S be the subclass of A consisting of univalent functions.

The Hankel determinant of f for $q \geq 1$ and $n \geq 1$ was defined by Pommerenke ([15]) as

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \tag{1.2}\\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right|,\left(a_{1}=1\right) .
$$

This determinant has been considered by many authors in the literature. Noonan and Thomas ([13]) studied about the second Hankel determinant of areally mean p-valent functions. Ehrenborg ([5]) studied the Hankel determinant of exponential polynomials. One can easily observe that the Fekete-Szegö functional is $H_{2}(1)$. Fekete-Szegö then further generalized the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ with μ real and $f \in S$. Ali ([2]) found
sharp bounds for the first four coefficients and sharp estimate for the Fekete-Szegö functional $\left|\gamma_{3}-t \gamma_{2}^{2}\right|$, where t is real, for the inverse function of f defined as

$$
f^{-1}(w)=w+\sum_{n=2}^{\infty} \gamma_{n} w^{n}
$$

when it belongs to the class of strongly starlike functions of order $\alpha(0<\alpha \leq 1)$ denoted by $\widetilde{S T}(\alpha)$. In this paper, we consider the Hankel determinant in the case of $q=2$ and $n=2$, known as the second Hankel determinant, given by

$$
H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \tag{1.3}\\
a_{3} & a_{4}
\end{array}\right|=a_{2} a_{4}-a_{3}^{2}
$$

Janteng, Halim and Darus ([8]) have considered the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ and found sharp upper bound for the function f in the subclass $R T$ of S, consisting of functions whose derivative has a positive real part studied by Mac Gregor ([11]). In their work, they have shown that if $f \in R T$ then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9}$. Janteng, Halim and Darus ([7]) also obtained the second Hankel determinant and sharp bounds for the familiar subclasses of S, namely, starlike and convex functions denoted by $S T$ and $C V$ and have shown that $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$ and $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8}$ respectively. Similarly, the same coefficient inequality was calculated for certain subclasses of analytic functions by many authors ([1], [3], [9], [12], [18]).

Motivated by the results obtained by different authors in this direction mentioned above, in this paper, we seek an upper bound to the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the function f when it belongs to the class of Bazilevic functions denoted by B_{γ} ($0 \leq \gamma \leq 1$), defined as follows.
Definition 1.1. A function $f(z) \in A$ is said to be Bazilevic function, if it satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{z^{1-\gamma} \frac{f^{\prime}(z)}{f^{1-\gamma}(z)}\right\}>0, \forall z \in E \tag{1.4}
\end{equation*}
$$

where the powers are meant for principal values. This class of functions was denoted by B_{γ}, studied by Ram Singh ([16]). It is observed that for $\gamma=0$ and $\gamma=1$ respectively, we get $B_{0}=S T$ and $B_{1}=R T$.

Some preliminary Lemmas required for proving our result are as follows:

2. Preliminary results

Let \mathcal{P} denote the class of functions consisting of p, such that

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots=1+\sum_{n=1}^{\infty} c_{n} z^{n} \tag{2.1}
\end{equation*}
$$

which are regular in the open unit disc E and satisfy $\operatorname{Rep}(z)>0$ for any $z \in E$. Here $p(z)$ is called Carathéodory function [4].
Lemma 2.1. ([14], [17]) If $p \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$, for each $k \geq 1$ and the inequality is sharp for the function $\frac{1+z}{1-z}$.

Lemma 2.2. ([6]) The power series for p given in (2.1) converges in the open unit disc E to a function in \mathcal{P} if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \cdots & c_{n} \\
c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2
\end{array}\right|, n=1,2,3 \ldots
$$

and $c_{-k}=\bar{c}_{k}$, are all non-negative. These are strictly positive except for

$$
p(z)=\sum_{k=1}^{m} \rho_{k} p_{0}\left(\exp \left(i t_{k}\right) z\right)
$$

$\rho_{k}>0, t_{k}$ real and $t_{k} \neq t_{j}$, for $k \neq j$, where $p_{0}(z)=\frac{1+z}{1-z}$; in this case $D_{n}>0$ for $n<(m-1)$ and $D_{n} \doteq 0$ for $n \geq m$.

