On the unbounded divergence of interpolatory product quadrature rules on Jacobi nodes

Alexandru I. Mitrea

Abstract

This paper is devoted to prove the unbounded divergence on superdense sets, with respect to product quadrature formulas of interpolatory type on Jacobi nodes.

Mathematics Subject Classification (2010): 41A10, 41A55, 65D32.
Keywords: Product quadrature formulas, superdense sets, condensation of singularities.

1. Introduction

Let μ be the Lebesgue measure on the interval $[-1,1]$ of \mathbb{R} and let denote by L_{1} the Banach space of all measurable functions (equivalence classes of functions with respect to the equality μ-a.e.) $g:[-1,1] \rightarrow \mathbb{R}$, such that $|g|$ is Lebesgue integrable on the interval $[-1,1]$, endowed with the norm $\|g\|_{1}=\int_{-1}^{1}|g(x)| d x, g \in L_{1}$. Analogously, L_{∞} is the Banach space of all measurable functions (equivalence classes of functions with respect to the equality $\mu-$ a.e) $g:[-1,1] \rightarrow \mathbb{R}$, normed by $\|g\|_{\infty}=\operatorname{ess} \sup |g|$.

Given a nonnegative function $\rho \in L_{\infty}$ such that $\rho(x)>0 \mu$-a.e. on [-1, 1], let consider, in accordance with [8], [9], the Banach space $\left(L_{1}^{(1 / \rho)},\|\cdot\|_{1}^{(1 / \rho)}\right)$, where $L_{1}^{(1 / \rho)}$ is the set of all measurable functions (classes of functions) $g:[-1,1] \rightarrow \mathbb{R}$ for which $g / \rho \in L_{1}$ and $\|g\|^{(1 / \rho)}=\|g / \rho\|_{1}$.

Further, let denote by $(C,\|\mid\|)$ the Banach space of all continuous functions $f:[-1,1] \rightarrow \mathbb{R}$, where $\|$.$\| stands for the uniform (supremum) norm, and let consider$ the Banach space $\left(C^{s},\|.\| \|_{s}\right)$ of all functions $f:[-1,1] \rightarrow \mathbb{R}$, that are continuous together with their derivatives up to the order $s \geq 1$, endowed with the norm

$$
\|f\|_{s}=\sum_{r=0}^{s-1}\left|f^{(r)}(0)\right|+\left\|f^{(s)}\right\|
$$

we admit $f^{(0)}=f$ and $C^{0}=C$.
For each integer $n \geq 1$, let denote by $x_{n}^{k}=\cos \theta_{n}^{k}, 1 \leq k \leq n, 0<\theta_{n}^{1}<\theta_{n}^{2}<$ $\ldots<\theta_{n}^{n}<\pi$, the zeros of the Jacobi polynomial $P_{n}^{(\alpha, \beta)}$, with $\alpha>-1$ and $\beta>-1$, referred to as Jacobi nodes.

We specify, also, the usual notations

$$
\left(L_{n} f\right)(x)=\sum_{k=1}^{n} f\left(x_{n}^{k}\right) l_{n}^{k}(x),|x| \leq 1
$$

and

$$
\Lambda_{n}(x)=\sum_{k=1}^{n}\left|l_{n}^{k}(x)\right| ;|x| \leq 1, n \geq 1
$$

denoting the Lagrange polynomials which interpolate a function $f:[-1,1] \rightarrow \mathbb{R}$ at the Jacobi nodes, and the Lebesgue functions associated to the Jacobi nodes, respectively.

In this paper, we deal with product-quadrature formulas of interpolatory type, as follows:

$$
\begin{equation*}
I(f ; g)=I_{n}(f ; g)+R_{n}(f ; g), n \geq 1, f \in C, g \in L_{1}^{(1 / \rho)} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
I: C \times L_{1}^{(1 / \rho)} \longrightarrow \mathbb{R} I(f ; g)=\int_{-1}^{1} f(x) g(x) d x \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{n}(f ; g)=\int_{-1}^{1}\left(L_{n} f\right)(x) g(x) d x, n \geq 1 ; f \in C, g \in L_{1}^{(1 / \rho)} \tag{1.3}
\end{equation*}
$$

