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A Voronovskaya-type theorem for a certain
nonlinear Bernstein operators

Harun Karsli and Huseyin Erhan Altin

Abstract. The present paper concerns with the nonlinear Bernstein operators
NBnf of the form

(NBnf)(x) =

n∑
k=0

Pn,k

(
x, f

(
k

n

))
, 0 ≤ x ≤ 1 , n ∈ N,

acting on bounded functions on an interval [0, 1] , where Pn,k satisfy some suitable
assumptions. As a continuation of the very recent paper of the authors [11],
we estimate the rate of convergence by modulus of continuity and provide a
Voronovskaya-type formula for these operators. We note that our results are
strict extensions of the classical ones, namely, the results dealing with the linear
Bernstein polynomials.
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1. Introduction

We consider the problem of approximating a given real-valued function f , defined
on [0, 1], by means of a sequence of nonlinear Bernstein operators (NBnf). Operators
like positive linear, convolution, moment and sampling operators play an important
role in several branches of Mathematics, for instance in reconstruction of signals and
images, in Fourier analysis, operator theory, probability theory and approximation
theory.

In this paper, we deal with nonlinear Bernstein operators generated by the clas-
sical Bernstein operators. These operators considered in the papers [1], [4] and [11],
in which other kinds of convergence properties are studied.

This paper was presented at the third edition of the International Conference on Numerical Analysis
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Let f be a function defined on the interval [0, 1] and let N := {1, 2, ...} . The
classical Bernstein operators Bnf applied to f are defined as

(Bnf)(x) =

n∑
k=0

f

(
k

n

)
pn,k(x) , 0 ≤ x ≤ 1 , n ∈ N, (1.1)

where pn,k(x) =

(
n

k

)
xk(1 − x)n−k is the Bernstein basis. These polynomials were

introduced by Bernstein [7] in 1912 to give the first constructive proof of the Weier-
strass approximation theorem. Some properties of the polynomials (1.1) can be found
in Lorentz [14].

We now state a brief and technical explanation of the relation between approx-
imation by linear and nonlinear operators. Approximation with nonlinear integral
operators of convolution type was introduced by J. Musielak in [15] and widely devel-
oped in [5] (and the references contained therein). In [15], the assumption of linearity
of the singular integral operators was replaced by an assumption of a Lipschitz con-
dition for the kernel function Kλ(t, u) with respect to the second variable. Especially,
nonlinear integral operators of type

(Tλf) (x) =

b∫
a

Kλ(t− x, f(t)) dt, x ∈ (a, b) ,

and its special cases were studied by Bardaro-Karsli and Vinti [2], [3] and Karsli [10],
[12] in some Lebesgue spaces.

Very recently, by using the techniques due to Musielak [15], Karsli-Tiryaki and
Altin [11] considered the following type nonlinear counterpart of the well-known Bern-
stein operators;

(NBnf)(x) =

n∑
k=0

Pn,k

(
x, f

(
k

n

))
, 0 ≤ x ≤ 1 , n ∈ N, (1.2)

acting on bounded functions f on an interval [0, 1] , where Pn,k satisfy some suitable
assumptions. They proved some existence and approximation theorems for the non-
linear Bernstein operators. In particular, they obtain some pointwise convergence for
the nonlinear sequence of Bernstein operators (1.2) to some discontinuity point of the
first kind of f, as n→∞.

As a continuation of the very recent paper of the authors [11], we estimate a
Voronovskaya-type formula for this class nonlinear Bernstein operators on the interval
[0, 1] . Let us note that such kind of results for a general class of discrete operators

were studied by Bardaro and Mantellini [4].
An outline of the paper is as follows: The next section contains basic definitions

and notations.

In Section 3, the main approximation results of this study are given. They are
dealing with some approximation theorems for nonlinear Bernstein operators (1.2)
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and rate of convergence by modulus of continuity. Also we give a Voronovskaya-type
formula for this class nonlinear Bernstein operators on the interval [0, 1].

In Section 4, we give some certain results which are necessary to prove the main
result.

The final section, that is Section 5, concerns with the proof of the main results
presented in Section 3.

2. Preliminaries

In this section, we recall the following structural assumptions according to [11],
which will be fundamental in proving our convergence theorems.

