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Construction and applications of Gaussian
quadratures with nonclassical and exotic
weight functions

Gradimir V. Milovanović

Abstract. In 1814 Carl Friedrich Gauß (1777–1855) developed his famous method
of numerical integration which dramatically improves the earlier method of Isaac
Newton (1643–1727) from 1676. Beside the some historical details in this survey,
a formulation of this classical theory in modern terminology using theory of or-
thogonlity on real line, as well as the characterization, existence and uniqueness
of these formulas, are presented. A special attention is devoted to the algorithms
for constructing such quadrature formulas for nonclassical weight functions, their
numerical stability and the corresponding software. Finally, some recent progress
in this subject, as well as new important applications of these methods in several
different directions (distributions in statistics and physics, summation of slowly
convergent series, etc.) are presented.
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1. Introduction

Let Pn be the set of all algebraic polynomials of degree at most n, P be the set
of all algebraic polynomials, and dµ be a finite positive Borel measure on the real line
R such that its support supp( dµ) is an infinite set, and all its moments µk =

∫

R
tk dµ,

k = 0, 1, . . ., exist and are finite.
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The n-point quadrature formula
∫

R

f(t) dµ(t) =
n
∑

k=1

Akf(τk) +Rn(f), (1.1)

which is exact on the set P2n−1 (Rn(P2n−1) = 0) is known as the Gauss-Christofell
quadrature formula (cf. [10, p. 29], [14, p. 324]). It is a quadrature formula of the
maximal algebraic degree of exactness dmax = 2n− 1. First formula of this type

∫ 1

0

f(t) dt =

n
∑

k=1

Akf(τk) +Rn(f), (1.2)

was descovered by Carl Friedrich Gauss two centuries ago.
In this survey paper we give an account on this kind of quadrature rules and

several their new applications. The paper is organized as follows. Starting with the
famous idea of Gauss and some historical details, in Section 2 we give its formulation
in modern terminology and a connection with orthogonal polynomials. Section 3 is
devoted to constructive theory of orthogonal polynomials. Numerical construction of
Gaussian quadratures with respect to strong non-classical weights and some exotic
weight functions, as well as several applications of such rules in approximation theory,
statistics, and summation of slowly convergent series are studied in Section 4. Special
attention is paid to available software, which is based on recent progress in symbolic
computation and variable precision arithmetic.

2. Two centuries of Gaussian rules

After Newton formula of numerical integration from 1676 (known as Newton-
Cotes rules),

∫ b

a

f(t) dt ≈ Qn(f) =
n
∑

k=1

Akf(τk), (2.1)

obtained by an integration of the corresponding interpolation polynomal of f(t) at
n different fixed points (nodes), τ1, . . ., τn (usually selected equidistantly on [a, b]),
Gauss in 1814 developed his famous method [4]1, which dramatically improves the
previous Newton method. While Newton-Cotes formula exact only for polynomials of
degree at most n− 1, Gauss’ question was what is the maximum degree of exactness
that can be achieved in (2.1) (i.e., in (1.2) supposing that [a, b] = [0, 1]) if the nodes
τ1, . . ., τn are free.

Since in the quadrature sum

Qn(f) =

n
∑

k=1

Akf(τk)

there are 2n unknowns parameters: τk, Ak, k = 1, . . . , n, Gauss started with the con-
jecture that the quadrature formula (1.2) could be exact for all algebraic polynomials
of degree at most 2n− 1. Starting from the work of Newton and Cotes and using only

1Gauss submitted his manuscript on September 16, 1814.
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his own result on continued fractions associated with hypergeometric series, Gauss
proved this result. It is interesting to mention that Gauss determined numerical val-
ues of quadrature parameters, the nodes τk and the weights Ak, k = 1, . . . , n, for
all n ≤ 7, with almost 16 significant decimal digits2. This discovery was the most
significant event of the 19th century in the field of numerical integration and perhaps
in all of numerical analysis.

An elegant alternative derivation of these formulas was provided by Jacobi [13],
and furher contributions by Mehler, Radau, Heine, etc. A significant generalization
to arbitrary measures was given by Christoffel (see a nice survey of Gauss-Christoffel
quadrature formulae written by Gautschi [6]). The error term and convergence were
proved by Markov and Stieltjes, respectively. It was only in 1928 Uspensky gave the
first proof for the convergence of Gaussian formula on unbounded intervals with the
classical measures of Laguerre and Hermite.

As we mentioned in Section 1, these formulae with maximal degree of precision
are known today as the Gauss-Christoffel quadrature formulae.

In modern terminology, the formulation of this classical theory can be given in
the following form: Let dµ(t) is a positive measure on R with finite or unbounded
support, for which all moments µk =

∫

R
tk dµ(t) exist and are finite, and µ0 > 0.

Then, for each n ∈ N, there exists the n-point Gauss-Christoffel quadrature formula
(1.1) which is exact for all algebraic polynomials of degree ≤ 2n− 1, i.e., Rn(f) = 0
for each f ∈ P2n−1.

The Gauss–Christoffel quadrature formula (1.1) can be characterized as an in-
terpolatory formula for which its node polynomial ωn(t) =

∏n
k=1(t− τk) is orthogonal

to Pn−1 with respect to the inner product defined by

(p, q) =

∫

R

p(t)q(t) dµ(t) (p, q ∈ P). (2.2)

Therefore, orthogonal polynomials play an important role in the analysis and con-
struction of quadrature formulas of the maximal, or nearly maximal, algebraic degree
of exactness (cf. [10], [14], [9], [19]). The inner product (2.2) gives rise to a unique
system of monic orthogonal polynomials πk( · ) = πk( · ; dµ), such that

πk(t) ≡ πk( dµ; t) = tk + terms of lower degree, k = 0, 1, . . . , (2.3)

and

(πk, πn) = ||πn||2δkn =

{

0, n 6= k,

||πn||2, n = k.

The following theorem is due to Jacobi [13] (cf. [14, p. 297]).

