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Optimal cubic Lagrange interpolation:
Extremal node systems with minimal
Lebesgue constant

Heinz-Joachim Rack and Robert Vajda

Abstract. In the theory of interpolation of continuous functions by algebraic poly-
nomials of degree at most n− 1 ≥ 2, the search for explicit analytic expressions
of extremal node systems which lead to the minimal Lebesgue constant is still an
intriguing topic in mathematics today [33]. The first non-trivial case n − 1 = 2
(quadratic interpolation) has been completely resolved, even in two alternative
fashions, see [25], [27]. In the present paper we proceed to completely resolve the
cubic case (n− 1 = 3) of optimal polynomial Lagrange interpolation on the unit
interval [−1, 1]. We will provide two explicit analytic expressions for the uncount-
able infinitely many extremal node systems x∗

1 < x∗

2 < x∗

3 < x∗

4 in [−1, 1] which
all lead to the (known) minimal Lebesgue constant of cubic Lagrange interpola-
tion on [−1, 1]. The descriptions of the extremal node systems (which need not
be zero-symmetric) resemble the solutions for the quadratic case and incorporate
two intrinsic constants expressed by radicals, of which one constant looks partic-
ularly intricate. Our results encompass earlier related work provided in [17], [23],
[24], [29], [30] and are guided by symbolic computation.
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1. Introduction

Lagrange polynomial interpolation on node systems x1 < x2 < · · · < xn−1 < xn

in some interval I is a classical and feasible method to approximate (continuous) func-
tions on I by algebraic polynomials of maximal degree n − 1, see e.g. [9], [18], [21],
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[26] or [28] for details. The goodness of this approximation method, as compared with
the best possible approximation in Chebyshev’s sense, is measured by means of the
Lebesgue constants which can be viewed as operator norms or condition numbers,
see also [33]. They depend, for a given n, solely on the chosen configuration of in-
terpolation points, and Lebesgue’s lemma suggests that we choose them in such a
manner that the corresponding Lebesgue constant becomes least. Such extremal (or:
optimal) node systems are in a sense the opposite to the equidistant interpolation
points which may yield disastrous approximation results, see e.g. Runge’s example
in [18]. Although near-optimal node systems are known, and algorithms exist to nu-
merically compute optimal (canonical) node systems, see [1] and [18], the search for
explicit analytic formulas characterizing optimal node systems remains an intriguing
and challenging topic in mathematics today. Here are three quotations in this regard,
see also [6], [7], [13], [14], [17], [33]:

• The nature of the optimal set X∗ remains a mystery [15, p. xlvii]
• The problem of analytical description of the optimal matrix of nodes is considered
by pure mathematicians as a great challenge. [4]

• To this day there is no explicit representation for the nth row of the optimal
array, and in all likelihood there never will be. [16]

It suffices to restrict the search for optimal node systems to the unit interval I =
[−1, 1]. The first non-trivial case n − 1 = 2 of quadratic Lagrange interpolation on
I has been completely resolved: All optimal node systems x∗

1 < x∗
2 < x∗

3 in I can be
explicitly described in two alternative fashions, see [25], [27]. In the present paper we
proceed to completely resolve the cubic case n−1 = 3. Similarly to the quadratic case
we will provide two alternative, but equivalent, explicit analytic (i.e., non-numeric)
descriptions of all extremal node systems x∗

1 < x∗
2 < x∗

3 < x∗
4 (with −1 ≤ x∗

1 and
x∗
4 ≤ 1) which, by their definition, lead to the (known) minimal Lebesgue constant

of cubic Lagrange interpolation on I. Amplifying Theorem 2 in [17] which states
that optimal node systems are not unique, we will furthermore show that actually
there exist, for each n − 1 ≥ 2, uncountable infinitely many such node systems in
I. Generally, they are zero-asymmetrically distributed in I; however, the subset of
optimal zero-symmetric node systems deserves special attention: The investigation, in
the cubic case, of optimal node systems −x∗

4 < −x∗
3 < x∗

3 < x∗
4 produces two intrinsic

constants (b and t, as defined below, of which b is particularly intricate) which are key
in describing the general distribution of all optimal node systems x∗

1 < x∗
2 < x∗

3 < x∗
4.

