# The generalization of Mastroianni operators using the Durrmeyer's method 

Cristina Sanda Cismasiu


#### Abstract

In the present paper, we define a sequence of Durrmeyer's type operators associated with Mastroianni operators and introduce a new operator.


Mathematics Subject Classification (2010): 41A25.
Keywords: Mastroianni operator, operator of Durrmeyer type, approximation properties.

## 1. Introduction

In [5], [6] G. Mastroianni defined and studied a general class of linear positive approximation operators, which was generalized by O. Agratini, B. Della Vecchia [1]. In brief we recall this construction.

Taking $[0, \infty):=\mathbb{R}_{+}$, we consider the next spaces of functions:
$B\left(\mathbb{R}_{+}\right)=\left\{f: \mathbb{R}_{+} \longrightarrow \mathbb{R}\left|(\exists) M_{f}>0:|f(x)| \leq M_{f}\right\}\right.$, a normed space with the uniform norm $\|f\|_{B}=\sup \left\{|f(x)|: x \in \mathbb{R}_{+}\right\}$;
$B_{\rho}\left(\mathbb{R}_{+}\right)=\left\{f: \mathbb{R}_{+} \longrightarrow \mathbb{R}| | f(x) \mid \leq N_{f} \rho(x), N_{f}>0, \rho(x)=1+x^{2}\right\}$, a normed space with the norm $\|f\|_{\rho}=\sup \left\{\frac{|f(x)|}{\rho(x)}: x \geq 0\right\}=\sup \left\{\frac{|f(x)|}{1+x^{2}}: x \geq 0\right\}$;
$C_{\rho}\left(\mathbb{R}_{+}\right)=\left\{f \in B_{\rho}\left(\mathbb{R}_{+}\right) \mid f\right.$ continuous function $\} ;$
$C_{\rho}^{*}\left(\mathbb{R}_{+}\right)=\left\{f \in C_{\rho}\left(\mathbb{R}_{+}\right) \left\lvert\,(\exists) \lim _{x \rightarrow \infty} \frac{|f(x)|}{1+x^{2}}<\infty\right.\right\}$.
The space $C_{\rho}^{*}\left(\mathbb{R}_{+}\right)$endowed with the norm $\|f\|_{\rho}$ is a Banach space.
In our estimations we use the first modulus of continuity on a finite interval $[0, b]$, $b>0, \omega_{[0, b]}(f ; \delta)=\sup \{|f(x+h)-f(x)|: 0<h \leq \delta, x \in[0, b]\}$ and the Peetre's Kfunctional defined as

$$
K_{2}(f ; \delta)=\inf \left\{\|f-g\|_{B}+\delta\left\|g^{\prime \prime}\right\|_{B}: g \in W_{\infty}^{2}\right\}, \delta>0
$$

where $W_{\infty}^{2}=\left\{g \in C_{B}\left(\mathbb{R}_{+}\right): g^{\prime}, g^{\prime \prime} \in C_{B}\left(\mathbb{R}_{+}\right)\right\}$.

[^0]It is known (see [9] p.177, th. 2.4) that, there exists a positive constant $C$ such that $K_{2}(f ; \delta) \leq C \omega_{2}(f ; \sqrt{\delta})$, where

$$
\omega_{2}(f ; \sqrt{\delta})=\sup _{0<h \leq \sqrt{\delta}} \sup _{x \in[0, \infty)}\{|f(x+2 h)-2 f(x+h)+f(x)|\}
$$

Let $\left(\Phi_{n}\right)_{n \geq 1}$ be a sequence of real functions defined on $[0, \infty):=\mathbb{R}_{+}$which are infinitely differentiable on $\mathbb{R}_{+}$and satisfy the conditions:
(i) $\Phi_{n}(0)=1, n \in \mathbb{N}$;
(ii) for every $n \in \mathbb{N}, x \in \mathbb{R}_{+}$and $k \in \mathbb{N} \cup\{0\}:=\mathbb{N}_{0}$,

$$
\begin{equation*}
(-1)^{k} \Phi_{n}^{(k)}(x) \geq 0 \tag{1.1}
\end{equation*}
$$