This necessary and sufficient condition found in ([6]) is due to Carathéodory and Toeplitz. We may assume without restriction that $c_{1}>0$. On using Lemma 2.2, for $n=2$ and $n=3$ respectively, we obtain

$$
D_{2}=\left|\begin{array}{ccc}
2 & c_{1} & c_{2} \\
\bar{c}_{1} & 2 & c_{1} \\
\bar{c}_{2} & \bar{c}_{1} & 2
\end{array}\right|=\left[8+2 \operatorname{Re}\left\{c_{1}^{2} c_{2}\right\}-2\left|c_{2}\right|^{2}-4\left|c_{1}\right|^{2}\right] \geq 0
$$

it is equivalent to

$$
\begin{gathered}
2 c_{2}=\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}, \text { for some } x,|x| \leq 1 \\
\quad \text { and } D_{3}=\left|\begin{array}{cccc}
2 & c_{1} & c_{2} & c_{3} \\
\bar{c}_{1} & 2 & c_{1} & c_{2} \\
\bar{c}_{2} & \bar{c}_{1} & 2 & c_{1} \\
\bar{c}_{3} & \bar{c}_{2} & \bar{c}_{1} & 2
\end{array}\right|
\end{gathered}
$$

Then $D_{3} \geq 0$ is equivalent to

$$
\begin{equation*}
\left|\left(4 c_{3}-4 c_{1} c_{2}+c_{1}^{3}\right)\left(4-c_{1}^{2}\right)+c_{1}\left(2 c_{2}-c_{1}^{2}\right)^{2}\right| \leq 2\left(4-c_{1}^{2}\right)^{2}-2\left|\left(2 c_{2}-c_{1}^{2}\right)\right|^{2} . \tag{2.3}
\end{equation*}
$$

Simplifying the relations (2.2) and (2.3), we get

$$
\begin{equation*}
4 c_{3}=\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\}, \text { with }|z| \leq 1 \tag{2.4}
\end{equation*}
$$

To obtain our result, we refer to the classical method devised by Libera and Zlotkiewicz ([10]).

3. Main result

Theorem 3.1. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in B_{\gamma}(0 \leq \gamma \leq 1)$ then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left[\frac{2}{2+\gamma}\right]^{2}
$$

and the inequality is sharp.

Proof. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in B_{\gamma}$, by virtue of Definition 1.1, there exists an analytic function $p \in \mathcal{P}$ in the open unit disc E with $p(0)=1$ and $\operatorname{Re}\{p(z)\}>0$ such that

$$
\begin{equation*}
z^{1-\gamma} \frac{f^{\prime}(z)}{f^{1-\gamma}(z)}=p(z) \Leftrightarrow z^{1-\gamma} f^{\prime}(z)=f^{1-\gamma}(z) p(z) \tag{3.1}
\end{equation*}
$$

Replacing the values of $f(z), f^{\prime}(z)$ and $p(z)$ with their equivalent series expressions in (3.1), we have

$$
\begin{equation*}
z^{1-\gamma}\left\{1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right\}=\left\{z+\sum_{n=2}^{\infty} a_{n} z^{n}\right\}^{1-\gamma}\left\{1+\sum_{n=1}^{\infty} c_{n} z^{n}\right\} \tag{3.2}
\end{equation*}
$$

Using the binomial expansion on the right-hand side of (3.2) subject to the condition

$$
\left|\sum_{n=2}^{\infty} a_{n} z^{n}\right|<1-\gamma
$$

upon simplification, we obtain

$$
\begin{align*}
1 & +2 a_{2} z+3 a_{3} z^{2}+4 a_{4} z^{3}+\ldots=1+\left\{c_{1}+(1-\gamma) a_{2}\right\} z \tag{3.3}\\
& +\left[c_{2}+(1-\gamma)\left\{c_{1} a_{2}+a_{3}+\frac{(-\gamma)}{2} a_{2}^{2}\right\}\right] z^{2} \\
& +\left[c_{3}+(1-\gamma)\left\{c_{2} a_{2}+c_{1} a_{3}+a_{4}+(-\gamma)\left\{\frac{1}{2} c_{1} a_{2}^{2}+a_{2} a_{3}+\frac{(-1-\gamma)}{6} a_{2}^{3}\right\}\right\}\right] z^{3}+\ldots
\end{align*}
$$

