On some generalized integral inequalities for φ-convex functions

Mehmet Zeki Sarıkaya, Meltem Büyükeken and Mehmet Eyüp Kiris

Abstract

The main goal of the paper is to state and prove some new general inequalities for φ-convex function.

Mathematics Subject Classification (2010): 26D15, 41A55, 26D10.
Keywords: Hermite-Hadamard's inequality, convex function, φ-convex function, Hölder's inequality.

1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are very important in the literature (see, e.g.,[4], [8, p.137]). These inequalities state that if $f: I \rightarrow \mathbb{R}$ is a convex function on the interval I of real numbers and $a, b \in I$ with $a<b$, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

The inequality (1.1) has evoked the interest of many mathematicians. Especially in the last three decades numerous generalizations, variants and extensions of this inequality have been obtained, to mention a few, see ([3]-[15]) and the references cited therein.

Let us consider a function $\varphi:[a, b] \rightarrow[a, b]$ where $[a, b] \subset \mathbb{R}$. Youness have defined the φ-convex functions in [16], but we work here with the improved definition, according to [1]:

Definition 1.1. A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be φ - convex on $[a, b]$ if for every two points $x, y \in[a, b]$ and $t \in[0,1]$ the following inequality holds:

$$
f(t \varphi(x)+(1-t) \varphi(y)) \leq t f(\varphi(x))+(1-t) f(\varphi(y)) .
$$

Obviously, if function φ is the identity, then the classical convexity is obtained from the previous definition. Many properties of the φ-convex functions can be found, for instance, in [1], [2], [16], [17], [18].

Moreover in [2], Cristescu have presented a version Hermite-Hadamard type inequality for the φ-convex functions as follows:

Theorem 1.2. If a function $f:[a, b] \rightarrow \mathbb{R}$ is φ-convex for the continuous function $\varphi:[a, b] \rightarrow[a, b]$, then

$$
\begin{equation*}
f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(x) d x \leq \frac{f(\varphi(a))+f(\varphi(b))}{2} \tag{1.2}
\end{equation*}
$$

In this article, we will consider two parts which within the first section we give some new general inequalities for φ-convex function. In the second part, using functions whose derivatives absolute values are φ-convex function, we obtained new inequalities related to the left and the right sides of Hermite-Hadamard inequality are given with (2.1).

2. Hermite-Hadamard type inequality for φ-convex function

Theorem 2.1. Let J be an interval $a, b \in J$ with $a<b$ and $\varphi: J \rightarrow \mathbb{R}$ a continuous increasing function. Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a φ-convex function on $I=[a, b]$, then we have

$$
\begin{align*}
f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) & \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x) \\
& \leq \frac{f(\varphi(a))+f(\varphi(b))}{2} \tag{2.1}
\end{align*}
$$

Proof. By definition of the φ-convex function

$$
\begin{aligned}
f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) & =\int_{0}^{1} f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) d t \\
& =\int_{0}^{1} f\left(\frac{(1-t) \varphi(a)+t \varphi(b)+t \varphi(a)+(1-t) \varphi(b)}{2}\right) d t \\
& \leq \frac{1}{2} \int_{0}^{1}[f((1-t) \varphi(a)+t \varphi(b))+f(t \varphi(a)+(1-t) \varphi(b))] d t .
\end{aligned}
$$

Using the change of the variable in last integrals, we get

$$
\begin{equation*}
f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x) . \tag{2.2}
\end{equation*}
$$

By similar way, we have

$$
\begin{align*}
\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x) & =\int_{0}^{1} f((1-t) \varphi(a)+t \varphi(b)) d t \\
& \leq \int_{0}^{1}[(1-t) f(\varphi(a))+t f(\varphi(b))] d t \\
& =\frac{f(\varphi(a))+f(\varphi(b))}{2} \tag{2.3}
\end{align*}
$$

From (2.2) and (2.3), it is obtained desired result.
Remark 2.2. If we choose $\varphi(x)=x$ for all $x \in[a, b]$ in Theorem 2.1, the (2.1) inequality reduce to the inequality (1.1).