In the following we will denote by C (I) the space of all uniformly continuous
and bounded functions f : I → R, endowed with the norm ‖f‖∞ = supt∈R |f (t)|.

Let Ψ be the class of all functions ψ : R+
0 → R+

0 such that the function ψ is
non-decreasing, continuous and concave with ψ(0) = 0, ψ(u) > 0 for u > 0, and
lim
u→∞

ψ(u) = +∞.

We now introduce a sequence of functions. Let {Pn,k}n∈N be a sequence of func-
tions Pn,k : [0, 1] xR→ R defined by

Pn,k (t, u) = pn,k(t)Hn(u) (2.1)

for every t ∈ [0, 1], u ∈ R, where Hn : R → R is such that Hn(0) = 0 and pn,k(t) is
the Bernstein basis.

Throughout the paper we assume that µ : N → R+ is an increasing sequence
such that lim

n→∞
µ(n) =∞.

First of all we assume that the following conditions hold:

a) Hn : R→ R is such that

|Hn(u)−Hn(v)| ≤ ψ (|u− v|) , ψ ∈ Ψ,

holds for every u, v ∈ R, for every n ∈ N. That is, Hn satisfies a (L-ψ) Lipschitz
condition.

b) We now set

Kn(x, u) :=


∑
k≤nu

pn,k(x), 0 < u ≤ 1

0, u = 0

(2.2)

and from (2.2) one can write

λn (x, t) :=

t∫
0

duKn (x, u) .

Similar approach and some particular examples can be found in [6], [9], [11], [13]
and [16].
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c) Denoting by rn(u) := Hn(u) − u, u ∈ R and n ∈ N. Assume that for n
sufficiently large

sup
u
|rn(u)| ≤ 1

µ(n)
,

holds.

3. Convergence Results

Let X be the set of all bounded Lebesgue measurable functions f : [0, 1]→ R.
We will consider the following type nonlinear Bernstein operators,

(NBnf) (x) =

n∑
k=0

Pn,k

(
x, f

(
k

n

))
defined for every f ∈ X for which NBnf is well-defined, where Pn,k(x, u) satisfies
(2.1) for every x ∈ [0, 1], u ∈ R.

Definition 3.1. Let f ∈ C [a, b] and δ > 0 be given. Then the modulus of continuity is
given by;

ωψ (f ; δ) = sup
|t−x|≤δ , t,x∈[a,b]

ψ (|f (t)− f (x)|) . (3.1)

Definition 3.2. We will say that the sequence (Pn,k)n∈N is ψ−singular if the following
assumptions are satisfied;

(P.1) For every x ∈ I and δ > 0 there holds

ψ

 ∑
| kn−x|≥δ

∣∣∣∣kn − x
∣∣∣∣ pn,k (x)

 = o
(
n−1

)
, (n→∞) .

(P.2) For every u ∈ R and for every x ∈ I we have

lim
n→∞

n

[
n∑
k=0

Pn,k(x, u)− u

]
= 0.

We are now ready to establish the main results of this study:

Theorem 3.3. Let f : I → R, f ∈ C (I) and suppose that a kernel satisfies (a), (b)
and (c). Then

‖NBnf − f‖∞ → 0 as n→∞
where I = [0, 1] and ψ ∈ Ψ.

Theorem 3.4. If f (x) is continuous and ωψ (f ; δ) the modulus of continuity of f (x)
given in (3.1), then

|NBnf (x)− f (x)| ≤ ψ (ε) +
5

4
ωψ (f ; δ) +

1

µ (n)

where δ = n−
1
2 .
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Theorem 3.5. Let f ∈ L1 [0, 1] be a function such that f ′ (x) exists at a point x ∈ (0, 1).
Let us assume that the sequence (Pn,k)n∈N is ψ−singular and

lim sup
n→∞

n ψ (M1 (pn,k, x)) = l1 (x) ∈ R, (3.2)

where M1 is the first order absolute moment of Bernstein polynomials given in Lemma
4.3. Then,

lim sup
n→∞

n |(NBnf) (x)− f (x)| ≤M l1 (x) ,

where M > 0 be a sufficiently large integer.

4. Auxilary Results

In this section we give certain results, which are necessary to prove our theorems.

