On convergence of a kind of complex nonlinear Bernstein operators

Harun Karsli and Esra Unal

Abstract

The present article deals with the approximation properties and Voronovskaja type results with quantitative estimates for a certain class of complex nonlinear Bernstein operators ($N B_{n} f$) of the form

$$
\left(N B_{n} f\right)(z)=\sum_{k=0}^{n} p_{k, n}(z) G_{n}\left(f\left(\frac{k}{n}\right)\right), \quad|z| \leq 1
$$

attached to analytic functions on compact disks.
Mathematics Subject Classification (2010): 41A35, 41A25, 47G10.
Keywords: Nonlinear Bernstein operators, Lipschitz condition, Voronovskaja-type result, compact disks.

1. Introduction

Approximation properties of complex Bernstein polynomials were initially studied by Lorentz [6]. Recently S. G. Gal has done a commendable work in this direction and he compiled the important papers in his recent book [2]. Concerning the convergence of the Bernstein polynomials in the complex plane, Bernstein proved that if $f: G \rightarrow \mathbb{C}$ is analytic in the open set $G \subseteq \mathbb{C}$ with $\bar{D}_{1} \subset G$ where $\bar{D}_{1}=\{z \in \mathbb{C}:|z| \leq 1\}$ then the complex Bernstein polynomials

$$
\left(B_{n} f\right)(z)=\sum_{k=0}^{n}\binom{n}{k} z^{k}(1-z)^{n-k} f\left(\frac{k}{n}\right)
$$

converge uniformly to f in \bar{D}_{1}. In the present paper we study the rate of approximation of analytic functions and give a Voronovskaja type result for the nonlinear

[^0]complex Bernstein operator $\left(N B_{n} f\right)$. Nonlinear Bernstein operator of complex variable is defined as
\[

$$
\begin{equation*}
\left(N B_{n} f\right)(z)=\sum_{k=0}^{n} p_{k, n}(z) G_{n}\left(f\left(\frac{k}{n}\right)\right) \tag{1.1}
\end{equation*}
$$

\]

where $G_{n}: \mathbb{C} \rightarrow \mathbb{C}$ satisfies the Hölder condition i.e,

$$
\left|G_{n}(u)-G_{n}(v)\right| \leq R|u-v|^{\gamma}
$$

for every $n \in \mathbb{N}, 0<\gamma \leq 1$ and suitable constant $R>0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[G_{n}(u)-u\right]=0 \tag{1.2}
\end{equation*}
$$

for every $u \in \bar{D}_{1}$ where $\bar{D}_{1}=\{z \in \mathbb{C}:|z| \leq 1\}$.

2. Convergence Results

We will consider the following nonlinear version of complex Bernstein operator,

$$
\left(N B_{n} f\right)(z)=\sum_{k=0}^{n} p_{k, n}(z) G_{n}\left(f\left(\frac{k}{n}\right)\right), \quad|z| \leq 1
$$

defined for every $f \in \bar{D}_{1}$ for which $\left(N B_{n} f\right)$ is well-defined, where

$$
D_{1}=\{z \in \mathbb{C}:|z|<1\}
$$

The real case of above operator (1.1) and some of its properties can be found in [5].
We are now ready to establish the main results of this study:
Theorem 2.1. Suppose that $f: D_{1} \rightarrow \mathbb{C}$ is analytic in D_{1}, that is

$$
f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}
$$

for all $z \in D_{1}$. For all $|z| \leq 1$ and $n \in \mathbb{N}$, we have

$$
\left|\left(N B_{n} f\right)(z)-f(z)\right| \leq R\left(\frac{3}{n} C(f)\right)^{\gamma}
$$

where $0<C(f)=\sum_{k=2}^{\infty} k(k-1)\left|c_{k}\right|<\infty$.
Theorem 2.2. Suppose that $f: D_{1} \rightarrow \mathbb{C}$ is analytic in D_{1}. We can write

$$
f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}
$$

for all $z \in D_{1}$. The following Voronovskaja-type result in the closed unit disk holds,

$$
\left|\left(N B_{n} f\right)(z)-f(z)-\frac{z(1-z)}{n} f^{\prime \prime}(z)\right| \leq R\left(\frac{|z(1-z)|}{2 n} \frac{10}{n} M(f)\right)^{\gamma}
$$

for all $n \in \mathbb{N}, z \in \bar{D}_{1}$, where $0<M(f)=\sum_{k=3}^{\infty} k(k-1)(k-2)^{2} c_{k}<\infty$ and $0<\gamma \leq 1$.
The linear counterpart of Theorem 2.2 is given by Gal [4]. Notice that our theorems contain appropriate result of Gal [4] as a special case.