Theorem 2.3. Let J be an interval $a, b \in J$ with $a<b$ and $\varphi: J \rightarrow \mathbb{R}$ a continuous increasing function. Let f be a φ-convex function on $I=[a, b]$ and let $w:[\varphi(a), \varphi(b)] \rightarrow \mathbb{R}$ be nonnegative, integrable and symmetric about $\frac{\varphi(a)+\varphi(b)}{2}$. Then

$$
\begin{gather*}
f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) \int_{\varphi(a)}^{\varphi(b)} w(\varphi(x)) d \varphi(x) \leq \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) w(\varphi(x)) d \varphi(x) \\
\leq \frac{f(\varphi(a))+f(\varphi(b))}{2} \int_{\varphi(a)}^{\varphi(b)} w(\varphi(x)) d \varphi(x) \tag{2.4}
\end{gather*}
$$

Proof. Since f be a φ-convex function and $w:[\varphi(a), \varphi(b)] \rightarrow \mathbb{R}$ be nonnegative, integrable and symmetric about $\frac{\varphi(a)+\varphi(b)}{2}$, then we obtain

$$
\begin{gathered}
f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) \int_{\varphi(a)}^{\varphi(b)} w(\varphi(x)) d \varphi(x)=\int_{\varphi(a)}^{\varphi(b)} f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) w(\varphi(x)) d \varphi(x) \\
\leq \frac{1}{2} \int_{\varphi(a)}^{\varphi(b)}[f(\varphi(a)+\varphi(b)-\varphi(x))+f(\varphi(x))] w(\varphi(x)) d \varphi(x) \\
=\int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) w(\varphi(x)) d \varphi(x) \\
=\frac{1}{2} \int_{\varphi(a)}^{\varphi(b)}[f(\varphi(a)+\varphi(b)-\varphi(x))] w(\varphi(x)) d \varphi(x)+\frac{1}{2} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) w(\varphi(x)) d \varphi(x) \\
\leq \frac{1}{2} \int_{\varphi(a)}^{\varphi(b)}[f(\varphi(a))+f(\varphi(b))] w(\varphi(x)) d \varphi(x) \\
=\frac{f(\varphi(a))+f(\varphi(b))}{2} \int_{\varphi(a)}^{\varphi(b)} w(\varphi(x)) d \varphi(x)
\end{gathered}
$$

which completes the proof of Theorem 2.3.

Corollary 2.4. Under the same assumptions of Theorem 2.3 with $\varphi(x)=x$ for all $x \in[a, b]$, we have

$$
f\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x) d x \leq \int_{a}^{b} f(x) w(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} w(x) d x
$$

Theorem 2.5. Let J be an interval $a, b \in J$ with $a<b$ and $\varphi: J \rightarrow \mathbb{R}$ a continuous increasing function. Let $f, w: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a φ-convex and nonnegative function on $I=[a, b]$. Then, for all $t \in[0,1]$, we have

$$
\begin{align*}
2 f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) w\left(\frac{\varphi(a)+\varphi(b)}{2}\right) & \leq \frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) w(\varphi(x)) d \varphi(x) \\
& \leq \frac{1}{6} M(\varphi(a), \varphi(b))+\frac{1}{3} N(\varphi(a), \varphi(b)) \tag{2.5}
\end{align*}
$$

where

$$
\begin{align*}
& M(\varphi(a), \varphi(b))=f(\varphi(a)) w(\varphi(a))+f(\varphi(b)) w(\varphi(b)) \\
& N(\varphi(a), \varphi(b))=f(\varphi(a)) w(\varphi(b))+f(\varphi(b)) w(\varphi(a)) \tag{2.6}
\end{align*}
$$