Theorem 2.1. Given a positive integer m (≤ n), the quadrature formula (1.1) has
degree of exactness d = n− 1+m if and only if the following conditions are satisfied:

1◦ Formula (1.1) is interpolatory;
2◦ The node polynomial ωn(t) = (t− τ1) · · · (t− τn) satisfies

(∀p ∈ Pm−1) (p, ωn) =

∫

R

p(t)ωn(t) dµ(t) = 0.

2Otherwise, τk , k = 1, . . . , n, are zeros of the shifted Legendre polynomial Pn(2x − 1).
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According to this theorem, the n-point quadrature formula (1.1) with respect to
the positive measure dµ(t) has the maximal algebraic degree of exactness 2n− 1, i.e.,
m = n is optimal (ωn = πn). The higher m (> n) is impossible. Indeed, according to
2◦, the case m = n+ 1 requires the orthogonality (p, ωn) = 0 for all p ∈ Pn, which is
impossible when p = ωn.

The cases m = n − 1 and m = n − 2 lead to the Gauss-Radau (one of the
endpoints a or b is included in the set of nodes) and Gauss-Lobatto formulas (τ1 = a
and τn = b), respectively.

2.1. Fundamental three–term recurrence relation. Because of the property
(tp, q) = (p, tq) of the inner product (2.2), the monic orthogonal polynomials (2.3)
satisfy the three–term recurrence relation

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, 2 . . . , (2.4)

with π0(t) = 1 and π−1(t) = 0, where (αk) = (αk(dµ)) and (βk) = (βk(dµ)) are
sequences of recursion coefficients which depend on the measure dµ. The coefficient
β0 may be arbitrary, but is conveniently defined by β0 = µ0 =

∫

R
dµ(t).

There are many reasons way the coefficients αk and βk in the three–term recur-
rence relation (2.4) are fundamental quantities in the constructive theory of orthogonal
polynomials (for details see [7]).

First, αk and βk provide a compact way of representing and easily calculating
orthogonal polynomials, their derivatives, and their linear combinations, requiring
only a linear array of parameters.

The same recursion coefficients αk and βk appear in the Jacobi continued fraction
associated with the measure dµ,

F (z) =

∫

R

dµ(t)

z − t
∼

β0
z − α0−

β1
z − α1−

· · · ,

which is known as the Stieltjes transform of the measure dµ (for details see [10, p. 15],
[14, p. 114]). For the n-th convergent of this continued fraction, it is easy to see that

β0
z − α0−

β1
z − α1−

· · · βn−1

z − αn−1
=
σn(z)

πn(z)
, (2.5)

where σn are the so–called associated polynomials, defined by

σk(z) =

∫

R

πk(z)− πk(t)

z − t
dµ(t), k ≥ 0.

The associated polynomials satisfy the same fundamental relation (2.4), i.e.,

σk+1(z) = (z − αk)σk(z)− βkσk−1(z), k ≥ 0,

only with starting values σ0(z) = 0, σ−1(z) = −1.
The function of the second kind,

̺k(z) =

∫

R

πk(t)

z − t
dµ(t), k ≥ 0,

where z is outside the spectrum of dµ, also satisfy the same three–term recurrence re-
lation (2.4) and represent its minimal solution, normalized by ̺−1(z) = 1, as observed
by Gautschi in [5].
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It is easy to see that the rational function (2.5) has simple poles at the zeros
z = τn,k, k = 1, . . . , n, of the polynomial πn(t). If by λn,k we denote the corresponding
residues of σn(z)/πn(z) at these poles, i.e.,

λn,k = lim
z→τn,k

(z − τn,k)
σn(z)

πn(z)
=

1

π′
n(τn,k)

∫

R

πn(t)

t− τn,k
dµ(t), (2.6)

then for the continued fraction representation (2.5) we can get the following form

σn(z)

πn(z)
=

n
∑

k=1

λn,k
z − τn,k

.

As we can see, the coefficients λn,k are exactly the weight coefficients (Christoffel
numbers) in the Gauss–Christoffel quadrature formula (1.1) and they can be expressed
by the so–called Christoffel function λn( dµ; t) (cf. [14, Chapters 2 & 5]) in the form

Ak = λn( dµ; τk), k = 1, . . . , n,

and zeros of the polynomial πn(t) are the nodes of (1.1), i.e., τk = τn,k, k = 1, . . . , n.

3. Constructive theory of orthogonal polynomials and quadratures

A classical approach in construction of Gauss-Christoffel quadrature rules is
based on a computation of nodes by using Newton’s method and then a direct appli-
cation of some expressions derived from (2.6) for the weight coefficients (cf. Davis &
Rabinowitz [3]).

However, a characterization of the Gaussian formula via an eigenvalue problem
for one symmetric tridiagonal Jacobi matrix, of order n associated with the measure
dµ,

Jn( dµ) =



















α0

√
β1 O√

β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√

βn−1

O
√

βn−1 αn−1



















, (3.1)

has become the basis of current methods for generating Gaussian quadratures. The
most popular of them is the Golub-Welsch procedure, obtained by a simplification
of QR algorithm, so that beside all eigenvalues only the first components of the
eigenvectors are computed [12].

Theorem 3.1. The nodes τk in the Gauss-Christoffel quadrature rule (1.1) are eigen-
values of the Jacobi matrix Jn( dµ) given by (3.1). The weight coefficients Ak are
given by

Ak = λn,k = β0v
2
k,1, k = 1, . . . , n,

where β0 = µ0 =
∫

R
dµ(t) and vk,1 is the first component of the normalized eigenvector

vk (= [vk,1 . . . vk,n]
T) corresponding to the eigenvalue τk,

Jn( dµ)vk = τkvk, v
T
k vk = 1, k = 1, . . . , n.
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Therefore, if we know recursive coefficients αk and βk in the fundamental three-
term recurrence relation (2.4), the problem of construction Gaussian rules can be
easily solved by the Golub-Welsch procedure. This procedure is implemented in several
packages including the most known ORTPOL given by Gautschi [8].