3. Auxiliary Result

In this section we give a certain result, which is necessary to prove our theorems. Lemma 3.1. (Lorentz [7, p. 40, Theorem 4]) For polynomials $P_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}$ with complex coefficients on the disk $|z| \leq 1$ we put

$$
\left\|P_{n}\right\|_{1}=\max _{|z| \leq 1}\left|P_{n}(z)\right|
$$

Then

$$
\left\|P_{n}^{\prime}\right\| \leq n\left\|P_{n}\right\|
$$

4. Proof of the Theorems

Proof of Theorem 2.1. We consider

$$
\begin{aligned}
\left|\left(N B_{n} f\right)(z)-f(z)\right|= & \left|\sum_{k=0}^{n} p_{k, n}(z) G_{n}\left(f\left(\frac{k}{n}\right)\right)-f(z) \sum_{k=0}^{n} p_{k, n}(z)\right| \\
= & \left|\sum_{k=0}^{n} p_{k, n}(z)\left\{G_{n}\left(f\left(\frac{k}{n}\right)\right)-f(z)\right\}\right| \\
= & \left|\sum_{k=0}^{n} p_{k, n}(z)\left\{G_{n}\left(f\left(\frac{k}{n}\right)\right)-G_{n}(f(z))+G_{n}(f(z))-f(z)\right\}\right| \\
\leq & \left|\sum_{k=0}^{n} p_{k, n}(z)\left\{G_{n}\left(f\left(\frac{k}{n}\right)\right)-G_{n}(f(z))\right\}\right|+\left|\sum_{k=0}^{n} p_{k, n}(z)\left\{G_{n}(f(z))-f(z)\right\}\right|
\end{aligned}
$$

the last term in the last inequality goes to zero because of (1.2). Then we will estimate the first sum $I_{1}=\left|\sum_{k=0}^{n} p_{k, n}(z)\left\{G_{n}\left(f\left(\frac{k}{n}\right)\right)-G_{n}(f(z))\right\}\right|$

$$
\begin{aligned}
I_{1} & =\left|\sum_{k=0}^{n} p_{k, n}(z)\left\{G_{n}\left(f\left(\frac{k}{n}\right)\right)-G_{n}(f(z))\right\}\right| \\
& \leq \sum_{k=0}^{n}\left|p_{k, n}(z)\right|\left|G_{n}\left(f\left(\frac{k}{n}\right)\right)-G_{n}(f(z))\right| .
\end{aligned}
$$

By using Hölder condition $0<\gamma \leq 1$,

$$
\leq R \sum_{k=0}^{n}\left|p_{k, n}(z)\right|\left|f\left(\frac{k}{n}\right)-f(z)\right|^{\gamma}
$$

if we use Hölder inequality then we have

$$
\leq R\left(\sum_{k=0}^{n}\left|p_{k, n}(z)\right|\left|f\left(\frac{k}{n}\right)-f(z)\right|\right)^{\gamma}
$$

Denoting $e_{k}(z)=z^{k}, k=0,1, \ldots$ and $\pi_{k, n}(z)=B_{n}\left(e_{k}\right)(z)$, we evidently have

$$
\left(B_{n} f\right)(z)=\sum_{k=0}^{\infty} c_{k} \pi_{k, n}(z)
$$

and by using this representation we get

$$
=R\left(\sum_{k=0}^{\infty}\left|c_{k}\right|\left|\pi_{k, n}(z)-e_{k}(z)\right|\right)^{\gamma} .
$$

