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A direct approach for proving Wallis ratio
estimates and an improvement of Zhang-Xu-Situ
inequality

Valentin Gabriel Cristea

Abstract. In time, inequalities about Wallis ratio and related functions were pre-
sented by many mathematicians. In this paper, we show how estimates on the
Wallis ratio can be obtained using the asymptotic series. Finally, an improve-
ment of an inequality due to X.-M. Zhang, T.-Q. Xu and L.-B. Situ [Geometric
convexity of a function involving gamma function and application to inequality
theory, J. Inequal. Pure Appl. Math. 8 (1) (2007) Art. 17, 9 pp.] is presented.
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1. Introduction and motivation

Wallis ratio

Pn =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
, n = 1, 2, 3 · · ·

plays a main role in mathematics and other branches of science. This expression is
closely related to the Euler gamma function defined for all real x > 0 by

Γ(x) =

∫ ∞
0

tx−1e−tdt.

We have:

Pn =
1√
π
·

Γ
(
n+ 1

2

)
Γ(n+ 1)

. (1.1)

For further details, we recommend the basic monograph [1]. Many mathematicians
were preoccupied to give estimates for Pn and other expressions related to gamma
function.We refer for example to the following recent titles: Chen and Qi [2]-[3],
Hirschhorn [5], Lin, Deng and Chen [7], Mortici [9]-[13], Păltănea [25].
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Chronologically, we mention the following inequalities for every integer n ≥ 1
due to Wallis [29]

1√
π
(
n+ 1

2

) < Pn <
1√
πn

, (1.2)

Kazarinoff [6]
1√

π
(
n+ 1

2

) < Pn <
1√

π
(
n+ 1

4

) , (1.3)

Hirschhorn [5]

1√
π
(
n+ 1

2

) (
1− 1

4n+ 8
3

) < Pn <
1√

π
(
n+ 1

2

) (
1− 1

4n+ 7
3

) (1.4)

or Panaitopol [24]

1√
π
(
n+ 1

4 + 1
32n

) < Pn <
1√

π
(
n+ 1

4

) . (1.5)

Chen and Qi [2] proposed the following inequality

1√
π (n+A)

≤ Pn <
1√

π (n+B)
, n ≥ 1, (1.6)

where the constants A = 4
π − 1 and B = 1

4 are sharp. Zhao [27] proved

1√
πn
(

1 + 1
4n− 1

2

) < Pn ≤
1√

πn
(

1 + 1
4n− 1

3

) (1.7)

and Zhang et al. [28] showed:

1√
eπn

(
1 +

1

2n

)n− 1
12n

< Pn ≤
1√
eπn

(
1 +

1

2n

)n− 1
12n+16

. (1.8)

The above estimates were obtained using a various of methods such as mean inequality,
Jensen inequality, monotonicity of some sequences, or monotonicity and complete
monotonicity of some functions. In this work, we exploit some inequalities obtained
by truncation of certain asymptotic series.

As a new result, in the last section of this work we present an improvement of
an inequality due to X.-M. Zhang, T.-Q. Xu and L.-B. Situ stated in [28].

2. The asymptotic series of Pn

The following inequalities were presented by Slavić [26], for every real x > 0 and
integers m, l ≥ 1:

√
x exp (am(x)) <

Γ(x+ 1)

Γ
(
x+ 1

2

) < √x exp (bl(x)) , (2.1)
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where

am(x) =

2m∑
k=1

(
1− 2−2k

)
B2k

k (2k − 1)x2k−1

and

bl(x) =

2l−1∑
k=1

(
1− 2−2k

)
B2k

k (2k − 1)x2k−1
.

Here Bj are the Bernoulli numbers given by the generating function

t

et − 1
=

∞∑
j=0

Bj
tj

j!
.

The first Bernoulli numbers are B0 = 1, B1 = 1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42,
while B2m+1 = 0, for every integer m ≥ 1. See, e.g. [1].

As a direct consequence of Slavić inequalities (2.1), the following asymptotic
formula holds true as x→∞ :

Γ(x+ 1)

Γ
(
x+ 1

2

) ∼ √x exp

{ ∞∑
k=1

(
1− 2−2k

)
B2k

k (2k − 1)x2k−1

}
.