Equating the coefficients of like powers of z, z^{2} and z^{3} respectively on both sides of (3.3), after simplifying, we get

$$
\begin{align*}
a_{2} & =\frac{c_{1}}{(1+\gamma)} ; a_{3}=\frac{1}{2(1+\gamma)^{2}(2+\gamma)}\left\{2(1+\gamma)^{2} c_{2}+(1-\gamma)(2+\gamma) c_{1}^{2}\right\} \\
a_{4} & =\frac{1}{6(1+\gamma)^{3}(2+\gamma)(3+\gamma)} \times\left\{6(1+\gamma)^{2}(2+\gamma) c_{3}\right. \\
& \left.+6(1-\gamma)(1+\gamma)^{2}(3+\gamma) c_{1} c_{2}+(\gamma-1)(2+\gamma)\left(2 \gamma^{2}+5 \gamma-3\right) c_{1}^{3}\right\} \tag{3.4}
\end{align*}
$$

Substituting the values of a_{2}, a_{3} and a_{4} from (3.4) in the second Hankel functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the function $f \in B_{\gamma}$, which simplifies to

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| & \left.=\frac{1}{12(1+\gamma)^{3}(2+\gamma)^{2}(3+\gamma)} \right\rvert\, 12(1+\gamma)^{2}(2+\gamma)^{2} c_{1} c_{3} \\
& -12(1+\gamma)^{3}(3+\gamma) c_{2}^{2}+(2+\gamma)^{2}(3+\gamma)(\gamma-1) c_{1}^{4} \mid
\end{aligned}
$$

The above expression is equivalent to

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{12(1+\gamma)^{3}(2+\gamma)^{2}(3+\gamma)}\left|d_{1} c_{1} c_{3}+d_{2} c_{2}^{2}+d_{3} c_{1}^{4}\right| \tag{3.5}
\end{equation*}
$$

where

$$
\begin{gather*}
d_{1}=12(1+\gamma)^{2}(2+\gamma)^{2} ; \quad d_{2}=-12(1+\gamma)^{3}(3+\gamma) \\
d_{3}=(2+\gamma)^{2}(3+\gamma)(\gamma-1) \tag{3.6}
\end{gather*}
$$

Substituting the values of c_{2} and c_{3} from (2.2) and (2.4) respectively from Lemma 2.2 on the right-hand side of (3.5), we have

$$
\begin{aligned}
\left|d_{1} c_{1} c_{3}+d_{2} c_{2}^{2}+d_{3} c_{1}^{4}\right| & =\left\lvert\, d_{1} c_{1} \times \frac{1}{4}\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}\right.\right. \\
& \left.+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\} \left.+d_{2} \times \frac{1}{4}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}^{2}+d_{3} c_{1}^{4} \right\rvert\,
\end{aligned}
$$

Using the facts that $|z|<1$ and $|x a+y b| \leq|x||a|+|y||b|$, where x, y, a and b are real numbers, after simplifying, we get

$$
\begin{gather*}
4\left|d_{1} c_{1} c_{3}+d_{2} c_{2}^{2}+d_{3} c_{1}^{4}\right| \leq \mid\left(d_{1}+d_{2}+4 d_{3}\right) c_{1}^{4}+2 d_{1} c_{1}\left(4-c_{1}^{2}\right) \\
+2\left(d_{1}+d_{2}\right) c_{1}^{2}\left(4-c_{1}^{2}\right)|x|-\left\{\left(d_{1}+d_{2}\right) c_{1}^{2}+2 d_{1} c_{1}-4 d_{2}\right\}\left(4-c_{1}^{2}\right)|x|^{2} \mid \tag{3.7}
\end{gather*}
$$