So that we need an estimate for

$$
\left|\pi_{k, n}(z)-e_{k}(z)\right| .
$$

For this purpose we use the recurrence proved for the real variable case in Andrica [1]. It is valid for complex variable as well in [2] and [3]:

$$
\pi_{k+1, n}(z)=\frac{z(1-z)}{n} \pi_{k, n}^{\prime}(z)+z \pi_{k, n}(z)
$$

for all $n \in \mathbb{N}, z \in \mathbb{C}$ and $k=0,1, \ldots$
From this recurrence we easily obtain that degree $\left(\pi_{k, n}(z)\right)=k$. Also, by replacing k with $k-1$, we get
$\pi_{k, n}(z)-z^{k}=\frac{z(1-z)}{n}\left[\pi_{k-1, n}(z)-z^{k-1}\right]^{\prime}+\frac{(k-1) z^{k-1}(1-z)}{n}+z\left[\pi_{k-1, n}(z)-z^{k-1}\right]$
which by Bernstein's inequality for complex polynomials where $|z| \leq r \leq 1$ gives

$$
\begin{aligned}
\left|\pi_{k, n}(z)-e_{k}(z)\right| \leq & (k-1) \frac{1+r}{n}\left\|\pi_{k-1, n}(z)-e_{k-1}(z)\right\|_{1} \\
& +\frac{r^{k-1}(1+r)(k-1)}{n}+r\left|\pi_{k-1, n}(z)-e_{k-1}(z)\right|
\end{aligned}
$$

As a conclusion, for all $|z| \leq 1$ and $n \in \mathbb{N}$ we obtain

$$
\begin{aligned}
\left|\left(N B_{n} f\right)(z)-f(z)\right| & \leq R\left(\sum_{k=0}^{\infty}\left|c_{k}\right|\left|\pi_{k, n}(z)-e_{k}(z)\right|\right)^{\gamma} \\
& \leq R\left(\frac{r(1+r)(1+2 r)}{2 n} \sum_{k=2}^{\infty} k(k-1)\left|c_{k}\right|\right)^{\gamma}
\end{aligned}
$$

Since $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ is absolutely and uniformly convergent in $|z| \leq 1$, then one has $f^{\prime \prime}(z)=\sum_{k=2}^{\infty} k(k-1) c_{k} z^{k-2}$. Note that $\sum_{k=2}^{\infty} k(k-1) c_{k} z^{k-2}$ is also absolutely convergent for $|z| \leq 1$, which implies $\sum_{k=2}^{\infty} k(k-1)\left|c_{k}\right|<\infty$.

Proof of Theorem 2.2. Denoting $h(z):=f(z)+\frac{z(1-z)}{n} f^{\prime \prime}(z)$

$$
\begin{aligned}
& \left|\left(N B_{n} f\right)(z)-f(z)-\frac{z(1-z)}{n} f^{\prime \prime}(z)\right| \\
= & \left|\sum_{k=0}^{n} p_{k, n}(z) G_{n}\left(f\left(\frac{k}{n}\right)\right)-f(z)-\frac{z(1-z)}{n} f^{\prime \prime}(z)\right| \\
= & \left|\sum_{k=0}^{n} p_{k, n}(z) G_{n}\left(f\left(\frac{k}{n}\right)\right)-h(z)\right| \\
\leq & \left|\sum_{k=0}^{n} p_{k, n}(z)\left\{G_{n}\left(f\left(\frac{k}{n}\right)\right)-G_{n}(h(z))\right\}\right| \\
& +\left|\sum_{k=0}^{n} p_{k, n}(z)\left\{G_{n}(h(z))-h(z)\right\}\right|
\end{aligned}
$$

it is clearly seen that the last term in the last inequality goes to zero because of (1.2).
Then we will estimate $I_{1}=\left|\sum_{k=0}^{n} p_{k, n}(z)\left\{G_{n}\left(f\left(\frac{k}{n}\right)\right)-G_{n}(h(z))\right\}\right|$

$$
\begin{aligned}
I_{1} & =\left|\sum_{k=0}^{n} p_{k, n}(z)\left\{G_{n}\left(f\left(\frac{k}{n}\right)\right)-G_{n}(h(z))\right\}\right| \\
& \leq \sum_{k=0}^{n}\left|p_{k, n}(z)\right|\left|G_{n}\left(f\left(\frac{k}{n}\right)\right)-G_{n}(h(z))\right|
\end{aligned}
$$

by using Hölder condition $0<\gamma \leq 1$

$$
\leq \sum_{k=0}^{n}\left|p_{k, n}(z)\right| R\left|f\left(\frac{k}{n}\right)-h(z)\right|^{\gamma} .
$$