Using (1.1), we get:

Pn ∼
1√
nπ

exp

{
−
∞∑
k=1

(
1− 2−2k

)
B2k

k (2k − 1)n2k−1

}
, n→∞, (2.2)

while inequalities (2.1) can be rewritten as

1√
nπ

exp {αl(n)} < Pn <
1√
nπ

exp {βm(n)} , (2.3)

where αl(n) = −bl(n) and βm(n) = −am(n). The first truncations are the following:

α1(n) = − 1

8n
,

α2(n) = − 1

8n
+

1

192n3
− 1

640n5
, ...

and

β1(n) = − 1

8n
+

1

192n3
,

β2(n) = − 1

8n
+

1

192n3
− 1

640n5
+

17

14336n7
, ... .

As examples, we show complete arguments of our method for proving Kazarinoff’s
inequality and Panaitopol’s inequality. All other inequalities on Wallis ratio presented
in the first part of this work can be similarly proven, as we indicate in the next section.
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3. Kazarinoff’s inequality

We start with Kazarinoff’s inequality (1.3). In his proof, Kazarinoff used the
Legendre’s formula for digamma function:

ψ(x) = −γ +

∫ 1

0

tx − 1

t− 1
dt

(γ = 0.577215 · · · is the Euler-Mascheroni constant) and the inequality

[lnφ(t)]
′′ −

{
[lnφ(t)]

′}2
> 0,

where

φ(t) =

∫ 1

0

sint x dx =

√
π

2
·

Γ
(
t+1
2

)
Γ
(
t+2
2

) .
Chen and Qi [2] rediscovered the right-hand side of Wallis’ inequality using the mono-
tonicity of the sequence

Qn =

[
Γ (n+ 1)

Γ
(
n+ 1

2

)]2 − n,
with limn→∞Qn = 1/4.

Our idea for proving Kazarinoff’s inequality using the asymptotic series (2.2) is
to consider as many as necessary terms αl and βm such that

1√
π
(
n+ 1

2

) <
1√
nπ

exp (αl(n)) (3.1)

< Pn

<
1√
nπ

exp (βm(n)) <
1√

π
(
n+ 1

4

) .
Individual tryings we made showed that already first truncations α1 and β1 make
inequalities (3.1) true, namely

1√
π
(
n+ 1

2

) < 1√
nπ

exp

(
− 1

8n

)
(3.2)

and
1√
nπ

exp

(
− 1

8n
+

1

192n3

)
<

1√
π
(
n+ 1

4

) . (3.3)

By taking the logarithm, the inequalities (3.2)-(3.3) are equivalent to

− 1

8n
− 1

2
lnn+

1

2
ln

(
n+

1

2

)
> 0

and

− 1

8n
+

1

192n3
− 1

2
lnn+

1

2
ln

(
n+

1

4

)
< 0,
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for every integer n ≥ 1. It suffices f > 0 and g < 0 on [1,∞), where

f(x) = − 1

8x
− 1

2
lnx+

1

2
ln

(
x+

1

2

)
and

g(x) = − 1

8x
+

1

192x3
− 1

2
lnx+

1

2
ln

(
x+

1

4

)
.

As

f ′(x) = − (2x− 1)

8 (2x+ 1)x2
< 0, g′(x) =

8x2 − 4x− 1

64x4 (4x+ 1)
> 0,

the function f is strictly decreasing and g is strictly increasing on [1,∞). But
limx→∞ f(x) = limx→∞ g(x) = 0, so f > 0 and g < 0 on [1,∞) and our assertion is
proved.

4. Panaitopol’s inequality

Panaitopol [24] improved the left-hand side of Wallis’ inequality as

1√
π
(
n+ 1

4 + 1
32n

) < Pn.

As above, we search a truncation of asymptotic series such that

1√
π
(
n+ 1

4 + 1
32n

) < 1√
nπ

exp (α2(n)) < Pn. (4.1)

Remark that in this case, the second truncation should be selected:

α2(n) = − 1

8n
+

1

192n3
− 1

640n5
.

The first inequality (4.1) is equivalent to h > 0 on [1,∞), where

h(x) = − 1

8x
+

1

192x3
− 1

640x5
− 1

2
lnx+

1

2
ln

(
x+

1

4
+

1

32x

)
.

As

h′(x) =
1

8x2 (32x2 + 4x+ 1)
> 0,

the function h is strictly increasing.