With the values of d_{1}, d_{2} and d_{3} from (3.6), we can write

$$
\begin{align*}
& d_{1}+d_{2}+4 d_{3}=4\left(\gamma^{4}+6 \gamma^{3}+12 \gamma^{2}+2 \gamma-9\right) \\
& d_{1}=12(1+\gamma)^{2}(2+\gamma)^{2} ; d_{1}+d_{2}=12(1+\gamma)^{2} \tag{3.8}
\end{align*}
$$

and

$$
\begin{equation*}
\left(d_{1}+d_{2}\right) c_{1}^{2}+2 d_{1} c_{1}-4 d_{2}=12(1+\gamma)^{2}\left\{c_{1}^{2}+2(2+\gamma)^{2} c_{1}+4(1+\gamma)(3+\gamma)\right\} \tag{3.9}
\end{equation*}
$$

Consider

$$
\begin{align*}
& \left\{c_{1}^{2}+2(2+\gamma)^{2} c_{1}+4(1+\gamma)(3+\gamma)\right\} \\
= & {\left[\left\{c_{1}+(2+\gamma)^{2}\right\}^{2}-(2+\gamma)^{4}+4(1+\gamma)(3+\gamma)\right] } \\
= & {\left[\left\{c_{1}+(2+\gamma)^{2}\right\}^{2}-\left\{\sqrt{\gamma^{4}+8 \gamma^{3}+20 \gamma^{2}+16 \gamma+4}\right\}^{2}\right] } \\
= & {\left[c_{1}+\left\{(2+\gamma)^{2}+\sqrt{\gamma^{4}+8 \gamma^{3}+20 \gamma^{2}+16 \gamma+4}\right\}\right] } \\
\times & {\left[c_{1}+\left\{(2+\gamma)^{2}-\sqrt{\gamma^{4}+8 \gamma^{3}+20 \gamma^{2}+16 \gamma+4}\right\}\right] } \tag{3.10}
\end{align*}
$$

Since $c_{1} \in[0,2]$, using the result $\left(c_{1}+a\right)\left(c_{1}+b\right) \geq\left(c_{1}-a\right)\left(c_{1}-b\right)$, where $a, b \geq 0$ on the right-hand side of (3.10), after simplifying, we get

$$
\begin{align*}
& \left\{c_{1}^{2}+2(2+\gamma)^{2} c_{1}+4(1+\gamma)(3+\gamma)\right\} \\
\geq & \left\{c_{1}^{2}-2(2+\gamma)^{2} c_{1}+4(1+\gamma)(3+\gamma)\right\} \tag{3.11}
\end{align*}
$$

From the relations (3.9) and (3.11), we can write

$$
\begin{align*}
& -\left\{\left(d_{1}+d_{2}\right) c_{1}^{2}+2 d_{1} c_{1}-4 d_{2}\right\} \\
\leq & -12(1+\gamma)^{2}\left\{c_{1}^{2}-2(2+\gamma)^{2} c_{1}+4(1+\gamma)(3+\gamma)\right\} \tag{3.12}
\end{align*}
$$

Substituting the calculated values from (3.8) and (3.12) on the right-hand side of (3.7), we have

$$
\begin{aligned}
\left|d_{1} c_{1} c_{3}+d_{2} c_{2}^{2}+d_{3} c_{1}^{4}\right| & \leq \mid\left(\gamma^{4}+6 \gamma^{3}+12 \gamma^{2}+2 \gamma-9\right) c_{1}^{4} \\
& +6(1+\gamma)^{2}(2+\gamma)^{2} c_{1}\left(4-c_{1}^{2}\right)+6(1+\gamma)^{2} c_{1}^{2}\left(4-c_{1}^{2}\right)|x| \\
& -3(1+\gamma)^{2}\left\{c_{1}^{2}-2(2+\gamma)^{2} c_{1}+4(1+\gamma)(3+\gamma)\right\}\left(4-c_{1}^{2}\right)|x|^{2} \mid
\end{aligned}
$$