Substituting $h(z)$ and using the Hölder inequality,

$$
\leq R\left(\sum_{k=0}^{n}\left|p_{k, n}(z)\right|\left|f\left(\frac{k}{n}\right)-f(z)-\frac{z(1-z)}{n} f^{\prime \prime}(z)\right|\right)^{\gamma}
$$

Denoting $e_{k}(z)=z^{k}, k=0,1, \ldots$ and $\pi_{k, n}(z)=B_{n}\left(e_{k}\right)(z)$, we can write

$$
\left(B_{n} f\right)(z)=\sum_{k=0}^{\infty} c_{k} \pi_{k, n}(z)
$$

which immediately implies

$$
\begin{aligned}
& \left|\left(N B_{n} f\right)(z)-f(z)-\frac{z(1-z)}{n} f^{\prime \prime}(z)\right| \\
\leq & R\left(\sum_{k=0}^{\infty}\left|c_{k}\right|\left|\pi_{k, n}(z)-e_{k}(z)-\frac{z^{k-1}(1-z) k(k-1)}{2 n}\right|\right)^{\gamma}
\end{aligned}
$$

for all $z \in \bar{D}_{1}, n \in \mathbb{N}$.

In what follows, we will use the recurrence obtained in the proof of Theorem 1.1.2 [2].

$$
\pi_{k+1, n}(z)=\frac{z(1-z)}{n} \pi_{k, n}^{\prime}(z)+z \pi_{k, n}(z)
$$

for all $n \in \mathbb{N}, z \in \mathbb{C}$ and $k=0,1, \ldots$.
If we denote

$$
E_{k, n}(z)=\pi_{k, n}(z)-e_{k}(z)-\frac{z^{k-1}(1-z) k(k-1)}{2 n}
$$

then it is clear that $E_{k, n}(z)$ is a polynomial of degree $\leq k$ and by a simple calculation and the use of the above recurrence we obtain the following relationship

$$
\begin{aligned}
E_{k, n}(z)= & \frac{z(1-z)}{n} E_{k, n}^{\prime}(z)+z E_{k-1, n}(z) \\
& +\frac{z^{k-2}(1-z)(k-1)(k-2)}{2 n^{2}}[(k-2)-z(k-1)]
\end{aligned}
$$

for all $k \geq 2, n \in \mathbb{N}$ and $z \in \bar{D}_{1}$.
According to Bernstein's inequality $\left\|E_{k-1, n}^{\prime}(z)\right\| \leq(k-1)\left\|E_{k-1, n}(z)\right\|$ the above relationship implies for all $|z| \leq 1, k \geq 2, n \in \mathbb{N}$ that

$$
\begin{aligned}
\left|E_{k, n}(z)\right| \leq & \frac{|z||1-z|}{2 n}\left[2\left\|E_{k-1, n}^{\prime}(z)\right\|\right]+\left|E_{k-1, n}(z)\right| \\
& +\frac{|z||1-z|}{2 n} \frac{|z|^{k-3}(k-1)(k-2)}{n}(2 k-3) \\
\leq & \left|E_{k-1, n}(z)\right|+\frac{|z||1-z|}{2 n}\left[2(k-1)\left\|\pi_{k-1, n}(z)-e_{k-1}(z)\right\|\right. \\
& \left.+2(k-1)\left\|\frac{(k-1)(k-2)\left[e_{k-2}(z)-e_{k-1}(z)\right]}{2 n}\right\|+\frac{2 k(k-1)(k-2)}{n}\right]
\end{aligned}
$$