Numerous papers have studied the convergence of the product quadrature formulas of type (1.1), involving Jacobi, Gauss-Kronrod or equidistant nodes and various functions $g \in L_{1}$ (i.e. $\rho(x)=1, \forall x \in[-1,1]$), [1, Ch. 5], [3], [4], [5], [7], [8], [9]. Regarding the divergence of these formulas, I.H.Sloan and W.E.Smith, [9, Th.7, ii] proved the following statement in the case of Jacobi nodes:

If $\alpha>-1, \beta>-1$ and $\rho(x)=(1-x)^{\max \{0,(2 \alpha+1) / 4\}}(1+x)^{\max \{0,(2 \beta+1) / 4\}}$, then there exist a function $f_{0} \in C$ and a function $g_{0} \in L_{1}^{(1 / \rho)}$ so that the sequence $I_{n}\left(f_{0}, g_{0}\right): n \geq 1$ is not convergent to $I\left(f_{0}, g_{0}\right)$.

In fact, the divergence phenomenon holds on large subsets of $L_{1}^{(1 / \rho)}$ and C, in topological sense. More exactly, the following assertion is a particular case of [6, Theorem 3.2]:

Suppose that $\mu\{x \in[-1,1]: \rho(x)>0\}>0$. Then, there exists a superdense set X_{0} in the Banach space $L_{1}^{(1 / \rho)}$ such that for every g in X_{0} the subset of C consisting of all functions f for which the product integration rules (1.1) unboundedly diverge, namely

$$
Y_{0}(g)=\left\{f \in C: \sup \left\{\left|\int_{-1}^{1}\left(L_{n} f\right)(x) g(x) d x\right| ; n \geq 1\right\}=\infty\right\}
$$

is superdense in the Banach space C.
We recall that a subset S of the topological space T is said to be superdense in T if it is residual (namely its complement is of first Baire category), uncountable and dense in T.

The aim of this paper is to highlight the phenomenon of double condensation of singularities for the product quadratures formulas (1.1) in the case of the Banach spaces $\left(C^{s},\|\cdot\| \|_{s}\right), s \geq 1$. If $\rho(x)=1, \forall x \in[-1,1]$, and $\alpha=\beta=2$, this property was emphasized in [5, Th.3], for $s=1$ and $s=2$. In the next section, we point out the double superdense unbounded divergence of the formulas (1.1) for $\alpha>-1, \beta>-1$ and $s \geq 1$ satisfying the inequality $s<\alpha+1 / 2$ or $s<\beta+1 / 2$ and more general conditions regarding the function ρ.

In what follows, we denote by $m, M, M_{k}, k \geq 1$, some generic positive constants which are independent of any positive integer n and we use the notation $a_{n} \sim b_{n}$ if the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ satisfy the inequalities $0<m \leq\left|a_{n} / b_{n}\right| \leq M$.

2. The unbounded divergence of the product quadrature formulas (1.1)

Let $T_{n} f: C^{s} \rightarrow\left(L_{1}^{(1 / \rho)}\right)^{*}$, be the continuous linear operators given by $T_{n} f:$ $L_{1}^{(1 / \rho)} \rightarrow \mathbb{R}, f \in C^{s}$ and $\left(T_{n} f\right)(g)=\int_{-1}^{1} g(x)\left(L_{n} f\right)(x) d x, g \in L_{1}^{(1 / \rho)} n \geq 1$, where $\left(L_{1}^{(1 / \rho)}\right)^{*}$ is the Banach space of all continuous linear functionals defined on $L_{1}^{(1 / \rho)}$.

By standard reasoning, via the Theorem of Riesz concerning the representation of continuous linear functionals, we get:

$$
\begin{equation*}
\left\|T_{n}\right\|=\sup \left\{\left\|\rho L_{n} f\right\|_{\infty}: f \in C^{s},\|f\|_{s} \leq 1\right\} \tag{2.1}
\end{equation*}
$$

Now, we are in the position to state the following divergence result:
Theorem 2.1. Suppose that the integer $s \geq 0$ and the real numbers $A>0, a \in(0,1)$, $\alpha>-1, \beta>-1$ satisfy at least one of the following conditions:
(i) $s<\alpha+1 / 2$ and $\rho(x) \geq A$, for $x \in(a, 1)$;
(ii) $s<\alpha+1 / 2$ and $\rho(1)>0$;
(iii) $s<\beta+1 / 2$ and $\rho(x) \geq A$, for $x \in(-1,-a)$;
(iv) $s<\beta+1 / 2$ and $\rho(-1)>0$.