(iii) for each $(n, k) \in \mathbb{N} \times \mathbb{N}_{0}$ there exists a number $p(n, k) \in \mathbb{N}$ and a function $\alpha_{n, k} \in \mathbb{R}^{\mathbb{R}}$ such that $\Phi_{n}^{(i+k)}(x)=(-1)^{k} \Phi_{p(n, k)}^{(i)}(x) \alpha_{n, k}(x), i \in \mathbb{N}_{0}, x \in \mathbb{R}_{+}$and
(iv) $\lim _{n \rightarrow \infty} \frac{n}{p(n, k)}=\lim _{n \rightarrow \infty} \frac{\alpha_{n, k}(x)}{n^{k}}=1$.

Remark 1.1. There is easy to see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\Phi_{n}^{(k)}(0)}{n^{k}}=\lim _{n \rightarrow \infty} \frac{(-1)^{k} \alpha_{n, k}(0)}{n^{k}}=(-1)^{k} \tag{1.2}
\end{equation*}
$$

The Mastroianni operators $M_{n}: C_{B}\left(\mathbb{R}_{+}\right) \longrightarrow C\left(\mathbb{R}_{+}\right)$are defined by the following formula

$$
\begin{equation*}
M_{n}(f, x)=\sum_{k=0}^{\infty} m_{n, k}(x) f\left(\frac{k}{n}\right) \tag{1.3}
\end{equation*}
$$

with the basis functions,

$$
\begin{equation*}
m_{n, k}(x)=\frac{(-x)^{k} \Phi_{n}^{(k)}(x)}{k!} \tag{1.4}
\end{equation*}
$$

For these operators and for the test functions $e_{r}(x)=x^{r}, r=0,1,2$ the following results were obtained [5]:

$$
\begin{align*}
M_{n}\left(e_{0} ; x\right) & =\Phi_{n}(0) \\
M_{n}\left(e_{1} ; x\right) & =-\frac{\Phi_{n}^{\prime}(0)}{n} x  \tag{1.5}\\
M_{n}\left(e_{2} ; x\right) & =\frac{\Phi_{n}^{\prime \prime}(0) x^{2}-\Phi_{n}^{\prime}(0) x}{n^{2}}
\end{align*}
$$

In terms of the hypergeometric and confluent hypergeometric functions, recent results, about Durrmeyer type operators [2], [3], [4], [8], have considered in the definition of the basis functions, the family's functions:

$$
\Phi_{n, c}(x)= \begin{cases}e^{-n x}, & c=0, x \geq 0 \\ (1+c x)^{-\frac{n}{c}}, & c \in \mathbb{N}, x \geq 0\end{cases}
$$

For these functions we have

$$
\Phi_{n, c}^{(k+1)}(x)=-n \Phi_{n+c, c}^{(k)}(x), n>\max \{0,-c\}
$$

respectively

$$
\Phi_{n, c}^{(i+k)}(x)=(-1)^{k} n_{[k,-c]} \Phi_{n+k c, c}^{(i)}(x)
$$

where $n_{[k,-c]}=n(n+c)(n+2 c) \cdots(n+\overline{k-1} c)$ is the factorial power of order $k$ of $n$ with the increment $-c$ and $n_{[0,-c]}=1$.

So, the conditions (iii)-(iv) are true, for $p(n, k)=n+k c$ and $\alpha_{n, k}(x)=n_{[k,-c]}$.
In the next section we propose a Mastroianni-Durrmeyer operator, when the sequence of functions $\left(\Phi_{n}\right)_{n \geq 1}$ satisfy the conditions (i)-(iv) and other supplementary conditions, is non-nominated.

## 2. Main results

Let $\left(\Phi_{n}\right)_{n \geq 1}$ be the sequence of functions which satisfy the conditions (i)-(iv) and the next supplementary conditions, for any $n \in \mathbb{N}$ and $r, k \in \mathbb{N}_{0}$ :
(v) $\lim _{x \rightarrow \infty} x^{r} \Phi_{n}^{(k)}(x)=0$
(vi) ( $\exists) J_{n, k, r}:=\int_{0}^{\infty} x^{r} \Phi_{n}^{(k)}(x) d x<\infty$, ( $\left.\exists\right) J_{n, 0,0}:=\int_{0}^{\infty} \Phi_{n}(x) d x \neq 0$.