where $\|$.$\| denotes the uniform norm in C\left(\bar{D}_{1}\right)$.
It follows

$$
\left\|\pi_{k, n}(z)-e_{k}(z)\right\| \leq \frac{3}{n} k(k-1)
$$

and as a consequence, we get

$$
\begin{aligned}
\left|E_{k, n}(z)\right| \leq & \left|E_{k-1, n}(z)\right|+\frac{|z||1-z|}{2 n}\left[2(k-1) \frac{3(k-1)(k-2)}{n}\right. \\
& \left.+2(k-1)\left\|\frac{(k-1)(k-2)\left[e_{k-2}(z)-e_{k-1}(z)\right]}{2 n}\right\|+\frac{2 k(k-1)(k-2)}{n}\right]
\end{aligned}
$$

which by simple calculation implies

$$
\left|E_{k, n}(z)\right| \leq\left|E_{k-1, n}(z)\right|+\frac{|z||1-z|}{2 n} \frac{10}{n} k(k-1)(k-2) .
$$

Since $E_{0, n}(z)=E_{1, n}(z)=E_{2, n}(z)=0$, for any $z \in \mathbb{C}$ it follows that from the last inequality for $k=3,4, \ldots$ we easily obtain, step by step the following

$$
\left|E_{k, n}(z)\right| \leq \frac{|z||1-z|}{2 n} \frac{10}{n} \sum_{j=3}^{k} j(j-1)(j-2) \leq \frac{|z||1-z|}{2 n} \frac{10}{n} k(k-1)(k-2)^{2}
$$

In conclusion

$$
\begin{aligned}
& \left|\left(N B_{n} f\right)(z)-f(z)-\frac{z(1-z)}{n} f^{\prime \prime}(z)\right| \leq R\left(\sum_{k=3}^{\infty}\left|c_{k}\right|\left|E_{k, n}(z)\right|\right)^{\gamma} \\
& \quad \leq R\left(\frac{|z||1-z|}{2 n} \frac{10}{n} \sum_{k=3}^{\infty}\left|c_{k}\right| k(k-1)(k-2)^{2}\right)^{\gamma}
\end{aligned}
$$

Note that since $f^{(4)}(z)=\sum_{k=4}^{\infty} c_{k} k(k-1)(k-2)(k-3) z^{k-4}$ and the series is absolutely convergent in \bar{D}_{1}, it easily follows that $\sum_{k=3}^{\infty}\left|c_{k}\right| k(k-1)(k-2)^{2}<\infty$.

References

[1] Andrica, D., Powers by Bernstein's operators and some combinatorial properties, in: Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Preprint no. 6, 5-9.
[2] Gal, S.G., Approximation by Complex Bernstein and Convolution Type Operators, Singapore, Hong Kong, London, New Jersey, World Scientific Publ Co., 2009.
[3] Gal, S.G., Shape Preserving Approximation by Real and Complex Polynomials, Birkhauser Publ., Boston, Basel, Berlin, 2008.
[4] Gal, S.G., Voronovskaja's theorem and iterations for complex Bernstein polynomials in compact disks, Mediter. J. Math., 5, no. 3, 253-272.
[5] Karsli, H., Tiryaki, I.U., Altin, H.E., Some approximation properties of a certain nonlinear Bernstein operators, Filomat, 28(2014), 1295-1305.
[6] Lorentz, G.G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
[7] Lorentz, G.G., Approximation of Functions, Chelsea Publ., New York, 1987.

Harun Karsli
Abant Izzet Baysal University Faculty of Science and Arts
Department of Mathematics
14280 Golkoy Bolu, Turkey
e-mail: karsli h@ibu.edu.tr
Esra Unal
Abant Izzet Baysal University Faculty of Science and Arts
Department of Mathematics
14280 Golkoy Bolu, Turkey
e-mail: esraunal@ibu.edu.tr

[^0]: This paper was presented at the third edition of the International Conference on Numerical Analysis and Approximation Theory (NAAT 2014), Cluj-Napoca, Romania, September 17-20, 2014.