Proof. Since f and w be φ-convex functions, then we have

$$
\begin{aligned}
f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) & w\left(\frac{\varphi(a)+\varphi(b)}{2}\right)=f\left(\frac{t \varphi(a)+(1-t) \varphi(b)+(1-t) \varphi(a)+t \varphi(b)}{2}\right) \\
& \times w\left(\frac{t \varphi(a)+(1-t) \varphi(b)+(1-t) \varphi(a)+t \varphi(b)}{2}\right) \\
\leq & \frac{1}{2}[f(t \varphi(a)+(1-t) \varphi(b))+f((1-t) \varphi(a)+t \varphi(b))] \\
\times & \frac{1}{2}[w(t \varphi(a)+(1-t) v(b))+w((1-t) \varphi(a)+t \varphi(b))] \\
\leq & \frac{1}{4}\{2 t(1-t) f(\varphi(a)) w(\varphi(a))+2 t(1-t) f(\varphi(b)) w(\varphi(b)) \\
& +\left(t^{2}+(1-t)^{2}\right)[f(\varphi(a)) w(\varphi(b))+f(\varphi(b)) w(\varphi(a)]\} .
\end{aligned}
$$

Integrating with respect to on $[0,1]$, we get

$$
\begin{aligned}
& f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) w\left(\frac{\varphi(a)+\varphi(b)}{2}\right) \\
\leq & \frac{1}{4}\left[\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) w(\varphi(x)) d \varphi(x)\right] \\
& +\frac{1}{2}\left[\frac{1}{6} M(\varphi(a), \varphi(b))+\frac{1}{3} N(\varphi(a), \varphi(b))\right]
\end{aligned}
$$

which completes the proof of Theorem 2.5.

Remark 2.6. If we choose $\varphi(x)=x$ for all $x \in[a, b]$ in Theorem 2.5, the inequality (2.5) reduce to the inequality

$$
2 f\left(\frac{a+b}{2}\right) w\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) w(x) d x \leq \frac{1}{6} M(a, b)+\frac{1}{3} N(a, b)
$$

which is proved by Cristescu in [2].
Theorem 2.7. Let J be an interval $a, b \in J$ with $a<b$ and $\varphi: J \rightarrow \mathbb{R}$ a continuous increasing function. Let $f, w: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a φ-convex on and nonnegative function on $I=[a, b]$. If w is symmetric about $\frac{\varphi(a)+\varphi(b)}{2}$, then, for all $t \in[0,1]$, we have

$$
\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) w(\varphi(x)) d \varphi(x) \leq \frac{1}{6} M(\varphi(a), \varphi(b))+\frac{1}{3} N(\varphi(a), \varphi(b))
$$

where $M(\varphi(a), \varphi(b))$ and $N(\varphi(a), \varphi(b))$ are given by (2.6).
Proof. Since w is symmetric about $\frac{\varphi(a)+\varphi(b)}{2}$, and f, w be φ-convex functions, then we have

$$
\begin{aligned}
& \frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) w(\varphi(x)) d \varphi(x) \\
= & \frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) w(\varphi(a)+\varphi(b)-\varphi(x)) d \varphi(x) \\
= & \int_{0}^{1} f(t \varphi(a)+(1-t) \varphi(b)) w((1-t) \varphi(a)+t \varphi(b)) d t \\
\leq & \int_{0}^{1}[t f(\varphi(a))+(1-t) f(\varphi(b))][(1-t) w(\varphi(a))+t w(\varphi(b))] d t \\
= & \int_{0}^{1}\{t(1-t)[f(\varphi(a)) w(\varphi(a))+f(\varphi(b)) w(\varphi(b))] \\
& +t^{2} f(\varphi(a)) w(\varphi(b))+(1-t)^{2} f(\varphi(b)) w(\varphi(a)\} d t \\
= & \frac{1}{6} M(\varphi(a), \varphi(b))+\frac{1}{3} N(\varphi(a), \varphi(b)) .
\end{aligned}
$$

This completes the proof.
Remark 2.8. If we choose $\varphi(x)=x$ for all $x \in[a, b]$ in Theorem 2.7, the inequality (2.5) reduce to the inequality

$$
\frac{1}{b-a} \int_{a}^{b} f(x) w(x) d x \leq \frac{1}{6} M(a, b)+\frac{1}{3} N(a, b)
$$

which is proved by Cristescu in [2].