We define the operators of Durrmeyer type associated with Mastroianni operators (1.3)-(1.4) for each real value function $f \in \mathbb{R}^{\mathbb{R}}$ for which the series exists:

$$
\begin{equation*}
D M_{n}(f ; x)=\sum_{k=0}^{\infty} m_{n, k}(x) \frac{\int_{0}^{\infty} m_{n, k}(t) f(t) d t}{\int_{0}^{\infty} m_{n, k}(t) d t}=\int_{0}^{\infty} K_{n}(t, x) f(t) d t \tag{2.1}
\end{equation*}
$$

with the kernel

$$
\begin{equation*}
K_{n}(t, x)=\frac{1}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) m_{n, k}(t), I_{n, 0,0}=J_{n, 0,0}=\int_{0}^{\infty} \Phi_{n}(t) d t \neq 0 \tag{2.2}
\end{equation*}
$$

Lemma 2.1. The next identity is true for any $n \in \mathbb{N}$ and $r, k \in \mathbb{N}_{0}$

$$
I_{n, k, r}=\frac{(r+1)_{k}}{k!} I_{n, 0, r}
$$

where

$$
I_{n, k, r}:=\int_{0}^{\infty} t^{r} m_{n, k}(t) d t=\frac{(-1)^{k}}{k!} J_{n, k, r+k}
$$

and

$$
(n)_{k}=n(n+1)(n+2) \cdots(n+k-1)=n_{[k,-1]}, \quad(n)_{0}=1
$$

is the Pochhammer symbol or the factorial power of order $k$ of $n$ and the increment -1 . So, $(1)_{k}=k!,(2)_{k}=(k+1)$ !.

The proof suppose an easy computation, so we have omitted them. We remark that $I_{n, 0, r}=J_{n, 0, r}=\int_{0}^{\infty} t^{r} \Phi_{n}(t) d t, r \geq 0$, (the moments of the $r$-th order reported to $\Phi_{n}$ )
$I_{n, k, 0}=\int_{0}^{\infty} m_{n, k}(t) d t=\frac{(-1)^{k}}{k!} J_{n, k, k}$,
$J_{n, k, k}=(-1)^{k} k!J_{n, 0,0}, k \geq 0$,
$I_{n, k, 0}=I_{n, 0,0}=J_{n, 0,0}=\int_{0}^{\infty} \Phi_{n}(t) d t$,
$I_{n, k, r}=\int_{0}^{\infty} t^{r} m_{n, k}(t) d t=\frac{(-1)^{k}}{k!} \int_{0}^{\infty} t^{r+k} \Phi_{n}^{(k)}(t) d t=\frac{(r+1)_{k}}{k!} \int_{0}^{\infty} t^{r} \Phi_{n}(t) d t$
$=\frac{(r+1)_{k}}{k!} J_{n, 0, r}=\frac{(r+1)_{k}}{k!} I_{n, 0, r}$, (the moments of the $r$-th order reported to $\left.m_{n, k}\right)$.
Lemma 2.2. The moments of the operators $D M_{n}(f ; x)$ are given for $e_{r}(x)=x^{r}$, $r \in \mathbb{N}_{0}$ as

$$
\begin{equation*}
D M_{n}\left(e_{r} ; x\right)=\frac{I_{n, 0, r}}{I_{n, 0,0}} \sum_{k=0}^{\infty} \frac{(r+1)_{k}}{k!} m_{n, k}(x) \tag{2.3}
\end{equation*}
$$

Further, we have

$$
\begin{align*}
D M_{n}\left(e_{0} ; x\right)= & 1, \\
D M_{n}\left(e_{1} ; x\right)= & \frac{I_{n, 0,1}}{I_{n, 0,0}}\left(1-x \Phi_{n}^{\prime}(0)\right), \\
D M_{n}\left(e_{2} ; x\right)= & \frac{I_{n, 0,2}}{2 I_{n, 0,0}}\left(x^{2} \Phi_{n}^{\prime \prime}(0)-4 x \Phi_{n}^{\prime}(0)+2\right),  \tag{2.4}\\
D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)= & x^{2}\left(\frac{I_{n, 0,2}}{2 I_{n, 0,0}} \Phi_{n}^{\prime \prime}(0)+2 \frac{I_{n, 0,1}}{I_{n, 0,0}} \Phi_{n}^{\prime}(0)+1\right) \\
& -2 x\left(\frac{I_{n, 0,2}}{I_{n, 0,0}} \Phi_{n}^{\prime}(0)+\frac{I_{n, 0,1}}{I_{n, 0,0}}\right)+\frac{I_{n, 0,2}}{I_{n, 0,0}} .
\end{align*}
$$

