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Estimates for the ratio of gamma functions
by using higher order roots

Sorinel Dumitrescu

Abstract. It is the aim of this paper to give a systematically way for obtaining

higher order roots estimates of the ratio Γ(x+1)

Γ(x+ 1
2 )
, as x→ ∞ and the Wallis ratio

1·3···(2n−1)
2·4···(2n)

, as n→ ∞.
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1. Introduction

The factorial function n! = 1 · 2 · 3 · · ·n (defined for positive integers n), and its
extension gamma function

Γ(z) =

∞∫
0

tz−1e−tdt

(to the real and complex values z, excepting −1,−2,−3, ...) has a great importance
in pure mathematics, as in applied mathematics and other branches of science, such
as chemistry, statistical physics, or cuantum mechanics.

The ratio Γ(x+1)

Γ(x+ 1
2 )

is strongly related to the Wallis sequence

Pn =
1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)

and to other aspects in the theory of the gamma function, as for example Kershaw-
Gautschi inequalities. For this reason, many mathematicians have been preocuppied
by the approximation of this ratio. There exists a broad literature on this subject. In
particular, many inequalities, sharp bounds for these functions, and accurate approx-
imations have been published. See, e.g. the classical results from [2] and the recent

This paper was presented at the third edition of the International Conference on Numerical Analysis

and Approximation Theory (NAAT 2014), Cluj-Napoca, Romania, September 17-20, 2014.



174 Sorinel Dumitrescu

article [3] and all references therein. A first result was stated by Kazarinoff [4, pp.
47-48 and pp. 65-67]: √

n+
1

4
<

Γ(n+ 1)

Γ
(
n+ 1

2

) <√n+
1

2
,

then this result was improved by Chu [3]:√
n+

1

4
− 1

(4n− 2)
2 <

Γ(n+ 1)

Γ
(
n+ 1

2

) <√n+
1

4
+

1

16n− 4
,

and then by Boyd [1] and Slavič [23] as:√
n+

1

4
+

1

32n+ 32
<

Γ(n+ 1)

Γ
(
n+ 1

2

) <√n+
1

4
+

1

32n− 64n−148
8n+11

.

Motivated by these formulas, Mortici [5] proposed the following approximations
family:

Γ(n+ 1)

Γ
(
n+ 1

2

) ≈ 2k
√
Pk(n), (1.1)

where Pk (n) is a polynomial of kth order (the notation ”f (n) ≈ g (n)” means that
the ratio f (n) /g (n) tends to 1, as n approaches infinity). Mortici calculated in [5]
the first approximations as n→∞:

Γ(n+ 1)

Γ
(
n+ 1

2

) ≈ 4

√
n2 +

1

2
n+

1

8

Γ(n+ 1)

Γ
(
n+ 1

2

) ≈ 6

√
n3 +

3

4
n2 +

9

32
n+

5

128

Γ(n+ 1)

Γ
(
n+ 1

2

) ≈ 8

√
n4 + n3 +

1

2
n2 +

1

8
n.

In [5, p. 427] it is shown that these approximations are increasingly accurate as the
root order grows.

Mortici used an original method, however, this method doesn’t allow us to de-
termine the general formula of this approximation.

The aim of this paper is to give a systematically method for obtaining the ap-
proximations (1.1) for any order 2k.

The method we propose is related to the theory of asymptotic series and it is
inspired from a recent result of Chen and Lin [2].

2. The theoretical results

The asymptotic theory is a strong tool for improving and obtaining new approx-
imation formulas.
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Let f : (0,∞) → R be a function. We say that
∞∑
k=1

αk
xk

is an asymptotic series

expansion for f (x) as x→∞, and denote

f (x) ∼
∞∑
k=1

αk
xk

as x→∞,

if for all m ∈ N∗

f (x)−
m∑
k=1

αk
xk

= O
(

1

xm+1

)
as x→∞.

For a positive function f we write

f (x) ∼ exp

{
m∑
k=1

αk
xk

}
as x→∞,

if for all m ∈ N∗

ln f (x)−
m∑
k=1

αk
xk

= O
(

1

xm+1

)
as x→∞.

Using the idea first presented by Chen and Lin in [2], we give the following theorem:

Theorem 2.1. If the function f has the asymptotic expansion as x→∞:

f(x) ∼ exp

{ ∞∑
k=1

αk
xk

}
(x > 0) ,

then

f(x) ∼ r

√√√√1 +

∞∑
j=1

bj
xj

(r, x > 0) ,

where

bj =
∑

k1+2k2+...+jkj=j

rk1+k2+...+kj

k1!·k2!·...·kj !
· αk11 · ... · α

kj
j .

Proof. This proof is based on the ideas of Chen and Lin presented in [2]. We have

f(x) = exp

{
m∑
k=1

αk
xk

+Rm(x)

}
,

where

Rm (x) = O
(

1

xm+1

)
.
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Thus

[f(x)]
r

= er·Rm(x) · exp

{
m∑
k=1

rαk
xk

}

= er·Rm(x)
m∏
k=1

{
1 +

rαk
xk

+
1

2!
·
(rαk
xk

)2

+ ...