Unfortunately, the recursion coefficients are known explicitly only for some nar-
row classes of orthogonal polynomials, e.g. they are known for the so-called very
classical orthogonal polynomials (Jacobi, the generalized Laguerre, and Hermite poly-
nomials). Orthogonal polynomials for which the recursion coefficients are not known
we call strongly non–classical polynomials. For these, if we know how to compute the
first n recursion coefficients αk and βk, k = 0, 1, . . . , n− 1, then we can compute all
orthogonal polynomials of degree at most n by a straightforward application of the
three–term recurrence relation (2.4), construct the corresponding Gauss–Christoffel
quadratures for any number of nodes less than or equal to n, etc.

An important progress for strongly non–classical measures was given by Walter
Gautschi. In [7] he started with an arbitrary positive measure dµ(t), which is given
explicitly or implicitly via moment information, and considered the actual (numerical)
construction of orthogonal polynomials as a basic computational problem: For a given
measure dµ and for given n ∈ N, generate the first coefficients αk( dµ) and βk( dµ),
k = 0, 1, . . . , n − 1. In about two dozen papers, Gautschi developed the so–called
constructive theory of orthogonal polynomials on R, including effective algorithms for
numerically generating orthogonal polynomials, a detailed stability analysis of such
algorithms, the corresponding software implementation, etc. (cf. [8], [9], [10], [20],
[21]).

Following [10] we mention here some basic facts in the constructive theory of
orthogonal polynomials and Gaussian quadratures. We consider two tasks:

(a) Construction of recursion coefficients αk, βk, k = 0, 1, . . . , n− 1;

(b) Construction of the Gauss-Christoffel quadrature (1.1), i.e.,

∫

R

f(t) dµ(t) =

n
∑

k=1

Akf(τk) +Rn(f). (3.2)

The first construction (a) is, in fact, a map, in notation Kn : R2n → R2n, of the
first 2n moments to 2n recursive coefficients,

µ = (µ0, µ1, . . . , µ2n−1) 7→ ρ = (α0, . . . , αn−1, β0, . . . , βn−1).

An important aspect in the numerical construction (a) is the sensitivity of this problem
with respect to small perturbation in the data, i.e., perturbations in the first 2n
moments µk, k = 0, 1, . . . , 2n− 1 (when we calculate coefficients for k ≤ n− 1).

There is a simple algorithm, due to Chebyshev, which transforms the moments to
desired recursion coefficients, but its viability is strictly dependent on the conditioning
of this mapping. Usually it is severely ill conditioned so that these calculatios via mo-
ments, in finite precision on a computer, are quite ineffective, especially for measures
on unbounded supports. The only salvation, in this case, is to either use symbolic
computation, which however requires special resources and often is not possible, or
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else to use the explicit form of the measure. In the latter case, an appropriate dis-
cretization of the measure and subsequent approximation of the recursion coefficients
is a viable alternative.

In his analysis, Gautschi introduced also another map Gn : R2n → R
2n, as a

map of moments into the parameters of the Gauss-Christoffel quadrature (3.2),

µ = (µ0, µ1, . . . , µ2n−1) 7→ γ = (A1, . . . , An, τ1, . . . , τn),

and represented it as a composition of two maps

Kn = Hn ◦Gn,

where Hn : R2n → R2n maps the Gaussian parameters into the recursion coefficients,
γ → ρ.

The map Hn, as well as its inverse map H
−1
n , are generally well-conditioned, and

the condition of Kn is more or less the same as the condition of Gn. Notice that an
implementation of the map H

−1
n can be done by the Golub-Welsch procedure.

The map Gn is usually ill-conditioned, i.e., its condition number is much larger
than one, condGn ≫ 1. If the condition number is of order 10m, it roughly means a
loss of m decimal digits in results when the input data are perturbed by one units in
the last digit. For example, if the working precision is d decimal digits, e.g., d = 16
and the condition number is 1014, then results will be accurate to about 16− 14 = 2
digits!

The (absolute) condition number of the map Gn is defined as a norm of the
Fréchet derivative of this map,

(condGn)(µ) =
∥

∥

∥

∂Gn(µ)

∂µ

∥

∥

∥
.

Otherwise, the Fréchet derivative is a linear transformation defined by the Jacobian
matrix.

In order to determine condGn, Gautschi introduced the inverse map of Gn as
Fn : R2n → R2n (γ = (A1, . . . , An, τ1, . . . , τn) → µ), defined by

µk =

n
∑

ν=1

Aντ
k
ν , k = 0, 1, . . . , 2n− 1. (3.3)

In fact, (3.3) is a system of 2n non-linear equations obtained from (3.2) by taking
f(t) = tk, k = 0, 1, . . . , 2n− 1, for which the remainder term Rn(f) is equal to zero.
It is clear that

∂Gn(µ)

∂µ
=















∂µ0

∂A1
· · · ∂µ0

∂An

∂µ0

∂τ1
· · · ∂µ0

∂τn
...

∂µ2n−1

∂A1
· · · ∂µ2n−1

∂An

∂µ2n−1

∂xτ1
· · · ∂µ2n−1

∂τn















= TΛ,
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where Λ = diag(1, . . . , 1, A1, . . . , An) and T is a confluent Vandermonde matrix

T =























1 · · · 1 0 · · · 0

τ1 · · · τn 1 · · · 1

τ21 · · · τ2n 2τ1 · · · 2τn

...

τ2n−1
1 · · · τ2n−1

n (2n− 1)τ2n−1
1 · · · (2n− 1)τ2n−1

n























.

Since

∂Gn

∂µ
=

(

∂Fn

∂γ

)−1

= Λ
−1

T
−1,

the following expression for calculating the condition number

(condGn)(µ) =
∥

∥Λ
−1

T
−1
∥

∥

holds. Several estimates of (condGn)(µ) and examples for different measures can be
found in [10]. As a rule, the conditional number grows exonentially fast with n (see
Fig. 1).