Proof. Using Lemma 2.1 we obtain

$$
\begin{aligned}
D M_{n}\left(e_{r} ; x\right) & =\frac{1}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) I_{n, k, r}=\frac{I_{n, 0, r}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(r+1)_{k}}{k!} \\
D M_{n}\left(e_{0} ; x\right) & =\frac{1}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) I_{n, k, 0}=\frac{I_{n, 0,0}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(1)_{k}}{k!}=1 \\
D M_{n}\left(e_{1} ; x\right) & =\frac{1}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) I_{n, k, 1}=\frac{I_{n, 0,1}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(2)_{k}}{k!} \\
& =\frac{I_{n, 0,1}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(k+1)!}{k!}=\frac{I_{n, 0,1}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x)(k+1) \\
& =\frac{n I_{n, 0,1}}{I_{n, 0,0}}\left(M_{n}\left(e_{1} ; x\right)+\frac{1}{n}\right)=\frac{n I_{n, 0,1}}{I_{n, 0,0}}\left(-\frac{\Phi_{n}^{\prime}(0)}{n} x+\frac{1}{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
D M_{n}\left(e_{2} ; x\right) & =\frac{1}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) I_{n, k, 2}=\frac{I_{n, 0,2}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(3)_{k}}{k!} \\
& =\frac{I_{n, 0,2}}{2 I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(k+2)!}{k!} \\
& =\frac{n^{2} I_{n, 0,2}}{2 I_{n, 0,0}}\left(M_{n}\left(e_{2} ; x\right)+\frac{3}{n} M_{n}\left(e_{1} ; x\right)+\frac{2}{n^{2}}\right) \\
& =\frac{n^{2} I_{n, 0,2}}{2 I_{n, 0,0}}\left(\frac{\Phi_{n}^{\prime \prime}(0) x^{2}-\Phi_{n}^{\prime}(0) x}{n^{2}}-\frac{3 \Phi_{n}^{\prime}(0) x}{n^{2}}+\frac{2}{n^{2}}\right) .
\end{aligned}
$$

Because $D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)=D M_{n}\left(e_{2} ; x\right)-2 x D M_{n}\left(e_{1} ; x\right)+x^{2} D M_{n}\left(e_{0} ; x\right)$ is easy to obtain the relation of enunciation.

Lemma 2.3. Let

$$
\begin{equation*}
\overline{D M_{n}}(f ; x)=D M_{n}(f ; x)-f\left(\frac{n I_{n, 0,1}}{I_{n, 0,0}}\left(\frac{1}{n}-\frac{\Phi_{n}^{\prime}(0)}{n} x\right)\right)+f(x) \tag{2.5}
\end{equation*}
$$

The following assertions hold:

$$
\begin{aligned}
\overline{D M_{n}}\left(e_{0} ; x\right) & =1, \\
\overline{D M_{n}}\left(e_{1} ; x\right) & =x, \\
\overline{D M_{n}}\left(e_{1}-x e_{0} ; x\right) & =0 .
\end{aligned}
$$

The proof suppose an easy computation, so we have omitted them.
Further, we consider the next conventions:

$$
\begin{align*}
\left|D M_{n}\left(e_{1}-x e_{0} ; x\right)\right|= & \left|\frac{I_{n, 0,1}}{I_{n, 0,0}}\left(1-x \Phi_{n}^{\prime}(0)\right)-x\right|:=\lambda_{n}(x),  \tag{2.6}\\
D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)= & x^{2}\left(\frac{I_{n, 0,2}}{2 I_{n, 0,0}} \Phi_{n}^{\prime \prime}(0)+2 \frac{I_{n, 0,1}}{I_{n, 0,0}} \Phi_{n}^{\prime}(0)+1\right) \\
& -2 x\left(\frac{I_{n, 0,2}}{I_{n, 0,0}} \Phi_{n}^{\prime}(0)+\frac{I_{n, 0,1}}{I_{n, 0,0}}\right)+\frac{I_{n, 0,2}}{I_{n, 0,0}} \\
= & \beta_{n}(x) . \tag{2.7}
\end{align*}
$$