Lemma 4.1. ωψ (f ; δ) has the following properties,

i) ωψ (f ; δ) ≥ 0,

ii) If δ1 ≤ δ2, then ωψ (f ; δ1) ≤ ωψ (f ; δ2) ,

iii) Let m ∈ N, then ωψ (f ;mδ) ≤ m ωψ (f ; δ) ,

iv) Let λ ∈ R+, then ωψ (f ;λδ) ≤ (λ+ 1)ωψ (f ; δ) ,

v) lim
δ→0+

ωψ (f ; δ) = 0,

vi) ψ (|f (t)− f (x)|) ≤ ωψ (f ; |t− x|) ,
vii) ψ (|f (t)− f (x)|) ≤

(
|t−x|
δ + 1

)
ωψ (f ; δ) , and they can be proven as similar

with the classical ones.

Lemma 4.2. It is well known that for (Bnt
s)(x), s = 0, 1, 2, one has

(Bn1)(x) = 1, (Bnt)(x) = x, (Bnt
2)(x) = x2 +

x(1− x)

n
.

For proof of this Lemma see [14].

By direct calculation, we find the following equalities:

(Bn (t− x)
2
)(x) =

x(1− x)

n
, (Bn (t− x))(x) = 0.

Lemma 4.3. The first order absolute moment for Bernstein polynomial is defined as

M1 (pn,k, x) =

n∑
k=0

∣∣∣∣(kn − x
)∣∣∣∣ pn,k (x)

and

M1 (pn,k, x) ≤
(

2x (1− x)

π

) 1
2 1√

n
+ o

(
1√
n

)
which can be found [8].
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5. Proof of the Theorems

Proof of Theorem 3.3. We evaluate ‖NBnf − f‖∞. We have

|NBnf (x)− f (x)| =

∣∣∣∣∣
n∑
k=0

Pn,k

(
x, f

(
k

n

))
− f (x)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

{
Hn

(
f

(
k

n

))
− f (x)

}
pn,k (x)

∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣Hn

(
f

(
k

n

))
−Hn (f (x))

∣∣∣∣ pn,k (x)

+

n∑
k=0

|Hn (f (x))− f (x)| pn,k (x)

= In,1 (x) + In,2 (x) .

First we consider In,2 (x). From (c) we have

In,2 (x) =

n∑
k=0

|Hn (f (x))− f (x)| pn,k (x)

≤ 1

µ (n)
.

Next we consider In,1 (x)

In,1 (x) =

n∑
k=0

∣∣∣∣Hn

(
f

(
k

n

))
−Hn (f (x))

∣∣∣∣ pn,k (x)

≤
n∑
k=0

ψ

(∣∣∣∣f (kn
)
− f (x)

∣∣∣∣) pn,k (x)

=

1∫
0

ψ (|f (t)− f (x)|) dt (Kn (x, t))

=

∫
|t−x|≤δ

ψ (|f (t)− f (x)|) dt (Kn (x, t))

+

∫
|t−x|>δ

ψ (|f (t)− f (x)|) dt (Kn (x, t))

≤ ψ (ε) + ψ (2 ‖f‖∞) ε

holds true, since ψ is non-decreasing and concave function. Finally we have

|NBnf (x)− f (x)| ≤ ψ (ε) + ψ (2 ‖f‖∞) ε+
1

µ (n)
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and so, since 1
µ(n) → 0 when n→∞, we obtain

lim sup
n→∞

|NBnf (x)− f (x)| ≤ ψ (ε) + ψ (2 ‖f‖∞) ε.

Hence the assertion follows, ε > 0 being arbitrary.

Proof of Theorem 3.4. We can write the difference as in the previous theorem

|NBnf (x)− f (x)| =

∣∣∣∣∣
n∑
k=0

Pn,k

(
x, f

(
k

n

))
− f (x)

∣∣∣∣∣
≤ In,1 (x) + In,2 (x)

where

In,2 (x) =

n∑
k=0

|Hn (f (x))− f (x)| pn,k (x)

≤ 1

µ (n)
.

First we consider In,1 (x). If we think In,1 (x) as two sum,

In,1 (x) ≤
∑
| kn−x|≤δ

ψ

(∣∣∣∣f (kn
)
− f (x)

∣∣∣∣) pn,k (x)

+
∑
| kn−x|>δ

ψ

(∣∣∣∣f (kn
)
− f (x)

∣∣∣∣) pn,k (x)

= ψ (ε) + In,1,2 (x) .