Suppose that we have a numerical method for realizing the mapping Gn in an
arithmetic with the working precision of d decimal digits. Then, the accuracy of results
(here, the recursion coefficients αk and βk) depends on the working precision, but also
on the condition number of this mapping. Roughly speaking, if we need the accuracy
of ℓ decimal digits in results for each k < n, then the condition number (condGn)
must be less than 10m, where m = d − ℓ. For example, among the methods (A),
(B), (C) (see Fig. 1), only the method (C) provides the required accuracy for a fixed
n = N .

Figure 1. The condition number condGn for three different meth-
ods of construction (A), (B) and (C)
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There are three basic procedures for generating the recursion coefficients: (1)
the method of (modified) moments, (2) the discretized Stieltjes–Gautschi procedure,
(3) the Lanczos algorithm, and they play the central role in the constructive theory
of orthogonal polynomials (cf. [7], [9], [10], [14]).

Recent progress in symbolic computation and variable-precision arithmetic now
makes it possible to generate the recurrence coefficients αk and βk directly by using the
original Chebyshev method of moments, but in a sufficiently high precision arithmetic,
i.e., we should take the working precision to be d = ℓ+m. Such an approach enables
us to overcome the numerical instability!

Respectively symbolic/variable-precision software for orthogonal polynomials
is available: Gautschi’s package SOPQ in Matlab and our Mathematica package
OrthogonalPolynomials (see [1] and [23]), which is downloadable from the web site
http://www.mi.sanu.ac.rs/~gvm/.

All that is required is a procedure for symbolic calculation of the moments or
their numerical calculation in variable-precision arithmetic. Details on applications
this package to construction of recursive coefficients and parameters of Gaussian for-
mulas will be done in the next section.

4. Construction of orthogonal polynomials and quadratures for some
non-classical weights

4.1. Some distributions in physics

Bose-Einstein and Fermi-Dirac weights on R+ are defined by

ε(t) =
t

et − 1
and ϕ(t) =

1

et + 1
, (4.1)

respectively. These functions and the corresponding quadratures are widely used in
solid state physics, e.g., the total energy of thermal vibration of a crystal lattice can

be expressed in the form
∫ +∞

0 f(t)ε(t) dt, where f(t) is related to the phonon density
of states. Integrals with ϕ(t) are encountered in the dynamics of electrons in metals.
Also, integrals of the previous type can be used for summation of slowly convergent
series (see Section 5).

The moments of the functions (4.1) can be exactly calculated in terms of Rie-
mann zeta function as

µk(ε) =

∫ +∞

0

tk+1

et − 1
dt = (k + 1)!ζ(k + 2), k ∈ N0,

and

µk(ϕ) =

∫ +∞

0

tk

et + 1
dt =

{

log 2, k = 0,

(1− 2−k)k!ζ(k + 1), k > 0,

respectively, and these moments are enough for constructing recursive coefficients in
the corresponding three-term recurrence relations for orthogonal polynomials with
respect to the weight functions (4.1).

For example, using our Mathematica package OrthogonalPolynomials (see
[1] and [23]) and executing the following commands (for Einstein’s weight):
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<< orthogonalPolynomials‘

mEin =Table[(k+1)! Zeta[k+2], {k,0,100}];

{alE, beE} = aChebyshevAlgorithm[mEin, WorkingPrecision->55];

{alE1,beE1}=aChebyshevAlgorithm[mEin, WorkingPrecision -> 80];

N[Max[Abs[alE/alE1-1], Abs[beE/beE1-1]],3]

we obtain the first 50 recurrence coefficients with the maximal relative error 3.31 ×
10−21, using the working precision of 55 decimal digits. Notice that for calculating
this maximal relative error in recursive coefficients we have to compute them with
some better precision (in this case we used 80 decimal digits).

Now, we can calculate Gaussian parameters (nodes and weights) for each n ≤ 50.
For example, for n = 10 we have:

PGQ[n_] :=aGaussianNodesWeights[n,alE,beE,WorkingPrecision->25,

Precision->20]

{n10, w10} = N[PGQ[10],20]

{{0.17127645878001723630, 0.89167285640716281560,

2.1546962419952769267, 3.9409621944320753085,

6.2730549781202005837, 9.2198332084047489872,

12.896129024261770678, 17.492620202296984539,

23.375068766890757875, 31.480929908705477946},

{0.40175819838719705508, 0.61781515020685988777,

0.43092384916712431584, 0.16018318534772922234,

0.031116001568317075487, 0.0030029502799063140584,

0.00013244003563186081692, 2.2807340153227672644*10^-6,

1.1114755872888526597*10^-8,6.6895094339315858173*10^-12}}

For details see [11], [20], [23].

4.2. Exotic exponential weights on R+

In this subsection we mention only the weight function of the form w(t) =
w(α,β)(x) = exp(−t−α − tβ) on R+, with parameters α > 0 and β > 1.

In a simpler case when α = β, we can determine the moments in an analytic
form as

µ
(β,β)
k =

∫ +∞

0

tkw(β,β)(t) dt =
2

β
K(k+1)/β(2), k ∈ N0, (4.2)

where Kr(z) is the modified Bessel function of the second kind.

The general case w(t) = w(α,β)(x), α 6= β, can be solved by the the so-called
Meijer G function

Gm,n
p,q

(

z

∣

∣

∣

∣

a1, . . . , ap
b1, . . . , bq

)

≡ Gm,n
p,q

(

z

∣

∣

∣

∣

a1, . . . , an; an+1, . . . , ap
b1, . . . , bm; bm+1, . . . , bq

)

=
1

2πi

∫

L

m
∏

ν=1
Γ(bν − s)

n
∏

ν=1
Γ(1− aν + s)

q
∏

ν=m+1
Γ(1− bν + s)

p
∏

ν=n+1
Γ(aν − s)

zs ds.
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For some specific values of α i β we have (see [15])

µ
(1,2)
k =

1

2k+2
√
π
G3,1

2,4

(

1

4

∣

∣

∣

∣

− ;−
−k+1

2 ,−k
2 , 0;−

)

, k ≥ 0;

µ
(2,1)
k =

2k√
π
G3,1

2,4

(

1

4

∣

∣

∣

∣

− ;−
0, k+1

2 , k+2
2 ;−

)

, k ≥ 0;

µ
(1,3)
k =

1

2 · 3k+3/2π
G4,1

2,5

(

1

27

∣

∣

∣

∣

− ;−
−k+1

3 ,−k
3 ,−k−1

3 , 0;−

)

, k ≥ 0.