Then, there exists a superdense set X_{0} in the Banach space $L_{1}^{(1 / \rho)}$, such that for every g in X_{0} the subset of C^{s} consisting of all functions f for which the product integration rules (1.1) unboundedly diverge, namely

$$
Y_{0}(g)=\left\{f \in C^{s}: \sup \left\{\left|\int_{-1}^{1}\left(L_{n} f\right)(x) g(x) d x\right| ; n \geq 1\right\}=\infty\right\}
$$

is superdense in the Banach space C^{s}.
Proof. For each integer $n \geq 2$, let us define the numbers $\delta_{n}^{k}, 1 \leq k \leq n$, and δ_{n} as follows: $3 \delta_{n}^{k}=\min \left\{x_{n}^{k-1}-x_{n}^{k}, x_{n}^{k}-x_{n}^{k+1}\right\}, 1 \leq k \leq n$, with $x_{n}^{0}=1, x_{n}^{n+1}=-1$, and $\delta_{n}=\max \left\{\delta_{n}^{k}, 1 \leq k \leq n\right\}$.

In analogy with [5, Th.2.3], we obtain:

$$
\begin{equation*}
\left\|T_{n}\right\| \geq M_{1} \frac{\rho\left(\tau_{n}\right)}{\left(\delta_{n}\right)^{s+2}} \sum_{k=1}^{n}\left(\delta_{n}^{k}\right)^{2 s+2}\left|l_{n}^{k}\left(\tau_{n}\right)\right| \tag{2.2}
\end{equation*}
$$

where τ_{n} is an arbitrary number of $[-1,1]$.

For the beginning, let us suppose that the hypothesis (i) of this theorem is satisfied. The estimate $\sin \theta_{n}^{k} \sim k / n,[7]$, implies

$$
\begin{equation*}
\theta_{n}^{k} \sim k / n \tag{2.3}
\end{equation*}
$$

The relations $P_{n}^{(\alpha, \beta)}\left(x_{n}^{1}\right)=0$ and $P_{n}^{(\alpha, \beta)}(1) \sim n^{\alpha},[10]$, lead to the existence of a point τ_{n} so that

$$
\begin{equation*}
\tau_{n} \in\left(x_{n}^{1}, 1\right) ; P_{n}^{(\alpha, \beta)}\left(\tau_{n}\right)=(1 / 2) P_{n}^{(\alpha, \beta)}(1) \sim n^{\alpha} \tag{2.4}
\end{equation*}
$$

Now, let us estimate $\delta_{n}^{k}, \delta_{n}$ and $\left|l_{n}^{k}\left(\tau_{n}\right)\right|$.
The estimates $\theta_{n}^{k}-\theta_{n}^{k-1} \sim 1 / n, \sin \theta_{n}^{k} \sim k / n$ and $\theta \sim \theta_{n}^{k}$, if $\theta_{n}^{k-1} \leq \theta \leq \theta_{n}^{k}, \quad[7]$, combined with $x_{n}^{k-1}-x_{n}^{k}=2 \sin \left(\theta_{n}^{k}-\theta_{n}^{k-1}\right) / 2 \sin \left(\theta_{n}^{k}+\theta_{n}^{k+1}\right) / 2$, yield:

$$
\begin{equation*}
\delta_{n}^{k} \sim k / n^{2}, 1 \leq k \leq n ; \delta_{n} \sim 1 / n \tag{2.5}
\end{equation*}
$$

The relation $\tau_{n} \in\left(x_{n}^{1}, 1\right)$ of (2.4), together with (2.3) and $x_{n}^{1} \geq x_{n}^{k}, 1 \leq k \leq n$, gives $\left|\tau_{n}-x_{n}^{k}\right|=\tau_{n}-x_{n}^{k} \leq 1-x_{n}^{k}=2 \sin ^{2}\left(\theta_{n}^{k} / 2\right) \sim k^{2} / n^{2}$, namely

$$
\begin{equation*}
\left|\tau_{n}-x_{n}^{k}\right| \leq M_{2} k^{2} / n^{2}, 1 \leq k \leq n \tag{2.6}
\end{equation*}
$$