Now we will consider In,1,2 (x). Taking into account that ωψ (f ; δ) is the modulus of
continuity

In,1,2 (x) =
∑
| kn−x|>δ

ψ

(∣∣∣∣f (kn
)
− f (x)

∣∣∣∣) pn,k (x)

≤ ωψ (f ; δ)
∑
| kn−x|>δ

(∣∣ k
n − x

∣∣
δ

+ 1

)
pn,k (x)

≤ ωψ (f ; δ)

1 + δ−1
∑
| kn−x|>δ

∣∣∣∣kn − x
∣∣∣∣ pn,k (x)


≤ ωψ (f ; δ)

{
1 + δ−2

n∑
k=0

(
k

n
− x
)2

pn,k (x)

}
≤ ωψ (f ; δ)

{
1 +

(
4nδ2

)−1}
.
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In conclusion;

|NBnf (x)− f (x)| ≤ ψ (ε) + ωψ (f ; δ)
{

1 +
(
4nδ2

)−1}
+

1

µ (n)

≤ ψ (ε) +
5

4
ωψ (f ; δ) +

1

µ (n)

where δ = n−
1
2 .

Proof of Theorem 3.5. Since f is differentiable at the point x, then there exists a
bounded function h such that lim

y→0
h (y) = 0. By Taylor’s formula we have

f

(
k

n

)
= f (x) +

(
k

n
− x
)
f ′ (x) +

(
k

n
− x
)
h

(
k

n
− x
)
.

Now we can write

n |(NBnf) (x)− f (x)| = n

∣∣∣∣∣
n∑
k=0

{
Hn

(
f

(
k

n

))
− f (x)

}
pn,k (x)

∣∣∣∣∣
≤ n

n∑
k=0

ψ

(∣∣∣∣f (kn
)
− f (x)

∣∣∣∣) pn,k (x)

+n

∣∣∣∣∣
n∑
k=0

{Hn (f (x))− f (x)} pn,k (x)

∣∣∣∣∣
= I1 (x) + I2 (x) .

By assumption (P.2), I2 (x) tends to zero. We can estimate the first term in the
following way:

Let M > 0 be an integer such that |f ′ (x)| +
∣∣h ( kn − x)∣∣ ≤ M . Using sub-

additivity of the function ψ (x), x ≥ 0, we have

I1 (x) = n

n∑
k=0

ψ

(∣∣∣∣(kn − x
)
f ′ (x) +

(
k

n
− x
)
h

(
k

n
− x
)∣∣∣∣) pn,k (x)

≤ n

n∑
k=0

ψ

(∣∣∣∣(kn − x
)∣∣∣∣ [|f ′ (x)|+

∣∣∣∣h(kn − x
)∣∣∣∣]) pn,k (x)

≤ n

{
n∑
k=0

ψ

(
M

∣∣∣∣(kn − x
)∣∣∣∣) pn,k (x)

}

≤ n M

{
n∑
k=0

ψ

(∣∣∣∣(kn − x
)∣∣∣∣) pn,k (x)

}
In virtue of Jensen’s Inequality, we can write

I1 (x) ≤ n M ψ

(
n∑
k=0

∣∣∣∣(kn − x
)∣∣∣∣ pn,k (x)

)
= n M ψ (M1 (pn,k, x)) .
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In view of (3.2), one has

lim sup
n→∞

n |(NBnf) (x)− f (x)| ≤M l1 (x) .

This completes the proof of the theorem.
As a corollary of the Theorem 3.5 we have:

Corollary 5.1. Let f ∈ L1 [0, 1] be a function such that f ′ (x) exists at a point x ∈
(0, 1). Let us assume that the sequence (Pn,k)n∈N is ψ−singular satisfies (3.2) and let
ψ (x) = xγ where 0 < γ ≤ 1. Then

lim sup
n→∞

n |(NBnf) (x)− f (x)| ≤ l1 (x) |f ′ (x)|γ .

We note that to prove the above Corollary we can also use the following inequality;

ψ (|a| |b|) ≤ ψ (|a|)ψ (|b|) ,
(see [4]).
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