3. The left and right sides of Hermite-Hadamard type inequality

In order to prove our results, we need the following lemma (see, [11]):
Lemma 3.1. Let J be an interval $a, b \in J$ with $a<b$ and $\varphi: J \rightarrow \mathbb{R}$ a continuous increasing function. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differantiable function on I° (the interior I). If $f^{\prime} \in L_{1}[\varphi(a), \varphi(b)]$ for $\varphi(a), \varphi(b) \in I$, then the following equality holds:

$$
\begin{align*}
& \frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x)-f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) \tag{3.1}\\
= & \frac{\varphi(b)-\varphi(a)}{2} \int_{0}^{1} p(t) f^{\prime}(t \varphi(a)+(1-t) \varphi(b)) d t
\end{align*}
$$

where

$$
p(t)= \begin{cases}t, & t \in\left[0, \frac{1}{2}\right) \\ t-1, & t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Proof. A simple proof of the equality can be done by performing integration by parts.

Let us begin with the following Theorem.
Theorem 3.2. Let J be an interval $a, b \in J$ with $a<b$ and $\varphi: J \rightarrow \mathbb{R}$ a continuous increasing function. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function on I° (the interior I) and $f^{\prime} \in L_{1}[\varphi(a), \varphi(b)]$ for $\varphi(a), \varphi(b) \in I$. If $\left|f^{\prime}\right|$ is the φ-convex on $[a, b]$, then the following inequality holds:

$$
\begin{align*}
& \left|\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x)-f\left(\frac{\varphi(a)+\varphi(b)}{2}\right)\right| \\
\leq & \frac{(\varphi(b)-\varphi(a))}{8}\left[\left|f^{\prime}(\varphi(a))\right|+\left|f^{\prime}(\varphi(b))\right|\right] . \tag{3.2}
\end{align*}
$$

Proof. The proof of this Theorem is done with a similar method of proof Noor et al. in [11].

Remark 3.3. If we take $\varphi(x)=x$ for all $x \in[a, b]$, then inequality (3.2) coincide with the left sides of Hermite-Hadamard inequality proved by Kirmanci in [10].

Theorem 3.4. Let J be an interval $a, b \in J$ with $a<b$ and $\varphi: J \rightarrow \mathbb{R}$ a continuous increasing function. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function on I° (the interior
I) and $f^{\prime} \in L_{1}[\varphi(a), \varphi(b)]$ for $\varphi(a), \varphi(b) \in I$. If $\left|f^{\prime}\right|^{q}$ is the φ - convex on $[a, b], q>1$, then the following inequalities hold:

$$
\begin{align*}
& \left|\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x)-f\left(\frac{\varphi(a)+\varphi(b)}{2}\right)\right| \\
\leq & \frac{(g(b)-g(a))}{4(p+1)^{\frac{1}{p}}}\left[\left(\frac{\left|f^{\prime}(\varphi(a))\right|^{q}+3\left|f^{\prime}(\varphi(b))\right|^{q}}{8}\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\frac{3\left|f^{\prime}(\varphi(a))\right|^{q}+\left|f^{\prime}(\varphi(b))\right|^{q}}{8}\right)^{\frac{1}{q}}\right] \tag{3.3}\\
\leq & \frac{\varphi(b)-\varphi(a)}{(p+1)^{\frac{1}{p}}}\left(\frac{1}{8}\right)^{\frac{1}{q}}\left(\left|f^{\prime}(\varphi(a))\right|+\left|f^{\prime}(\varphi(b))\right|\right),
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$
Proof. From Lemma 3.1, using Hölder's inequality and the φ-convexity of $\left|f^{\prime}\right|^{q}$, we find