As an example we take α = β = 2. In order to generate quadratures, for example,

for m ≤ n = 100, we need the first two hundred moments µ
(2,2)
k , given by (4.2). Using

the Mathematica package OrthogonalPolynomials, with the following commands

<< orthogonalPolynomials‘

mom = Table[BesselK[(k+1)/2, 2], {k,0,200}];

{al,be} = aChebyshevAlgorithm[mom, WorkingPrecision -> 120];

{al1,be1} = aChebyshevAlgorithm[mom, WorkingPrecision -> 140];

N[Max[Abs[al/al1 - 1], Abs[be/be1 - 1]], 3]

we obtain the first 100 recursive coefficients with relative errors less than 2.21×10−23.
As we can see, the calculation of the recursive coefficients in this case is a very sensitive
process, which here, in the worst case, causes a loss of about 98 decimal digits!

The corresponding Gaussian quadrature formulas have an application in inte-
gration of functions which can increase exponentially at the endpoints 0 and +∞. For
the so-called “truncated” Gaussian quadratures the stability and convergence with
the order of the best polynomial approximation in suitable function spaces are proved
in [15].

4.3. Some distribution in statistics

Following Stoyanov [26, §7.1] we give an example with the inverse Gaussian
distribution (IG) with “easy” parameters, say (1, 1). Thus, we consider a random
variable θ ∼ IG, with density function

w1(x) =











e√
2π

x−3/2 exp
[

−1

2

(

x+
1

x

)]

, if x > 0,

0, if x ≤ 0.

In terms of the modified Bessel function of the second kind, we have its moments as

µ
(1)
k =

∫ +∞

0

xkw1(x) dx = e

√

2

π
Kk−1/2(1), k ∈ N0.

Now, taking WorkingPrecision -> WP (WP=50) in the package
OrthogonalPolynomials, we can obtain the first 50 recurrence coefficients for
orthogonal polynomials with respect to this weight function w1(x), with the maximal
relative error 1.88× 10−25.
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If we consider a power transformation of θ, i.e., θr for a real r, for example r = 3,
the density function of the random variable X = θ3 is given by (see [26, §7.1])

w3(x) :=











e

3
√
2π

x−7/6 exp
[

−1

2

(

x1/3 +
1

x1/3

)]

, if x > 0,

0, if x ≤ 0,

and its moments are

µ
(3)
k =

∫ +∞

0

xkw3(x) dx = e

√

2

π
K3k−1/2(1), k ∈ N0.

Now, the construction problem is slightly better conditioned. Namely, in this
case in order to obtain the first 50 recurrence coefficients with a similar maximal
relative error (3.84× 10−26) we need only WP=35, i.e, 15 digits less!

Graphs of previous weight functions w1 and w3 are displayed in Fig. 2.

Figure 2. Graphs of x 7→ w1(x) (left) and 7→ w3(x) (right)

In order to calculate the following integral
∫

R

w1(x) cos xdx = 0.538295818310337041115777 . . . ,

we apply n-point Gaussian quadratures obtained for each n ≤ 50 by the following
commands

<< orthogonalPolynomials‘

f[x_] := Cos[x]; exact = 0.538295818310337041115777;

mom=Table[Exp[1] Sqrt[2/Pi] BesselK[k-1/2, 1], {k,0,99}];

{alB,beB}=aChebyshevAlgorithm[mom, WorkingPrecision -> 50];

PQ[n_] :=aGaussianNodesWeights[n, alB, beB,

WorkingPrecision -> 25,Precision -> 20];

ss = Table[N[PQ[n][[2]].f[PQ[n][[1]]], 20], {n,5,50,5}];

err = Table[N[Abs[ss[[k]]/exact - 1], 3], {k, 1, 10}];
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Gaussian approximations Qn(f ;w1) and the corresponding relative errors err(n)
for n = 5(5)50 are presented in Table 1. Numbers in parenthesis indicate the decimal
exponents.

Table 1. Gaussian approximations Qn(f ;w1) and relative errors for
f(x) = cos x

n Qn(f ;w1) err(n)

5 0.54279156780936401515 8.35(−3)
10 0.53844179972070903368 2.71(−4)
15 0.53829287281685621212 5.47(−6)
20 0.53829574913263199781 1.29(−7)
25 0.53829582036400719491 3.82(−9)
30 0.53829581835353617306 8.03(−11)
35 0.53829581830877861990 2.90(−12)
40 0.53829581831030650190 5.67(−14)
45 0.53829581831033828714 2.31(−15)
50 0.53829581831033706428 4.30(−17)

In this subsection we also mention a few distribution for which, using the Math-

ematica package OrthogonalPolynomials, we can get the recursion coefficients for
k ≤ n in a symbolic form, where n is a finite number. Assuming these expressions
as hypothesis, in some cases we can prove the analytic expressions for recurrence
coefficients.

First, we consider the Stieltjes-Wigert weight function

w(x) :=











1√
2πσx

exp
[

− log2(x)

2σ2

]

, if x > 0,

0, if x ≤ 0,

for which the moments are given by

µk =

∫ +∞

0

xkw(x) dx = qk
2/2, k ∈ N0 (q = eσ

2

).

