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Second Hankel determinant for the class of
Bazilevic functions
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Abstract. The objective of this paper is to obtain a sharp upper bound to the
second Hankel determinant H2(2) for the function f when it belongs to the class
of Bazilevic functions, using Toeplitz determinants. The result presented here
include two known results as their special cases.
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1. Introduction

Let A denote the class of functions f of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions.

The Hankel determinant of f for q ≥ 1 and n ≥ 1 was defined by Pommerenke
([15]) as

Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

, (a1 = 1). (1.2)

This determinant has been considered by many authors in the literature. Noonan and
Thomas ([13]) studied about the second Hankel determinant of areally mean p-valent
functions. Ehrenborg ([5]) studied the Hankel determinant of exponential polynomials.
One can easily observe that the Fekete-Szegö functional is H2(1). Fekete-Szegö then
further generalized the estimate |a3 − µa22| with µ real and f ∈ S. Ali ([2]) found
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sharp bounds for the first four coefficients and sharp estimate for the Fekete-Szegö
functional |γ3 − tγ22 |, where t is real, for the inverse function of f defined as

f−1(w) = w +

∞∑
n=2

γnw
n

when it belongs to the class of strongly starlike functions of order α (0 < α ≤ 1)

denoted by S̃T (α). In this paper, we consider the Hankel determinant in the case of
q = 2 and n = 2, known as the second Hankel determinant, given by

H2(2) =
a2 a3
a3 a4

= a2a4 − a23. (1.3)

Janteng, Halim and Darus ([8]) have considered the functional |a2a4 − a23| and found
sharp upper bound for the function f in the subclass RT of S, consisting of functions
whose derivative has a positive real part studied by Mac Gregor ([11]). In their work,
they have shown that if f ∈ RT then |a2a4 − a23| ≤ 4

9 . Janteng, Halim and Darus
([7]) also obtained the second Hankel determinant and sharp bounds for the familiar
subclasses of S, namely, starlike and convex functions denoted by ST and CV and
have shown that |a2a4− a23| ≤ 1 and |a2a4− a23| ≤ 1

8 respectively. Similarly, the same
coefficient inequality was calculated for certain subclasses of analytic functions by
many authors ([1], [3], [9], [12], [18]).

Motivated by the results obtained by different authors in this direction men-
tioned above, in this paper, we seek an upper bound to the functional |a2a4 − a23|
for the function f when it belongs to the class of Bazilevic functions denoted by Bγ
(0 ≤ γ ≤ 1), defined as follows.

Definition 1.1. A function f(z) ∈ A is said to be Bazilevic function, if it satisfies the
condition

Re

{
z1−γ

f ′(z)

f1−γ(z)

}
> 0, ∀z ∈ E (1.4)

where the powers are meant for principal values. This class of functions was denoted by
Bγ , studied by Ram Singh ([16]). It is observed that for γ = 0 and γ = 1 respectively,
we get B0 = ST and B1 = RT .

Some preliminary Lemmas required for proving our result are as follows:

2. Preliminary results

Let P denote the class of functions consisting of p, such that

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 +

∞∑
n=1

cnz
n, (2.1)

which are regular in the open unit disc E and satisfy Rep(z) > 0 for any z ∈ E. Here
p(z) is called Carathéodory function [4].

Lemma 2.1. ([14], [17]) If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the inequality is
sharp for the function 1+z

1−z .
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Lemma 2.2. ([6]) The power series for p given in (2.1) converges in the open unit disc
E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3....

and c−k = ck, are all non-negative. These are strictly positive except for

p(z) =

m∑
k=1

ρkp0(exp(itk)z),

ρk > 0, tk real and tk 6= tj, for k 6= j, where p0(z) = 1+z
1−z ; in this case Dn > 0 for

n < (m− 1) and Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition found in ([6]) is due to Carathéodory and
Toeplitz. We may assume without restriction that c1 > 0. On using Lemma 2.2, for
n = 2 and n = 3 respectively, we obtain

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8 + 2Re{c21c2} − 2|c2|2 − 4|c1|2] ≥ 0,

it is equivalent to

2c2 = {c21 + x(4− c21)}, for some x, |x| ≤ 1. (2.2)

and D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2| ≤ 2(4− c21)2 − 2|(2c2 − c21)|2. (2.3)

Simplifying the relations (2.2) and (2.3), we get

4c3 = {c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z}, with |z| ≤ 1. (2.4)

To obtain our result, we refer to the classical method devised by Libera and
Zlotkiewicz ([10]).