}

= er·Rm(x)
∞∑

k1,k2,..km=0

1
k1!·k2!·...·kj !

·
(rα1

x

)k1
·
(rα2

x2

)k2
· ... ·

(rαm
xm

)km

= er·Rm(x)
∞∑

k1,k2,..km=0

rk1+k2+...+km

k1!·k2!·...·km!
· αk11 · ... · αkmm ·

1

xk1+2k2+...+mkm

= 1 +

∞∑
j=1

bj
xj

where

bj =
∑

k1+2k2+...+jkj=j

rk1+k2+...+kj

k1!·k2!·...·kj !
· αk11 · ... · α

kj
j

The proof is now completed.�

In [23], Slavič gave the following integral representation for every x > 0:

Γ(x+ 1)

Γ
(
x+ 1

2

) ∼
√
x exp

{
n∑
k=1

(
1− 2−2k

)
B2k

k(2k − 1)x2k−1

·
∞∫

0

[
tanh t

2t
−

n∑
k=1

22k
(
22k − 1

)
B2k

k(2k)!
t2k−2

]
e−4/xdt


from which, a more accurate double inequality was established:

√
x exp

(
2m∑
k=1

(
1− 2−2k

)
B2k

k(2k − 1)x2k−1

)
<

Γ(x+ 1)

Γ
(
x+ 1

2

) < √x exp

(
2l−1∑
k=1

(
1− 2−2k

)
B2k

k(2k − 1)x2k−1

)
for x > 0. Here m and l are any natural numbers and B2k for k ∈ N are Bernoulli
numbers defined by the generating function

t

et − 1
=

∞∑
j=0

Bj
j!
tj (|t| < 2π) .

The following asymptotic formula is presented in [23], as x→∞ :

Γ(x+ 1)

Γ
(
x+ 1

2

) ∼ √x exp


∞∑
j=1

(
1− 2−2j

)
B2j

j(2j − 1)x2j−1

 ,
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which is equivalent to

Γ(x+ 1)

Γ
(
x+ 1

2

) ∼ √x exp

{ ∞∑
k=1

(
2− 2−k

)
Bk+1

k(k + 1)xk

}
(2.1)

(in the last formula, the terms involving B2j+1 = 0 were added, for sake of symmetry).

3. Approximations for Γ(x+1)

Γ(x+ 1
2)

By applying Theorem 1 to the function

f(x) =
Γ(x+ 1)
√
xΓ
(
x+ 1

2

) (x > 0) . (3.1)

with the coefficients of the asymptotic series

αk =

(
2− 2−k

)
Bk+1

k(k + 1)
, (3.2)

see (2.1), and then replacing r by 2r, we obtain:(
Γ(x+ 1)
√
xΓ
(
x+ 1

2

))2r

∼ 1 +

∞∑
j=1

bj
xj
,

where

bj =
∑

k1+2k2+...+jkj=j

(2r)k1+k2+...+kj

k1!·k2!·...·kj !
· αk11 · ... · α

kj
j . (3.3)

Then, we deduce that

Γ(x+ 1)

Γ
(
x+ 1

2

) ≈ 2r
√
xr + b1xr−1 + ...+ br−1x+ br

where b1, b2, ...br are given in (3.3). Concrete values are presented below:

r = 1⇒ b1 =
1

4
⇒ Γ(x+ 1)

Γ
(
x+ 1

2

) ≈√x+
1

4

r = 2⇒ b1 =
1

2
, b2 =

1

8
⇒ Γ(x+ 1)

Γ
(
x+ 1

2

) ≈ 4

√
x2 +

1

2
x+

1

8

r = 3⇒ b1 =
3

4
, b2 =

9

32
, b3 =

5

128
⇒ Γ(x+ 1)

Γ
(
x+ 1

2

) ≈ 6

√
x3 +

3

4
x2 +

9

32
x+

5

128

r = 4⇒ b1 = 1, b2 =
1

2
, b3 =

1

8
, b4 = 0⇒ Γ(x+ 1)

Γ
(
x+ 1

2

) ≈ 8

√
x4 + x3 +

1

2
x2 +

1

8
x

r = 5⇒ b1 =
5

4
, b2 =

25

32
, b3 =

35

128
, b4 =

75

2048
, b5 =

3

8192

⇒ Γ(x+ 1)

Γ
(
x+ 1

2

) ≈ 10

√
x5 +

5

4
x4 +

25

32
x3 +

35

128
x2 +

75

2048
x+

3

8192
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4. Approximations for Wallis ratio

Let us now apply once again Theorem 1 to the function f given by (3.1), with
αk given by (3.2). Now we replace r by −2r to obtain:(