Then h(x) ≥ h(1) = 1
2 ln 41

32 −
233
1920 = 0.00256 · · · > 0, for every x ∈ [1,∞) and

the assertion follows.
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5. Further examples

All the other inequalities presented in the first section can be similarly proven.
More precisely, we reduced Zhao De Jun’s inequality (1.7) to

1√
πn
(

1 + 1
4n− 1

2

) <
1√
nπ

exp (α1(n))

< Pn

<
1√
nπ

exp (β1(n)) <
1√

πn
(

1 + 1
4n− 1

3

) ,
Hirschhorn’s inequality (1.4) to

1√
π
(
n+ 1

2

) (
1− 1

4n+ 8
3

) <
1√
nπ

exp (α2(n))

< Pn

<
1√
nπ

exp (β1(n)) <
1√

π
(
n+ 1

2

) (
1− 1

4n+ 7
3

)
and Zhang et al. inequality (1.8) to

1√
eπn

(
1 +

1

2n

)n− 1
12n

<
1√
nπ

exp (α1(n))

< Pn

<
1√
nπ

exp (β1(n)) <
1√
eπn

(
1 +

1

2n

)n− 1
12n+16

.

The great advantage of the asymptotic series method we present here is that all com-
putations are reduced to some elementary functions involving polynomial functions
and logarithmic functions. In consequence, the monotonicity, or positivity, of such
functions can be easily stated.

6. An improvement of Zhang-Xu-Situ inequality

In this section, motivated by Zhang-Xu-Situ inequality (1.8), we propose the
following better approximation

Pn ≈
1√
eπn

(
1 +

1

2n

)n− 1
12n+ 1

48n2− 1
2880n3

. (6.1)

This approximation is obtained firstly by considering the following class of approxi-
mations

Pn ≈
1√
eπn

(
1 +

1

2n

)an+ b
n+ c

n2 + d
n3

, (6.2)
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where a, b, c, d ∈ R are any real parameters. In order to find the values of a, b, c, d that
provide the most accurate approximation (6.2), we use a method first introduced by
Mortici in [8]. This method was proven to be a strong tool for constructing asymptotic
expansions, or for accelerating some convergences. See, e.g. [14]-[23].

Let us define the relative error sequence wn by the following formulas for every
integer n ≥ 1 :

Pn =
1√
eπn

(
1 +

1

2n

)an+ b
n+ c

n2 + d
n3

expwn.

We consider an approximation (6.2) better when the speed of convergence of wn to
zero is higher. But wn is faster convergent together to the difference wn−wn+1. Using
a Maple software, we get

wn − wn+1 =

(
1

8
a− 1

8

)
1

n2
+

(
− 5

24
a− b+

1

8

)
1

n3

+

(
19

64
a+

15

8
b− 3

2
c− 7

64

)
1

n4

+

(
−197

480
a− 35

12
b+

7

2
c− 2d+

3

32

)
1

n5

+

(
217

384
a+

815

192
b− 155

24
c+

45

8
d− 31

384

)
1

n6

+O

(
1

n7

)
.

The fastest convergence is obtained when the first four coefficients vanish of n−k, that
is for the values

a = 1, b = − 1

12
, c =

1

48
, d = − 1

2880
.

Now the approximation (6.1) is completely justified. We are now in a position to
improve the upper bound of Zhang-Xu-Situ inequality as follows.

Theorem 6.1. The following inequality is valid, for every integer n ≥ 1 :

Pn ≤
1√
eπn

(
1 +

1

2n

)n− 1
12n+ 1

48n2− 1
2880n3

. (6.3)

Proof. It suffices to show that

1√
nπ

exp (β2(n)) <
1√
eπn

(
1 +

1

2n

)n− 1
12n+ 1

48n2− 1
2880n3

,

or equivalently

− 1

8n
+

1

192n3
− 1

640n5
+

17

14336n7
+

1

2

<

(
n− 1

12n
+

1

48n2
− 1

2880n3

)
ln

(
1 +

1

2n

)
.
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We have to prove that ϕ < 0 for every x ∈ [1,∞), where

ϕ(x) =
− 1

8x + 1
192x3 − 1

640x5 + 17
14336x7 + 1

2(
x− 1

12x + 1
48x2 − 1

2880x3

) − ln

(
1 +

1

2x

)
.

But

ϕ′(x) =
P (x− 1)

56x (2x+ 1) (60x− 240x2 + 2880x4 − 1)
2 > 0,

with

P (x) = 784 374 011 + 2985 594 595x+ 4717 628 082x2

+4035 936 400x3 + 2026 365 656x4

+598 429 920x5 + 96 371 520x6 + 6531 840x7,

so the function ϕ is strictly increasing on [1,∞). But limx→∞ ϕ(x) = 0, so ϕ(x) < 0
for all real x ≥ 1. The proof is now completed. �
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