From (1.1) we have $\Phi_{n}(x) \geq 0, \Phi_{n}^{\prime}(x) \leq 0, \Phi_{n}^{\prime \prime}(x) \geq 0, x \in \mathbb{R}_{+}$and so

$$
\begin{equation*}
\beta_{n}(x) \leq x^{2}\left(\frac{I_{n, 0,2}}{I_{n, 0,0}} \Phi_{n}^{\prime \prime}(0)+1\right)-2 x \frac{I_{n, 0,2}}{I_{n, 0,0}} \Phi_{n}^{\prime}(0)+\frac{I_{n, 0,2}}{I_{n, 0,0}}:=\eta_{n}(x) . \tag{2.8}
\end{equation*}
$$

Because $D M_{n}$ is a linear positive operator, using the Cauchy-Schwarz's inequality we have

$$
\begin{aligned}
\lambda_{n}(x) & =\left|D M_{n}\left(e_{1}-x e_{0} ; x\right)\right| \leq D M_{n}\left(\left|e_{1}-x e_{0}\right| ; x\right) \\
& \leq \sqrt{D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)}=\sqrt{\beta_{n}(x)} .
\end{aligned}
$$

Let

$$
\begin{equation*}
\gamma_{n}(x)=\beta_{n}(x)+\lambda_{n}^{2}(x) \leq 2 \beta_{n}(x) . \tag{2.9}
\end{equation*}
$$

Lemma 2.4. For every $x \in \mathbb{R}_{+}$and $f^{\prime \prime} \in C_{B}\left(\mathbb{R}_{+}\right)$we have

$$
\left|\overline{D M_{n}}(f ; x)-f(x)\right| \leq \frac{\left\|f^{\prime \prime}\right\|_{B}}{2} \gamma_{n}(x)
$$

Proof. Using Taylor's expansion

$$
f(t)=f(x)+(t-x) f^{\prime}(x)+\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u
$$

we obtain with Lemma 2.3 that

$$
\overline{D M_{n}}(f ; x)-f(x)=\overline{D M_{n}}\left(\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u ; x\right)
$$

Because $\left|\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u\right| \leq\left\|f^{\prime \prime}\right\|_{B} \frac{(t-x)^{2}}{2}$ using Lemma 2.2 we get

$$
\begin{gathered}
\left|\overline{D M_{n}}(f ; x)-f(x)\right| \leq D M_{n}\left(\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u ; x\right) \\
\frac{I_{n, 0,2}}{I_{n, 0,0}}\left(1-x \Phi_{n}^{\prime}(0)\right) \\
-\int_{x}\left(\frac{I_{n, 0,1}}{I_{n, 0,0}}\left(1-x \Phi_{n}^{\prime}(0)\right)-u\right) f^{\prime \prime}(u) d u \\
\leq \frac{\left\|f^{\prime \prime}\right\|_{B}}{2} D M_{n}\left((t-x)^{2} ; x\right)+\frac{\left\|f^{\prime \prime}\right\|_{B}}{2}\left(\frac{I_{n, 0,1}}{I_{n, 0,0}}\left(1-x \Phi_{n}^{\prime}(0)\right)-x\right)^{2} \\
\leq \frac{\left\|f^{\prime \prime}\right\|_{B}}{2}\left(\beta_{n}(x)+\lambda_{n}^{2}(x)\right) .
\end{gathered}
$$