$$
\begin{aligned}
& \left|\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x)-f\left(\frac{\varphi(a)+\varphi(b)}{2}\right)\right| \\
\leq & \frac{\varphi(b)-\varphi(a)}{2}\left\{\left(\int_{0}^{\frac{1}{2}} t^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{\frac{1}{2}}\left|f^{\prime}(t \varphi(a)+(1-t) \varphi(b))\right|^{q} d t\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\int_{\frac{1}{2}}^{1}(1-t)^{p} d t\right)\left(\int_{\frac{1}{2}}^{1}\left|f^{\prime}(t \varphi(a)+(1-t) \varphi(b))\right|^{q} d t\right)^{\frac{1}{q}}\right) \\
\leq & \frac{(\varphi(b)-\varphi(a))}{4(p+1)^{\frac{1}{p}}}\left\{\left(\int_{0}^{\frac{1}{2}}\left[t\left|f^{\prime}(\varphi(a))\right|^{q}+(1-t)\left|f^{\prime}(\varphi(b))\right|^{q}\right] d t\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\int_{\frac{1}{2}}^{1}\left[t\left|f^{\prime}(\varphi(a))\right|^{q}+(1-t)\left|f^{\prime}(b)\right|^{q}\right] d t\right)^{\frac{1}{q}}\right\} \\
\leq & \frac{\varphi(b)-\varphi(a)}{4(p+1)^{\frac{1}{p}}} \\
& \times\left\{\left(\frac{\left|f^{\prime}(\varphi(a))\right|^{q}+3\left|f^{\prime}(\varphi(b))\right|^{q}}{8}\right)^{\frac{1}{q}}+\left(\frac{3\left|f^{\prime}(\varphi(a))\right|^{q}+\left|f^{\prime}(\varphi(b))\right|^{q}}{8}\right)^{\frac{1}{q}}\right\} .
\end{aligned}
$$

Let $a_{1}=\left|f^{\prime}(a)\right|^{q}, b_{1}=3\left|f^{\prime}(b)\right|^{q}, a_{2}=3\left|f^{\prime}(a)\right|^{q}, b_{2}=\left|f^{\prime}(b)\right|^{q}$. Here, $0<\frac{1}{q}<1$ for $q>1$. Using the fact that,

$$
\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)^{s} \leq \sum_{k=1}^{n} a_{k}^{s}+\sum_{k=1}^{n} b_{k}^{s}
$$

For $(0 \leq s<1), a_{1}, a_{2}, \ldots, a_{n} \geq 0, b_{1}, b_{2}, \ldots, b_{n} \geq 0$, we obtain

$$
\begin{aligned}
& \left|\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x)-f\left(\frac{\varphi(a)+\varphi(b)}{2}\right)\right| \\
\leq & \frac{\varphi(b)-\varphi(a)}{4(p+1)^{\frac{1}{p}}}\left(\frac{1}{8}\right)^{\frac{1}{q}}\left[\left(\left|f^{\prime}(\varphi(a))\right|+3^{\frac{1}{q}}\left|f^{\prime}(\varphi(b))\right|\right)+\left(3^{\frac{1}{q}}\left|f^{\prime}(\varphi(a))\right|+\left|f^{\prime}(\varphi(b))\right|\right)\right] \\
= & \frac{\varphi(b)-\varphi(a)}{4(p+1)^{\frac{1}{p}}}\left(\frac{1}{8}\right)^{\frac{1}{q}}\left[\left(1+3^{\frac{1}{q}}\right)\left(\left|f^{\prime}(\varphi(a))\right|+\left|f^{\prime}(\varphi(b))\right|\right)\right] \\
\leq & \frac{\varphi(b)-\varphi(a)}{(p+1)^{\frac{1}{p}}}\left(\frac{1}{8}\right)^{\frac{1}{q}}\left(\left|f^{\prime}(\varphi(a))\right|+\left|f^{\prime}(\varphi(b))\right|\right) .
\end{aligned}
$$

This completes the proof.

Remark 3.5. If we thake $\varphi(x)=x$ for all $x \in[a, b]$, then inequality (3.3) coincide with the left sides of Hermite-Hadamard inequality proved by Kirmanci in [10].

Lemma 3.6. Let J be an interval $a, b \in J$ with $a<b$ and $\varphi: J \rightarrow \mathbb{R}$ a continuous increasing function. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differantiable function on I° (the interior I). If $f^{\prime} \in L_{1}[\varphi(a), \varphi(b)]$ for $\varphi(a), \varphi(b) \in I$, then the following equality holds:

$$
\begin{align*}
& \frac{f(\varphi(a))+f(\varphi(b))}{2}-\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x) \tag{3.4}\\
= & \frac{\varphi(b)-\varphi(a)}{2} \int_{0}^{1}(2 t-1)\left[f^{\prime}(t \varphi(b)+(1-t) \varphi(a))\right] d t .
\end{align*}
$$

Proof. A simple proof of the equality can be done by performing integration by parts.