3. Main result

Theorem 3.1. If f(z) = z +

∞∑
n=2

anz
n ∈ Bγ (0 ≤ γ ≤ 1) then

|a2a4 − a23| ≤
[

2

2 + γ

]2
and the inequality is sharp.
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Proof. Let f(z) = z +

∞∑
n=2

anz
n ∈ Bγ , by virtue of Definition 1.1, there exists an

analytic function p ∈ P in the open unit disc E with p(0) = 1 and Re{p(z)} > 0 such
that

z1−γ
f ′(z)

f1−γ(z)
= p(z)⇔ z1−γf ′(z) = f1−γ(z)p(z). (3.1)

Replacing the values of f(z), f ′(z) and p(z) with their equivalent series expressions
in (3.1), we have

z1−γ

{
1 +

∞∑
n=2

nanz
n−1

}
=

{
z +

∞∑
n=2

anz
n

}1−γ {
1 +

∞∑
n=1

cnz
n

}
. (3.2)

Using the binomial expansion on the right-hand side of (3.2) subject to the condition

|
∞∑
n=2

anz
n| < 1− γ,

upon simplification, we obtain

1 + 2a2z + 3a3z
2 + 4a4z

3 + ... = 1 + {c1 + (1− γ)a2} z (3.3)

+

[
c2 + (1− γ)

{
c1a2 + a3 +

(−γ)

2
a22

}]
z2

+

[
c3 + (1− γ)

{
c2a2 + c1a3 + a4 + (−γ)

{
1

2
c1a

2
2 + a2a3 +

(−1− γ)

6
a32

}}]
z3+ . . .

Equating the coefficients of like powers of z, z2 and z3 respectively on both sides of
(3.3), after simplifying, we get

a2 =
c1

(1 + γ)
; a3 =

1

2(1 + γ)2(2 + γ)

{
2(1 + γ)2c2 + (1− γ)(2 + γ)c21

}
;

a4 =
1

6(1 + γ)3(2 + γ)(3 + γ)
× {6(1 + γ)2(2 + γ)c3

+ 6(1− γ)(1 + γ)2(3 + γ)c1c2 + (γ − 1)(2 + γ)(2γ2 + 5γ − 3)c31}. (3.4)

Substituting the values of a2, a3 and a4 from (3.4) in the second Hankel functional
|a2a4 − a23| for the function f ∈ Bγ , which simplifies to

|a2a4 − a23| =
1

12(1 + γ)3(2 + γ)2(3 + γ)
|12(1 + γ)2(2 + γ)2c1c3

− 12(1 + γ)3(3 + γ)c22 + (2 + γ)2(3 + γ)(γ − 1)c41|.

The above expression is equivalent to

|a2a4 − a23| =
1

12(1 + γ)3(2 + γ)2(3 + γ)

∣∣d1c1c3 + d2c
2
2 + d3c

4
1

∣∣ , (3.5)

where

d1 = 12(1 + γ)2(2 + γ)2; d2 = −12(1 + γ)3(3 + γ);

d3 = (2 + γ)2(3 + γ)(γ − 1). (3.6)
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Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from Lemma
2.2 on the right-hand side of (3.5), we have∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ = |d1c1 ×
1

4
{c31 + 2c1(4− c21)x− c1(4− c21)x2

+ 2(4− c21)(1− |x|2)z}+ d2 ×
1

4
{c21 + x(4− c21)}2 + d3c

4
1|.

Using the facts that |z| < 1 and |xa+ yb| ≤ |x||a|+ |y||b|, where x, y, a and b are real
numbers, after simplifying, we get

4
∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ ≤ |(d1 + d2 + 4d3)c41 + 2d1c1(4− c21)

+2(d1 + d2)c21(4− c21)|x| −
{

(d1 + d2)c21 + 2d1c1 − 4d2
}

(4− c21)|x|2|. (3.7)

With the values of d1, d2 and d3 from (3.6), we can write

d1 + d2 + 4d3 = 4(γ4 + 6γ3 + 12γ2 + 2γ − 9);

d1 = 12(1 + γ)2(2 + γ)2; d1 + d2 = 12(1 + γ)2 (3.8)

and

(d1 + d2)c21 + 2d1c1 − 4d2 = 12(1 + γ)2
{
c21 + 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)

}
. (3.9)

Consider {
c21 + 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)

}
=
[{
c1 + (2 + γ)2

}2 − (2 + γ)4 + 4(1 + γ)(3 + γ)
]

=

[{
c1 + (2 + γ)2

}2 − {√γ4 + 8γ3 + 20γ2 + 16γ + 4
}2
]

=
[
c1 +

{
(2 + γ)2 +

√
γ4 + 8γ3 + 20γ2 + 16γ + 4

}]
×
[
c1 +

{
(2 + γ)2 −

√
γ4 + 8γ3 + 20γ2 + 16γ + 4

}]
(3.10)

Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where a, b ≥ 0 on
the right-hand side of (3.10), after simplifying, we get{

c21 + 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)
}

≥
{
c21 − 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)

}
. (3.11)

From the relations (3.9) and (3.11), we can write

−
{

(d1 + d2)c21 + 2d1c1 − 4d2
}

≤− 12(1 + γ)2
{
c21 − 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)

}
. (3.12)

Substituting the calculated values from (3.8) and (3.12) on the right-hand side of
(3.7), we have∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ ≤ |(γ4 + 6γ3 + 12γ2 + 2γ − 9)c41

+ 6(1 + γ)2(2 + γ)2c1(4− c21) + 6(1 + γ)2c21(4− c21)|x|
− 3(1 + γ)2

{
c21 − 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)

}
(4− c21)|x|2|.
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Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x| by µ on the
right-hand side of the above inequality, we obtain∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ ≤ [(−γ4 − 6γ3 + 12γ2 − 2γ + 9)c4

+ 6(1 + γ)2(2 + γ)2c(4− c2) + 6(1 + γ)2c2(4− c2)µ

+ 3(1 + γ)2
{
c2 − 2(2 + γ)2c+ 4(1 + γ)(3 + γ)

}
(4− c2)µ2]

= F (c, µ), for 0 ≤ µ = |x| ≤ 1, (3.13)

where

F (c, µ) = [(−γ4 − 6γ3 + 12γ2 − 2γ + 9)c4

+ 6(1 + γ)2(2 + γ)2c(4− c2) + 6(1 + γ)2c2(4− c2)µ

+ 3(1 + γ)2
{
c2 − 2(2 + γ)2c+ 4(1 + γ)(3 + γ)

}
(4− c2)µ2]. (3.14)

We next maximize the function F (c, µ) on the closed region [0, 2]× [0, 1].
Differentiating F (c, µ) in (3.14) partially with respect to µ, we get

∂F

∂µ
= 6(1 + γ)2[c2 +

{
c2 − 2(2 + γ)2c+ 4(1 + γ)(3 + γ)

}
µ]× (4− c2). (3.15)

For 0 < µ < 1, for any fixed c with 0 < c < 2 and o ≤ γ ≤ 1, from (3.15), we
observe that ∂F

∂µ > 0. Therefore, F (c, µ) is an increasing function of µ and hence it

cannot have maximum value any point in the interior of the closed region [0, 2]× [0, 1].
Moreover, for fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c). (3.16)

In view of (3.16), replacing µ by 1 in (3.14), upon simplification, we obtain

G(c) = F (c, 1) = −γ(γ3 + 6γ2 − 3γ + 20)c4 − 12γ(1 + γ)2(4 + γ)c2

+ 48(1 + γ)3(3 + γ), (3.17)

G′(c) = −4γc
{

(γ3 + 6γ2 − 3γ + 20)c2 + 6(1 + γ)2(4 + γ)
}
. (3.18)

From the expression (3.18), we observe that G′(c) ≤ 0, for every c ∈ [0, 2] and for
fixed γ with 0 ≤ γ ≤ 1. Therefore, G(c) is a decreasing function of c in the interval
[0,2], whose maximum value occurs at c = 0 only. For c = 0 in (3.17), the maximum
value of G(c) is given by

Gmax = G(0) = 48(1 + γ)3(3 + γ). (3.19)

From the expressions (3.13) and (3.19), we have∣∣d1c1c3 + d2c
2
2 + d3c

4
1

∣∣ ≤ 48(1 + γ)3(3 + γ). (3.20)

Simplifying the relations (3.5) and (3.20), we obtain

|a2a4 − a23| ≤
[

2

2 + γ

]2
. (3.21)
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Choosing c1 = c = 0 and selecting x = 1 in (2.2) and (2.4), we find that c2 = 2 and
c3 = 0. Substituting these values in (3.20), we observe that equality is attained which
shows that our result is sharp. For these values, we derive that

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 + 2z2 + 2z4 + ... =
1 + z2

1− z2
. (3.22)

Therefore, the extremal function in this case is

z1−γ
f ′(z)

f1−γ(z)
= 1 + 2z2 + 2z4 + ... =

1 + z2

1− z2
. (3.23)

This completes the proof of our Theorem. �

Remark 3.2. Choosing γ = 0, from (3.21), we get |a2a4 − a23| ≤ 1, this inequality is
sharp and coincides with that of Janteng, Halim, Darus ([7]).

Remark 3.3. For the choice of γ = 1 in (3.21), we obtain |a2a4−a23| ≤ 4
9 and is sharp,

coincides with the result of Janteng, Halim, Darus ([8]) .
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