Theorem 2.5. For every $x \in \mathbb{R}_{+}$and $f \in C_{B}\left(\mathbb{R}_{+}\right)$the operators (2.1)-(2.2) satisfy the following relations
(i) If $\lim _{n \rightarrow \infty} \frac{n^{r} I_{n, 0, r}}{r!I_{n, 0,0}}=1, r=0,1,2$, then $\lim _{n \rightarrow \infty} D M_{n}(f ; x)=f(x)$,
(ii) $\left|D M_{n}(f ; x)-f(x)\right| \leq 2 \omega\left(f, \sqrt{\beta_{n}(x)}\right)$,
(iii) $\left|D M_{n}(f ; x)-f(x)\right| \leq 2 C \omega_{2}\left(f, \sqrt{\gamma_{n}(x)}\right)+\omega\left(f, \lambda_{n}(x)\right)$.
with $\lambda_{n}(x), \beta_{n}(x), \eta_{n}(x), \gamma_{n}(x)$ defined as (2.6), (2.7), (2.8), (2.9).
Proof. (i) Because $\lim _{n \rightarrow \infty} \frac{\Phi_{n}^{(k)}(0)}{n^{k}}=\lim _{n \rightarrow \infty} \frac{(-1)^{k} \alpha_{n, k}(0)}{n^{k}}=(-1)^{k}$ and $\lim _{n \rightarrow \infty} \frac{n^{r} I_{n, 0, r}}{r!I_{n, 0,0}}=$ $1, r=0,1,2$ using Lemma 2.2 we have $\lim _{n \rightarrow \infty} D M_{n}\left(e_{r} ; x\right)=e_{r}(x), r=0,1,2$ and the Bohmann-Korovkin assure the conclusion (i) of the theorem.
(ii) Using a result of O. Shisha, B. Mond [7] with the modulus of continuity of $f$ we obtain a quantitative estimation of the remainder of the approximation formula. Indeed,

$$
\left|D M_{n}(f ; x)-f(x)\right| \leq\left(1+\delta_{n}^{-1}(x) \sqrt{D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)}\right) \omega\left(f, \delta_{n}(x)\right)
$$

Taking

$$
\begin{gathered}
\delta_{n}(x)=\sqrt{\beta_{n}(x)}=\sqrt{D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)} \\
=\left\{\frac{I_{n, 0,2}}{2 I_{n, 0,0}}\left(x^{2} \Phi_{n}^{\prime \prime}(0)-4 x \Phi_{n}^{\prime}(0)+2\right)-2 x \frac{I_{n, 0,1}}{I_{n, 0,0}}\left(1-x \Phi_{n}^{\prime}(0)\right)+x^{2}\right\}^{\frac{1}{2}}
\end{gathered}
$$

the proof of (ii) is completed.
(iii) From (2.5) we obtain for $g \in W_{\infty}^{2}$

$$
\begin{aligned}
& \left|D M_{n}(f ; x)-f(x)\right| \\
& \leq\left|\overline{D M_{n}}(f-g ; x)-(f-g)(x)+\overline{D M_{n}}(g ; x)-g(x)\right| \\
& +\left|f\left(\frac{n I_{n, 0,1}}{I_{n, 0,0}}\left(\frac{1}{n}-\frac{\Phi_{n}^{\prime}(0)}{n} x\right)\right)-f(x)\right| \\
& \leq 2\|f-g\|_{B}+\frac{\left\|g^{\prime \prime}\right\|_{B} \gamma_{n}(x)}{2} \\
& +\left|f\left(\frac{n I_{n, 0,1}}{I_{n, 0,0}}\left(\frac{1}{n}-\frac{\Phi_{n}^{\prime}(0)}{n} x\right)\right)-f(x)\right| \\
& \leq 2\|f-g\|_{B}+\frac{\left\|g^{\prime \prime}\right\|_{B} \gamma_{n}(x)}{2}+\omega\left(f, \lambda_{n}(x)\right)
\end{aligned}
$$

Taking infimum over $g \in W_{\infty}^{2}$ on the right hand side, we get

$$
\begin{aligned}
& \left|D M_{n}(f ; x)-f(x)\right| \leq 2 K_{2}\left(f, \gamma_{n}(x)\right)+\omega\left(f, \lambda_{n}(x)\right) \\
& \quad \leq 2 C \omega_{2}\left(f, \sqrt{\gamma_{n}(x)}\right)+\omega\left(f, \lambda_{n}(x)\right)
\end{aligned}
$$