In this case, executing the following commands

<< orthogonalPolynomials‘

mom = Table[q^(k^2/2), {k, 0, 39}];

{al, be} = aChebyshevAlgorithm[mom, Algorithm -> Symbolic]

we can obtain the first twenty coefficients in the three-term recurrence relation in an
analytic form, and then prove that

αk = qk−1/2
(

qk+1 + qk − 1
)

; β0 = 1, βk = q3k−2
(

qk − 1
)

, k = 0, 1, . . . .

Similarly, for the weight function on R given by

w(x) =
x2e−πx

(1 − e−πx)2
=
( x

2 sinh(πx/2)

)2

=
1

4
[wA(x/2)]2,
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where wA(x) is the Abel weight on R (see [14, p. 159]), we can determine the moments
in terms of Bernoulli numbers

µk =







0, k is odd,

(−1)k/22k+2Bk+2

π
, k is even.

Using the package package OrthogonalPolynomials, for the corresponding sequence
{βk}k≥0 we obtain (see [22])

{

2

3π
,
4

5
,
72

35
,
80

21
,
200

33
,
1260

143
,
784

65
,
1344

85
,
6480

323
,
3300

133
,
4840

161
,
20592

575
,
9464

225
, . . .

}

.

After some experiments, we conjectured and proved that

β0 = µ0 =
2

3π
, βk =

k(k + 1)2(k + 2)

(2k + 1)(2k + 3)
, k ∈ N.

Finally, for the weight function on R, given by

w(x) = x2
eπx/2 + e−πx/2

(eπx/2 − e−πx/2)2
= 2 cosh

πx

2

( x

2 sinh(πx/2)

)2

,

we get the moments (cf. [22])

µk =







0, k is odd,

2k+3

π
(2k+2 − 1)|Bk+2|, k is even.

In this case we have that

β0 = µ0 =
4

π
, βk =

{

(k + 1)2, k is odd,

k(k + 2), k is even.

5. Summation of slowly convergent series

There are many methods for fast summation of slowly convergent series. In this
section we consider only the so-called summation/integration procedures. The basic
idea in such procedures is to transform the sum to an integral with respect to some
weight function on R (or R+), and then to approximate this integral by a finite
quadrature sum,

+∞
∑

k=1

(±1)kf(k) =

∫

R

g(x)w(x) dx ≈
N
∑

ν=1

Aνg(xν),

where the function g is connected with f in some way. Thus, these procedures need
two steps:

(a) Methods of transformation
∑

⇒
∫

;
(b) Construction of Gaussian quadratures

∫

R

g(x)w(x) dx =

N
∑

ν=1

Aνg(xν) +Rn(f),



Construction and applications of Gaussian quadratures 225

where w is a non-classical weight.

5.1. Laplace transformation method

In this subsection we mention only the basic idea of the Laplace transform
method.

Suppose that the general term of series is expressible in terms of the Laplace
transform, or its derivative, of a known function.

Let f(s) =

∫ +∞

0

e−stg(t) dt, Re s ≥ 1. Then

T =

+∞
∑

k=1

f(k) =

+∞
∑

k=1

∫ +∞

0

e−ktg(t) dt =

∫ +∞

0

(

+∞
∑

k=1

e−kt

)

g(t) dt,

i.e.,

T =

∫ +∞

0

e−t

1− e−t
g(t) dt =

∫ +∞

0

t

et − 1

g(t)

t
dt.

Thus, the summation of series is now transformed to an integration problem
with respect to the Bose-Einstein weight function ε(t) = t/(et − 1) on R+, which is
considered in Subsection 4.1.

Similarly, for “alternating” series, we have

S =
+∞
∑

k=1

(−1)kf(k) =

∫ +∞

0

1

et + 1
(−g(t)) dt, (5.1)

where the Fermi-Dirac weight function on R+, ϕ(t) = 1/(et + 1), is appeared on the
right-hand side in (5.1).

For details and examples see [11], [18], [22].

5.2. Hyperbolic weight functions and
∑⇒

∫

transformation

In this subsection we consider an alternative summation/integration procedure
for the series

Tm,n =

n
∑

k=m

f(k) and Sm,n =

n
∑

k=m

(−1)kf(k), (5.2)

where m,n ∈ Z (m < n ≤ +∞) and the function f is holomorphic in the region
{

z ∈ C
∣

∣ Re z ≥ α, m− 1 < α < m
}

. (5.3)

Our method of transformation “sum” to “integral” requires the indefinite integral F
of f chosen so as to satisfy the following decay properties (see [16], [14]),

(C1) F is a holomorphic function in the region (5.3);

(C2) lim
|t|→+∞

e−c|t|F (x+ it/π) = 0, uniformly for x ≥ α;

(C3) lim
x→+∞

∫

R

e−c|t|
∣

∣F (x+ it/π)
∣

∣ dt = 0,

where c = 2 or c = 1, when we consider Tm,n or Sn,m, respectively.
Let m− 1 < α < m, n < β < n+ 1, δ > 0, and

G =
{

z ∈ C : α ≤ Re z ≤ β, |Im z| ≤ δ

π

}

.
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Using contour integration of a product of functions z 7→ f(z)g(z) over the rectangle
Γ = ∂G in the complex plane, where g(z) = π/ tanπz and g(z) = π/ sinπz, by
Cauchy’s residue theorem, we obtain

Tm,n =
1

2πi

∮

Γ

f(z)
π

tanπz
dz and Sm,n =

1

2πi

∮

Γ

f(z)
π

sinπz
dz.

After integration by parts, these formulas reduce to

Tm,n =
1

2πi

∮

Γ

( π

sinπz

)2

F (z) dz, Sm,n =
1

2πi

∮

Γ

( π

sinπz

)2

cosπz F (z) dz,

where F is an integral of f .