Now, by combining the inequality (2.6) with the estimates (2.4) and $\left|\left(P_{n}^{(\alpha, \beta)}\left(x_{n}^{k}\right)\right)^{\prime}\right| \sim$ $n^{\alpha+2} k^{-\alpha-3 / 2}$, if $0<\theta_{n}^{k}<\pi / 2$, [10], we get:

$$
\begin{equation*}
\left|l_{n}^{k}\left(\tau_{n}\right)\right|=\left|P_{n}^{(\alpha, \beta)}\left(\tau_{n}\right)\right|\left|\tau_{n}-x_{n}^{k}\right|^{-1}\left|\left(P_{n}^{(\alpha, \beta)}\left(x_{n}^{k}\right)\right)^{\prime}\right|^{-1} \geq M_{2} k^{\alpha-1 / 2} \tag{2.7}
\end{equation*}
$$

Further, the relation (2.3) with $k=1$, together with (2.4), implies $\tau_{n} \in(a, 1)$, for n sufficiently large, which leads to:

$$
\begin{equation*}
\rho\left(\tau_{n}\right) \geq A>0 \tag{2.8}
\end{equation*}
$$

Finally, the relations $(2.2),(2.4),(2.7)$ and (2.8) provide the inequality

$$
\begin{equation*}
\left\|T_{n}\right\| \geq M_{4} n^{\alpha+1 / 2-s} \tag{2.9}
\end{equation*}
$$

for n sufficiently large. Secondly, if the condition (ii) is fulfilled, we proceed in a similar manner, taking $\tau_{n}=1$ in (2.2) and obtaining the unboundedness of the set of norms $\left\{\left\|T_{n}\right\|: n \geq 1\right\}$ from an analogous inequality of (2.9). Also, it is easily seen that the hypotheses (iii) and (iv) lead to an inequality of type (2.9), namely:

$$
\begin{equation*}
\left\|T_{n}\right\| \geq M_{4} n^{\beta+1 / 2-s} \tag{2.10}
\end{equation*}
$$

for n sufficiently large.
To complete the proof, we apply, in a standard manner, firstly the principle of condensation of singularities, [2,Th.5.4], and the relations (2.9) and (2.10), in order to conclude that the set of unbounded divergence of the family $\left\{T_{n}: n \geq 1\right\}$ is superdense in the Banach spaces $\left(C^{s},\|.\|_{s}\right)$ and secondly, based on this result, the principle of double condensation of singularities, [2, Th.5.2], to provide the conclusion of this theorem.

References

[1] Brass, H., Petras, K., Quadrature Theory. The theory of Numerical Integration on a Compact Interval, Amer. Math. Soc., Providence, Rhode Island, 2011.
[2] Cobzaş, S., Muntean, I., Condensation of Singularities and Divergence Results in Approximation Theory, J. Approx. Theory, 31(1981), 138-153.
[3] de la Calle Ysern, B., Peherstorfer, F., Ultraspherical Stieltjes Polynomials and GaussKronrod Quadrature behave nicely for $\lambda<0$, SIAM J. Numer. Anal., 45(2007), 770-786.
[4] Ehrich, S., On product integration with Gauss-Kronrod nodes, SIAM J. Numer. Anal., $\mathbf{3 5}$ (1998), 78-92.
[5] Mitrea, A.I., On the topological structure of the set of singularities for interpolatory product integration rules, Carpat. J. Math., 30(2014), no. 3, 355-360.
[6] Mitrea, A.I., Double condensation of singularities for product-quadrature formulas with differentiable functions, Carpat. J. Math., 28(2012), no. 1, 83-91.
[7] Nevai, G.P., Mean convergence of Lagrange interpolation, I, J. Approx. Theory, 18(1976), 363-377.
[8] Rabinowitz, P., Smith, W.E., Interpolatory product integration for Riemann-integrable functions, J. Austral. Math. Soc. Ser. B, 29(1987), 195-202.
[9] Sloan, I.H., Smith, W.E., Properties of interpolatory product integration rules, SIAM J. Numer. Anal., 19(1982), 427-442.
[10] Szegö, G., Orthogonal Polynomials, Amer. Math. Soc. Providence, 1975.

Alexandru I. Mitrea
Technical University of Cluj-Napoca
Department of Mathematics
25, Baritiu Street
400027 Cluj-Napoca, Romania
e-mail: Alexandru.Ioan.Mitrea@math.utcluj.ro