Choosing $c_{1}=c \in[0,2]$, applying triangle inequality and replacing $|x|$ by μ on the right-hand side of the above inequality, we obtain

$$
\begin{align*}
\left|d_{1} c_{1} c_{3}+d_{2} c_{2}^{2}+d_{3} c_{1}^{4}\right| & \leq\left[\left(-\gamma^{4}-6 \gamma^{3}+12 \gamma^{2}-2 \gamma+9\right) c^{4}\right. \\
& +6(1+\gamma)^{2}(2+\gamma)^{2} c\left(4-c^{2}\right)+6(1+\gamma)^{2} c^{2}\left(4-c^{2}\right) \mu \\
& \left.+3(1+\gamma)^{2}\left\{c^{2}-2(2+\gamma)^{2} c+4(1+\gamma)(3+\gamma)\right\}\left(4-c^{2}\right) \mu^{2}\right] \\
& =F(c, \mu), \text { for } 0 \leq \mu=|x| \leq 1, \tag{3.13}
\end{align*}
$$

where

$$
\begin{align*}
F(c, \mu) & =\left[\left(-\gamma^{4}-6 \gamma^{3}+12 \gamma^{2}-2 \gamma+9\right) c^{4}\right. \\
& +6(1+\gamma)^{2}(2+\gamma)^{2} c\left(4-c^{2}\right)+6(1+\gamma)^{2} c^{2}\left(4-c^{2}\right) \mu \\
& \left.+3(1+\gamma)^{2}\left\{c^{2}-2(2+\gamma)^{2} c+4(1+\gamma)(3+\gamma)\right\}\left(4-c^{2}\right) \mu^{2}\right] \tag{3.14}
\end{align*}
$$

We next maximize the function $F(c, \mu)$ on the closed region $[0,2] \times[0,1]$.
Differentiating $F(c, \mu)$ in (3.14) partially with respect to μ, we get

$$
\begin{equation*}
\frac{\partial F}{\partial \mu}=6(1+\gamma)^{2}\left[c^{2}+\left\{c^{2}-2(2+\gamma)^{2} c+4(1+\gamma)(3+\gamma)\right\} \mu\right] \times\left(4-c^{2}\right) \tag{3.15}
\end{equation*}
$$

For $0<\mu<1$, for any fixed c with $0<c<2$ and $o \leq \gamma \leq 1$, from (3.15), we observe that $\frac{\partial F}{\partial \mu}>0$. Therefore, $F(c, \mu)$ is an increasing function of μ and hence it cannot have maximum value any point in the interior of the closed region $[0,2] \times[0,1]$. Moreover, for fixed $c \in[0,2]$, we have

$$
\begin{equation*}
\max _{0 \leq \mu \leq 1} F(c, \mu)=F(c, 1)=G(c) \tag{3.16}
\end{equation*}
$$

In view of (3.16), replacing μ by 1 in (3.14), upon simplification, we obtain

$$
\begin{align*}
& G(c)=F(c, 1)=-\gamma\left(\gamma^{3}+6 \gamma^{2}-3 \gamma+20\right) c^{4}-12 \gamma(1+\gamma)^{2}(4+\gamma) c^{2} \\
&+48(1+\gamma)^{3}(3+\gamma), \tag{3.17}\\
& G^{\prime}(c)=-4 \gamma c\left\{\left(\gamma^{3}+6 \gamma^{2}-3 \gamma+20\right) c^{2}+6(1+\gamma)^{2}(4+\gamma)\right\} . \tag{3.18}
\end{align*}
$$

From the expression (3.18), we observe that $G^{\prime}(c) \leq 0$, for every $c \in[0,2]$ and for fixed γ with $0 \leq \gamma \leq 1$. Therefore, $G(c)$ is a decreasing function of c in the interval $[0,2]$, whose maximum value occurs at $c=0$ only. For $c=0$ in (3.17), the maximum value of $G(c)$ is given by

$$
\begin{equation*}
G_{\max }=G(0)=48(1+\gamma)^{3}(3+\gamma) \tag{3.19}
\end{equation*}
$$

From the expressions (3.13) and (3.19), we have

$$
\begin{equation*}
\left|d_{1} c_{1} c_{3}+d_{2} c_{2}^{2}+d_{3} c_{1}^{4}\right| \leq 48(1+\gamma)^{3}(3+\gamma) \tag{3.20}
\end{equation*}
$$