Finally, setting α = m−1/2, β = n+1/2, and letting δ → +∞, under conditions
(C1), (C2), and (C3), the previous integrals over Γ reduce to the weighted integrals
over (0,+∞), giving transformations

+∞
∑

k=m

f(k) =

∫ +∞

0

w1(t)Φ

(

m− 1

2
,
t

π

)

dt (5.4)

and
+∞
∑

k=m

(−1)kf(k) = (−1)m
∫ +∞

0

w2(t)Ψ

(

m− 1

2
,
t

π

)

dt, (5.5)

where the weight functions are given by

w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
, (5.6)

respectively. Here F is an integral of f , as well as

Φ(x, y) = −1

2
[F (x + iy) + F (x− iy)] = −ReF (x+ iy)

and

Ψ(x, y) =
1

2i
[F (x+ iy)− F (x− iy)] = ImF (x+ iy).

The second our task is a numerical construction of Gaussian quadratures with
respect to the hyperbolic weights w1 and w2, given in (5.6),

∫ +∞

0

g(t)ws(t) dt =

N
∑

ν=1

AN
ν,sg(τ

N
ν,s) +RN,s(g) (s = 1, 2), (5.7)

with weights AN
ν,s and nodes τNν,s, ν = 1, . . . , N (s = 1, 2), which are exact for all

g ∈ P2N−1.
The moments of the hyperbolic weights w1 and w2 can be expressed in explicit

form (see [22])

µ
(1)
k =

+∞
∫

0

tkw1(t) dt =











1, k = 0,

log 2, k = 1,

(2k−1 − 1)k!/4k−1ζ(k), k ≥ 2;



Construction and applications of Gaussian quadratures 227

and

µ
(2)
k =

+∞
∫

0

tkw2(t) dt=



















1, k = 0,

k
(π

2

)k

|Ek−1|, k (odd) ≥ 1,

2k

4k
[

ψ(k−1)(14 )− ψ(k−1)(34 )
]

, k (even) ≥ 2,

where ζ(k) is the Riemann zeta function, Ek are Euler’s numbers, defined by the
generating function

2

et + e−t
=

+∞
∑

k=0

Ek
tk

k!
,

and ψ(z) is the so-called digamma function, i.e., the logarithmic derivative of the
gamma function, ψ(z) = Γ′(z)/Γ(z). Mathematica evaluates derivatives ψ(n)(z) to
arbitrary numerical precision, using the function PolyGamma[n,z].

In order to construct Gaussian rules with respect to the weight w2(t) on (0,+∞)
for N ≤ 50, we need the recursion coefficients αk and βk for k ≤ N − 1 = 49, i.e.,
the moments for k ≤ 2N − 1 = 99. Taking the WorkingPrecision to be 100, and
executing the following commands:

<< orthogonalPolynomials‘

mom2=Join[{1},Table[If[OddQ[k],k(Pi/2)^k Abs[EulerE[k-1]],

2k/4^k(PolyGamma[k-1,1/4]-PolyGamma[k-1,3/4])],{k,1,99}]];

{al,be}=aChebyshevAlgorithm[mom2, WorkingPrecision -> 100];

we obtain the first 50 recursion coefficients αk and βk, with the relative errors less
than 6.18× 10−60.

In construction the corresponding recursion coefficients for the weight w1(t) on
(0,+∞) for N ≤ 50, the second line in the previous commands should be replaced by

mom1=Join[{1,Log[2]},Table[(2^(k-1)-1)k!/4^(k-1)Zeta[k],{k,2,99}]];

In this case, the first 50 recursion coefficients are obtained with slightly better
accuracy (precisely, with the maximal relative error 3.65× 10−63).

These 50 recursive coefficients are enough for constructing Gaussian formulas
(5.7) for each N ≤ 50 and s = 1, 2.

Example 5.1. Now we consider a typical slowly convergent series

T (p) =

+∞
∑

k=1

1

k1/p(k + 1)
, p ≥ 1, (5.8)

which can be also represented in the form, by extracting a finite number of terms,

T (p) =

m−1
∑

k=1

1

k1/p(k + 1)
+

+∞
∑

k=m

1

k1/p(k + 1)
. (5.9)

Then, we apply our integral transformation (5.4) to the second (infinity) series in (5.9).
Thus, using Gaussian quadrature formula (5.7) with respect to the weight w1(t) =
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1/ cosh2 t on R+, we obtain

T (p) ≈ Q(N)
m (p) =

m−1
∑

k=1

1

k1/p(k + 1)
+

N
∑

ν=1

AN
ν,1Φp(m− 1/2, τNν,1/π), (5.10)

with Φp(x, y) = − 1
2 [Fp(x+ iy) + Fp(x− iy)], where τNν,1 and AN

ν,1 are nodes and
weights of the N -point Gaussian rule (5.7) (s = 1).

Taking different values form, we can notice the change rate of convergence of this
quadrature processes. Namely, the rapidly increasing of convergence of the summation
process as m increases is due to the singularities (poles) of Φp(m− 1/2, z/π) moving

away from the real line (see [20] and [22]). Here, fp(z) = 1/(z1/p(z + 1)) and

F1(z) = log(z)− log(z + 1), F2(z) = 2 arctan
(√
z
)

− π,

F3(z) =
1

2
log

z + 1

( 3
√
z + 1)

3 +
√
3 arctan

(

2 3
√
z − 1√
3

)

− π
√
3

2
, etc.

For p = 2 the series T (2) appears in a study of spirals (cf. [2]) and defines the
well-known Theodorus constant,

T (2) =

+∞
∑

k=1

1√
k(k + 1)

= 1.8580 . . . .

The first 106 terms of T (2) give the result T (2) ≈ 1.86 (only 3-digit accuracy).

For larger values of p, the corresponding series T (p) is slower. For example, for
p = 6 an accuracy with only 3 digits in T (6) by a direct summation needs 1018 terms.
However, our summation/integration formula (5.10) for p = 6 and m = 10 gives

approximations Q
(N)
10 (6), N = 5(10)45, which are presented in Table 2. In each entry

the first digit in error is underlined.