Let us begin with the following Theorem.
Theorem 3.7. Let J be an interval $a, b \in J$ with $a<b$ and $\varphi: J \rightarrow \mathbb{R}$ a continuous increasing function. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differantiable function on I° (the interior I) and $f^{\prime} \in L_{1}[\varphi(a), \varphi(b)]$ for $\varphi(a), \varphi(b) \in I$. If $\left|f^{\prime}\right|$ is the φ - convex on $[a, b]$, then
the following inequaliy holds:

$$
\begin{align*}
& \quad\left|\frac{f(\varphi(a))+f(\varphi(b))}{2}-\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x)\right| \tag{3.5}\\
& \leq \\
& \leq \frac{\varphi(b)-\varphi(a)}{4}\left(\frac{\left|f^{\prime}(\varphi(b))\right|+\left|f^{\prime}(\varphi(a))\right|}{2}\right) .
\end{align*}
$$

Proof. From Lemma 3.6 and by using φ-convexity function of $\left|f^{\prime}\right|$, we have

$$
\begin{aligned}
& \left|\frac{f(\varphi(a))+f(\varphi(b))}{2}-\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x)\right| \\
\leq & \frac{\varphi(b)-\varphi(a)}{2} \int_{0}^{1}|2 t-1|\left|f^{\prime}(t \varphi(b)+(1-t) \varphi(a))\right| d t \\
\leq & \frac{\varphi(b)-\varphi(a)}{2} \int_{0}^{1}|2 t-1|\left[t\left|f^{\prime}(\varphi(b))\right|+(1-t)\left|f^{\prime}(\varphi(a))\right|\right] d t \\
= & \frac{\varphi(b)-\varphi(a)}{2}\left[\frac{\left|f^{\prime}(\varphi(b))\right|+\left|f^{\prime}(\varphi(a))\right|}{4}\right]
\end{aligned}
$$

which completes the proof.

Remark 3.8. If we thake $\varphi(x)=x$ for all $x \in[a, b]$, then inequality (3.5) coincide with the right sides of Hermite-Hadamard inequality proved by Dragomir and Agarwal in [5].

Theorem 3.9. Let J be an interval $a, b \in J$ with $a<b$ and $\varphi: J \rightarrow \mathbb{R}$ a continuous increasing function. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differantiable function on I° (the interior I) and $f^{\prime} \in L_{1}[\varphi(a), \varphi(b)]$ for $\varphi(a), \varphi(b) \in I$. If $\left|f^{\prime}\right|^{q}$ is the φ - convex on $[a, b]$, $q>1$, then the following inequaliy holds:

$$
\begin{align*}
& \left|\frac{f(\varphi(a))+f(\varphi(b))}{2}-\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x)\right| \tag{3.6}\\
\leq & \frac{\varphi(b)-\varphi(a)}{2}\left(\frac{1}{p+1}\right)^{\frac{1}{p}}\left(\frac{\left|f^{\prime}(\varphi(b))\right|^{q}+\left|f^{\prime}(\varphi(a))\right|^{q}}{2}\right)^{\frac{1}{q}}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.

Proof. From Lemma 3.6 and by using Hölder's integral inequality, we have

$$
\begin{aligned}
& \left|\frac{f(\varphi(a))+f(\varphi(b))}{2}-\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x)\right| \\
\leq & \frac{\varphi(b)-\varphi(a)}{2}\left(\int_{0}^{1}|2 t-1|^{p} d t\right)^{\frac{1}{p}} \\
& \times\left(\int_{0}^{1}\left|f^{\prime}(t \varphi(b)+(1-t) \varphi(a))\right|^{q} d t\right)^{\frac{1}{q}}
\end{aligned}
$$