Simplifying the relations (3.5) and (3.20), we obtain

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left[\frac{2}{2+\gamma}\right]^{2} \tag{3.21}
\end{equation*}
$$

Choosing $c_{1}=c=0$ and selecting $x=1$ in (2.2) and (2.4), we find that $c_{2}=2$ and $c_{3}=0$. Substituting these values in (3.20), we observe that equality is attained which shows that our result is sharp. For these values, we derive that

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots=1+2 z^{2}+2 z^{4}+\ldots=\frac{1+z^{2}}{1-z^{2}} \tag{3.22}
\end{equation*}
$$

Therefore, the extremal function in this case is

$$
\begin{equation*}
z^{1-\gamma} \frac{f^{\prime}(z)}{f^{1-\gamma}(z)}=1+2 z^{2}+2 z^{4}+\ldots=\frac{1+z^{2}}{1-z^{2}} \tag{3.23}
\end{equation*}
$$

This completes the proof of our Theorem.
Remark 3.2. Choosing $\gamma=0$, from (3.21), we get $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$, this inequality is sharp and coincides with that of Janteng, Halim, Darus ([7]).

Remark 3.3. For the choice of $\gamma=1$ in (3.21), we obtain $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9}$ and is sharp, coincides with the result of Janteng, Halim, Darus ([8]) .

Acknowledgement. The authors express their sincere thanks to the esteemed Referee(s) for their careful readings, valuable suggestions and comments, which helped to improve the presentation of the paper.

References

[1] Abubaker, A., Darus, M., Hankel Determinant for a class of analytic functions involving a generalized linear differential operator, Int. J. Pure Appl. Math., 69(2011), no. 4, 429435.
[2] Ali, R.M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., (second series), 26(2003), no. 1, 63-71.
[3] Bansal, D., Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., 23(2013), 103-107.
[4] Duren, P.L., Univalent functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.
[5] Ehrenborg, R., The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107(2000), no. 6, 557-560.
[6] Grenander, U., Szegö, G., Toeplitz forms and their applications, Second edition, Chelsea Publishing Co., New York, 1984.
[7] Janteng, A., Halim, S.A., Darus, M., Hankel Determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse), 1(2007), no. 13, 619-625.
[8] Janteng, A., Halim, S.A., Darus, M., Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7(2006), no. 2, 1-5.
[9] Krishna, V.D., RamReddy, T., Coefficient inequality for certain p-valent analytic functions, Rocky MT. J. Math., 44(6)(2014), 1941-1959.
[10] Libera, R.J., Zlotkiewicz, E.J., Coefficient bounds for the inverse of a function with derivative in \mathcal{P}, Proc. Amer. Math. Soc., 87(1983), no. 2, 251-257.
[11] Mac Gregor, T.H., Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104(1962), no. 3, 532-537.
[12] Mishra, A.K., Gochhayat, P., Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. Math. Sci., Article ID 153280, 2008, 1-10.
[13] Noonan, J.W., Thomas, D.K., On the second Hankel determinant of areally mean pvalent functions, Trans. Amer. Math. Soc., 223(1976), no. 2, 337-346.
[14] Pommerenke, Ch., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[15] Pommerenke, Ch., On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41(1966), 111-122.
[16] Singh, R., On Bazilevic functions, Proc. Amer. Math. Soc., 38(1973), no. 2, 261-271.
[17] Simon, B., Orthogonal polynomials on the unit circle, Part 1. Classical theory, American Mathematical Society Colloquium Publications, 54, Part 1, American Mathematical Society, Providence, RI, 2005.
[18] Verma, S., Gupta, S., Singh, S., Bounds of Hankel Determinant for a Class of Univalent functions, Int. J. Math. Sci., (2012), Article ID 147842, 6 pages.
D. Vamshee Krishna

Faculty of Mathematics, GIT, GITAM University
Visakhapatnam 530045, Andhra Pradesh, India
e-mail: vamsheekrishna1972@gmail.com
T. RamReddy

Faculty of Mathematics, Kakatiya University
Warangal 506009, Telangana State, India
e-mail: reddytr2@gmail.com