Theorem 2.6. Let $f \in C_{\rho}\left(\mathbb{R}_{+}\right)$and $\omega_{[0, b+1]}(f ; \delta)$ be its modulus of continuity on the finite interval $[0, b+1], b>0$. Then

$$
\left\|D M_{n}(f)-f\right\|_{C[0, b]} \leq 3 N_{f} \eta_{n}(b)(1+b)^{2}+2 \omega_{[0, b+1]}\left(f, \sqrt{\eta_{n}(b)}\right)
$$

with $\eta_{n}(x)$ defined as (2.8).
Proof. Let $x \in \mathbb{R}_{+}$and $t>b+1$ Because $f \in C_{\rho}\left(\mathbb{R}_{+}\right)$using the growth condition of $f$ since $t-x>1$ we have

$$
\begin{aligned}
|f(t)-f(x)| & \leq N_{f}\left(2+t^{2}+x^{2}\right) \leq N_{f}\left(2+(t-x+x)^{2}+x^{2}\right) \\
& \leq 3 N_{f}(t-x)^{2}(1+b)^{2}
\end{aligned}
$$

For $x \in \mathbb{R}_{+}, \delta>0$ and $t<b+1$ we have

$$
|f(t)-f(x)| \leq\left(1+\frac{|t-x|}{\delta}\right) \omega_{[0, b+1]}(f, \delta)
$$

So,

$$
|f(t)-f(x)| \leq 3 N_{f}(t-x)^{2}(1+b)^{2}+\left(1+\frac{|t-x|}{\delta}\right) \omega_{[0, b+1]}(f, \delta)
$$

and with (2.8) we obtain

$$
\begin{gathered}
\left|D M_{n}(f ; x)-f(x)\right| \leq 3 N_{f} D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)(1+b)^{2} \\
+\left(1+\frac{D M_{n}\left(\left|e_{1}-x e_{0}\right| ; x\right)}{\delta}\right) \omega_{[0, b+1]}(f, \delta) \\
\quad \leq 3 N_{f} D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)(1+b)^{2} \\
+\left(1+\frac{\sqrt{D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)}}{\delta}\right) \omega_{[0, b+1]}(f, \delta) \\
\leq 3 N_{f} \eta_{n}(b)(1+b)^{2}+\left(1+\frac{\sqrt{\eta_{n}(b)}}{\delta}\right) \omega_{[0, b+1]}(f, \delta) \\
\leq 3 N_{f} \eta_{n}(b)(1+b)^{2}+2 \omega_{[0, b+1]}\left(f, \sqrt{\eta_{n}(b)}\right) .
\end{gathered}
$$

## References

[1] Agratini, O., Della Vecchia, B., Mastroianni operators revisited, Facta Universitatis (Nis), Ser. Math. Inform., 19(2004), 53-63.
[2] Govil, N. K., Gupta, V., Soybas, D., Certain new classes of Durrmeyer type operators, Applied Mathematics and Computation, 225(2013), 195-203.
[3] Gupta, V., Combinations of integral operators, Applied Mathematics and Computation, 224(2013), 876-881.
[4] Gupta, V., A new class of Durrmeyer operators, Advanced Studies in Contemporary Mathematics, 23(2013), no. 2, 219-224.
[5] Mastroianni, G., Su un operatore lineare e positivo, Rend. Acc. Sc. Fis. Mat., Napoli, 46(4)(1979), 161-176.
[6] Mastroianni, G., Su una classe di operatori e positivi, Rend. Acc. Sc. Fis. Mat., Napoli, 48(4)(1980), 217-235.
[7] Shisha, O., Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60(1968), 1196-1200.
[8] Srivastava, H. M., Gupta, V., A Certain Family of Summation-Integral Type Operators, Matematical and Computer Modelling, 37(2003), 1307-1315.
[9] De Vore, R.A., Lorentz, G.G., Constructive Approximation, Springer, Berlin, 1993.

## Cristina Sanda Cismasiu

Transilvania University of Brasov
Faculty of Mathematics and Computer Sciences
B-dul Eroilor nr. 29
500036 Brasov, Romania
e-mail: c.cismasiu@unitbv.ro


[^0]:    This paper was presented at the third edition of the International Conference on Numerical Analysis and Approximation Theory (NAAT 2014), Cluj-Napoca, Romania, September 17-20, 2014.