Since $\left|f^{\prime}\right|^{q}$ is φ-convex on $[a, b]$, we get

$$
\begin{aligned}
& \left|\frac{f(\varphi(a))+f(\varphi(b))}{2}-\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(\varphi(x)) d \varphi(x)\right| \\
\leq & \frac{\varphi(b)-\varphi(a)}{2}\left(\frac{1}{p+1}\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left[t\left|f^{\prime}(\varphi(b))\right|^{q}+(1-t)\left|f^{\prime}(\varphi(a))\right|^{q}\right] d t\right)^{\frac{1}{q}}
\end{aligned}
$$

which completes the proof.
Remark 3.10. If we thake $\varphi(x)=x$ for all $x \in[a, b]$, then inequality (3.6) coincide with the right sides of Hermite-Hadamard inequality proved by Dragomir and Agarwal in [5].

References

[1] Cristescu, G., Lupşa, L., Non-connected convexities and applications, Kluwer Academic Publishers, Dordrecht/Boston/London, 2002.
[2] Cristescu, G., Hadamard type inequalities for φ-convex functions, Annals of the University of Oradea, Fascicle of Management and Technological Engineering, CD-Rom Edition, 12(2004), no. 3.
[3] Bakula, M.K., Pečarić, J., Note on some Hadamard-type inequalities, Journal of Inequalities in Pure and Applied Mathematics, 5(2004), no. 3, article 74.
[4] Dragomir, S.S., Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[5] Dragomir, S.S., Agarwal, R.P., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5)(1998), 91-95.
[6] Dragomir, S.S., Pečarić, J., Persson, L.E., Some inequalities of Hadamard type, Soochow J. Math., 21(1995), 335-241.
[7] Kavurmaci, H., Avci, M., Ozdemir M.E., New inequalities of Hermite-Hadamard type for convex functions with applications, Journal of Inequalities and Applications, 2011, 2011:86.
[8] Pečarić, J.E., Proschan, F., Tong, Y.L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
[9] Pearce, C.E.M., Pečarić, J., Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2000), no. 2, 51-55.
[10] Kırmacı, U.S., Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147(2004), 137-146.
[11] Noor, M.A., Noor, K.I., Awan, M.U., Hermite-Hadamard inequalities for relative semiconvex functions and applications, Filomat, 28(2014), no. 2, 221-230.
[12] Ozdemir, M.E., Set, E., Alomari, M.W., Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20(2011), no. 1, 62-73.
[13] Ozdemir, M.E., Avcı, M., Kavurmacı, H., Hermite-Hadamard-type inequalities via (α, m)-convexity, Comput. Math. Appl., 61(2011), 2614-2620.
[14] Set, E., Özdemir, M.E., Dragomir, S.S., On the Hermite-Hadamard inequality and other integral inequalities involving two functions, Journal of Inequalities and Applications, Article ID 148102, 9 pages, 2010.
[15] Set, E., Özdemir, M.E., Dragomir, S.S., On Hadamard-Type inequalities involving several kinds of convexity, Journal of Inequalities and Applications, Article ID 286845, 12 pages, 2010.
[16] Youness, E.A., E-convex sets, E-convex functions and E-convex programming, Journal of Optimization Theory and Applications, 102(1999), no. 2, 439-450.
[17] Sarikaya, M.Z., On Hermite Hadamard-type inequalities for strongly φ-convex functions, Southeast Asian Bull. Math. 2013, in press.
[18] Sarikaya, M.Z., On Hermite Hadamard-type inequalities for φ_{h}-convex functions, Kochi J. of Math., 9(2014), 83-90.

Mehmet Zeki Sarıkaya
Düzce University, Department of Mathematics
Faculty of Science and Arts
Düzce, Turkey
e-mail: sarikayamz@gmail.com
Meltem Büyükeken
Düzce University, Department of Mathematics
Faculty of Science and Arts
Düzce, Turkey
e-mail: meltembuyukeken@gmail.com
Mehmet Eyüp Kiris
Afyon Kocatepe University, Department of Mathematics
Faculty of Science and Arts
Afyon, Turkey
e-mail: mkiris@gmail.com, kiris@aku.edu.tr