Γ(x+ 1)
√
xΓ
(
x+ 1

2

))−2r

∼ 1 +

∞∑
j=1

b′j
xj

where

b′j =
∑

k1+2k2+...+jkj=j

(−2r)k1+k2+...+kj

k1!·k2!·...·kj !
· αk11 · ... · α

kj
j . (4.1)

Hence (√
xΓ
(
x+ 1

2

)
Γ(x+ 1)

)2r

∼ 1 +

∞∑
j=1

b′j
xj

where b1, b2, ...br are given in (4.1). Furthermore, we obtain:(
Γ
(
x+ 1

2

)
Γ(x+ 1)

)2r

∼ 1

xr
+

∞∑
j=1

b′j
xj+r

and therefore
Γ
(
x+ 1

2

)
Γ(x+ 1)

∼ 2r

√
1

xr
+

b′1
xr+1

+
b′2
xr+2

+ ....

Using this result, we obtain the following asymptotic expansion for the Wallis se-
quence, using the relation:

Pn =
(2n− 1)!!

(2n)!!
=

1√
π
·

Γ
(
n+ 1

2

)
Γ(n+ 1)

. (4.2)

We get

Pn ≈
1√
π

2r

√
1

nr
+

b′1
nr+1

+
b′2
nr+2

+ ...,

which is equivalent to

Pn ≈
1√
nπ

2r

√
1 +

b′1
n

+
b′2
n2

+ ....

We present the following particular cases:

Pn ≈
1√
nπ

√
1− 1

4n

Pn ≈
1√
nπ

4

√
1− 1

2n
+

1

8n2

Pn ≈
1√
nπ

6

√
1− 3

4n
+

9

32n2
− 5

128n3

Pn ≈
1√
nπ

8

√
1− 1

n
+

1

2n2
− 1

8n3
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Pn ≈
1√
nπ

10

√
1− 5

4n
+

25

32n2
− 35

128n3
+

75

2048n4
− 3

8192n5
:= δn. (4.3)

5. Conclusions

Mortici’s formula stated in [5]:

Γ(n+ 1)

Γ
(
n+ 1

2

) ≈ 8

√
n4 + n3 +

1

2
n2 +

1

8
n

can be rewritten using (4.2) in the form

Pn ≈
1

√
π 8

√
n4 + n3 + 1

2n
2 + 1

8n
:= µn. (5.1)

Our formula (4.3) gives results of the same order of accuracy with Mortici’s formula
(5.1). A comparison table is given below:

n |Pn − µn| |Pn − δn|
10 1.4655× 10−10 1.8666× 10−10

50 4.8252× 10−15 4.8432× 10−15

100 5.4202× 10−17 5.2798× 10−17

200 6.0379× 10−19 5.7940× 10−19

500 1.5718× 10−21 1.4948× 10−21

1000 1.7395× 10−23 1.6493× 10−23

The formula (4.3) can be equivalently written in terms of gamma function as
follows:

Γ
(
n+ 1

2

)
Γ(n+ 1)

≈ 1√
n

10

√
1− 5

4n
+

25

32n2
− 35

128n3
+

75

2048n4
− 3

8192n5
.

The associated function satisfies the following properties:

Theorem 5.1. The function ϕ : [2,∞)→ R, defined by

ϕ (x) = ln Γ

(
x+

1

2

)
− ln Γ (x+ 1) +

1

2
lnx

+
1

10
ln

(
1− 5

4x
+

25

32x2
− 35

128x3
+

75

2048x4
− 3

8192x5

)
is monotonically increasing and concave.

The proof of this theorem is now classical. The same method was used by Chen
and Lin, or Mortici in some of their papers. See, e.g., [2], [6]-[22]. We omit the proof
for sake of simplicity.

As

ϕ (2) = ln
3

4

√
π

2
+

1

10
ln

141 141

262 144
:= τ
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(numerically τ = −0.1238 · · · ) and limx→∞ ϕ (x) = 0, we deduce that

τ ≤ ϕ (x) < 0 (x ∈ R; x ≥ 2) .

By exponentiating this double inequality, we get the following result:

Theorem 5.2. The following double inequality holds true, for every real number x ≥ 2 :

β√
x

10

√
1− 5

4x
+

25

32x2
− 35

128x3
+

75

2048x4
− 3

8192x5

≤
Γ
(
x+ 1

2

)
Γ(x+ 1)

<
α√
x

10

√
1− 5

4x
+

25

32x2
− 35

128x3
+

75

2048x4
− 3

8192x5
.

The constants

α = 1.0000

β = eτ =
3

4

√
π

2
· 10

√
141 141

262 144
= 0.8835 · · ·

are sharp.

Further studies on ratio of gamma functions are highly motivated since a deep
knowledge of the quotient Γ (x+ a) /Γ (x+ b) (a, b ∈ R; x→∞) is required in many
problems, such as the theory of Mellin-Barnes integrals, the theory of the generalized
weighted mean values, or in the theory of hypergeometric functions.
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