Table 2. Gaussian approximations Q
(N)
10 (6) for N = 5(10)45

N Q
(N)
10 (6)

5 5.6994117763835630
15 5.699411776383561966743048504335641
25 5.6994117763835619667430485043356277328720482903
35 5.6994117763835619667430485043356277328720482911358004997
45 5.69941177638356196674304850433562773287204829113580049386776106

As we can see, this method is very efficient; the quadrature formula with only
N = 45 nodes gives more than 60 exact digits in the sum T (6)!

For details and other applications see [16], [17], and [22].
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6. Construction of some perfectly symmetric cubature rules

Using the Mathematica package OrthogonalPolynomias we can construct
some perfectly symmetric two-dimensional cubature formulas inD ⊂ R2 with minimal
number of nodes,

I(f) =

∫∫

D

w(x, y)f(x, y) dxdy =

N
∑

i=1

Aif(Pi) + RN (f). (6.1)

Such a cubature formula has the nodes of the form (±xj ,±yj) and (±yj,±xj) with
the same weights. Regarding [25] we call it as a “good” formula if all of its weights
are positive.

For completely symmetric weight functions w(x,−y) = w(−x, y) = w(x, y) ≥ 0,
the typical domains D are the square with vertices (±1,±1), the unit circle, and the
entire plane R2.

We recall that a two-dimensional cubature rule of degree d integrates exactly all
monomials xiyj , i.e., RN (xiyj) = 0, for which i+ j ≤ d.

In order to obtain “good” cubature rules for some weights w(x, y) of degree
d ≤ 7, Stroud and Secrest [28] used the nodes whose “generators” are of the form
(0, 0), (α, 0), (β, β). For rules of degree d ≥ 8, it is necessary to include nodes whose
“generators” are of the form (γ, δ). Each of them generates eight nodes of the form:
(±γ,±δ), (±δ,±γ) with the same weight, while (α, 0) and (β, β) generate only four
nodes: (±α, 0), (0,±α) and (±β,±β), respectively. Of course, (0, 0) gives only one
node (0, 0).

Following [25], the method of construction needs integrals















I(x2k) and I(x2jy2k)

k = 0, 1 . . . , [N/2];

1 ≤ j ≤ k; j + k = 2, . . . , [N/2],

as well as the following “special moments”, i.e., integrals of the form

µjk = I
[

(x2 − y2)2(x2y2)j(x2 + y2)k
]

(6.2)

=

∫ +∞

0

∫ +∞

0

w(x, y)(x2 − y2)2(x2y2)j(x2 + y2)k dxdy,

where j ≥ 1, k ≥ 0. The corresponding system of nonlinear equations RN (xiyj) = 0,
i+ j ≤ d, can be separated in a few systems of the Gaussian type (3.3), which can be
solved using the Mathematica package OrthogonalPolynomials.

In this section we show only construction of cubature formulas (6.1) on D =
R2, with respect to the complete symmetric weight function of the form w(x, y) =
wν(x, y), ν = 1, 2, 3, where

w1(x, y) = e−(x2+y2), w2(x, y) = e−
√

x2+y2

, w3(x, y) = e−(|x|+|y|).
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The special moments for the previous weight functions w1 and w2 can be calculated
in an analytic form as

µ
(1)
jk =

(2j + k + 2)!π

24j+3(j + 1)

(

2j

j

)

and µ
(2)
jk =

(4j + 2k + 5)!π

24j+2(j + 1)

(

2j

j

)

,

respectively. In the third case it can be expressed by the following integral

µ
(3)
jk =

(4j + 2k + 5)!

24j+k+1

∫ 1

0

√
z (1 − z)2j(1 + z)k dz,

or in terms of hypergeometric functions as

µ
(3)
jk =

(4j + 2k + 5)!

2k−2(2j + 1)

(

4(j + 1)

2(j + 1)

)

{

2F1

(

−1

2
,−k; 2j + 5

2
;−1

)

+
k − 2j − 1

2(j + 1)
2F1

(

1

2
,−k; 2j + 5

2
;−1

)

}

.

Example 6.1. In order to construct 44-point cubature formulas of degree d = 15 with
respect to the weight w(x, y) = w3(x, y) = exp(−|x|− |y|) on R2, we use the following
generators:

(ui, 0), i = 1, 2, 3, 4; (vi, vi), j = 1, 2, 3; (wi, zi), i = 1, 2.

Generator Pi Weight Ai Number of points
(ui, 0) ai 4
(vi, vi) bi 4
(wi, zi) ci 8

Then the corresponding system of equations is given by

∑

i

ci(w
2
i − z2i )

2(w2
i z

2
i )

j(w2
i + z2i )

k =
1

8
µjk

j = 1, . . . ,
[m− 2

2

]

; k = 0, 1, . . . ,m− 2j − 2.

Using the Mathematica package OrthogonalPolynomials for the “generator
nodes” in this 44-point cubature formula of degree d = 15 we obtain:

{{16.75517334835192,0}, {9.520295794790188,0},

{4.451284933071043,0}, {1.326612922551803,0},

{10.40246868263913,10.40246868263913},

{6.307197292644404,6.307197292644404},

{2.533316709591005,2.533316709591005},

{13.16709143114937,3.265192228507983},

{6.770241049738993,2.369872911188105}},

and for the corresponding weight coefficients the following values:
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Figure 3. Distribution of nodes in 44-point cubature formula of
degree d = 15 for the weight function w3

{8.186694686950403*(10^-7), 0.0006529201474967032,

0.06663038092243385, 0.8569723144924805,

6.812119062461652*(10^-8), 0.00007773406088317548,

0.07219519187714604, 2.913841882561950*(10^-6),

0.001732372012567657}.

Finally, the distribution of nodes in this cubature formula (N = 44 and d = 15)
is displayed in in Fig. 3.

Remark 6.2. Cubature formulas (6.1) with the exponential weights wν , ν = 1, 2, 3,
have been recently used in [24] and [27].
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[19] Milovanović, G.V., Numerical quadratures and orthogonal polynomials, Stud. Univ.
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Serbian Academy of Sciences and Arts & State University of Novi Pazar, Serbia
e-mail: gvm@mi.sanu.ac.rs