These can be geometrically visualized by a 2D-region in the plane spanned by the two
outer optimal nodes.

Historically, the first investigation into optimal node systems for the cubic case
seems to be [29, p. 229], [30, Problem 6.43], where an analytic, but implicit (i.e.,
not by radicals) formula for the optimal zero-symmetric node systems as well as for
the minimal Lebesgue constant has been provided. However, the reader of [29], [30]
might be left with the impression that actually all optimal node systems had been
determined in this way, since optimal zero-asymmetric ones are not mentioned there.
A particular case of a zero-symmetric node system in I (for n− 1 = 3) is a canonical
node distribution −1 < −x3 < x3 < 1. The unique node x3 = x∗

3 = t which turns
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it to the optimal canonical node configuration has been explicitly determined in [23],
[24], where also the minimal Lebesgue constant for the cubic Lagrange interpolation
on I has been determined in an explicit form. Both quantities can be expressed,
using Cardan’s formula, by means of roots of certain cubic polynomials with integer
coefficients.

The manuscript is organized as follows: After providing some necessary notations
and definitions, we will consider, in an ascending order of generalization, first canon-
ical node systems, then zero-symmetric node systems, and finally arbitrary (zero-
symmetric and zero-asymmetric) node systems and will establish corresponding opti-
mal node configurations. The proofs are postponed to section 6.

We hope that this paper, along with [25], [27] and our dedicated web repository
www.math.u-szeged.hu/~vajda/Leb/ will add to the dissemination of computer-
aided optimal quadratic and cubic Lagrange interpolation and may stimulate research
of the higher-degree polynomial cases, see Remark 7.5.

2. Definitions and basic theoretical background

Let C(I) denote the Banach space of continuous real functions f on I, equipped
with the uniform norm:

||f || = max
x∈I

|f(x)|. (2.1)

We wish to approximate f by an algebraic polynomial of degree at most n− 1, where
n ≥ 3. An old idea, named after Lagrange, see [19], is to sample f at n distinct points
in I,

Xn : −1 ≤ x1 < x2 < . . . < xn−1 < xn ≤ 1, (2.2)

and to construct an interpolating polynomial of degree at most n− 1 as follows:

Ln−1(x) = Ln−1(f,Xn, x) =
n
∑

j=1

f(xj)ℓn−1,j(Xn, x) (2.3)

where

ℓn−1,j(x) = ℓn−1,j(Xn, x) =

n
∏

i=1,i6=j

x− xi

xj − xi
, (2.4)

so that
ℓn−1,j(Xn, xi) = δj,i (Kronecker delta) (2.5)

and hence
Ln−1(xi) = f(xi), 1 ≤ i ≤ n (interpolatory condition) (2.6)

If ||f || ≤ 1 then (2.3) implies that |Ln−1(x)| can be estimated from above by
n
∑

j=1

|ℓn−1,j(Xn, x)| = λn(x) = λn(Xn, x). (2.7)

Definition 2.1. We call the xi’s in (2.2) the interpolation nodes and the grid Xn the
node system, the unique Ln−1 the Lagrange interpolation polynomial, the ℓn−1,j’s
(of exact degree n− 1) the Lagrange fundamental polynomials, and λn the Lebesgue
function (named after Lebesgue, see [34]).
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Three properties of λn are summarized in the following statement, see [4], [17], [28,
p. 95]:

Proposition 2.2.
i) λn is a piecewise polynomial satisfying λn(x) ≥ 1 with equality only if x = xi

(1 ≤ i ≤ n).
ii) λn has precisely one local maximum, which we will denote by µi = µi(Xn), in

each open sub-interval (xi, xi+1) of Xn (1 ≤ i ≤ n−1). The extremum point in
(xi, xi+1), at which the maximum µi is attained, we will denote by ξi = ξi(Xn)
so that λn(ξi) = µi holds.

iii) λn is strictly decreasing and convex in (−∞, x1) and strictly increasing and
convex in (xn,∞).

Definition 2.3. The largest value of λn in I, denoted by Λn = Λn(Xn), is called the
Lebesgue constant:

Λn = max
x∈I

λn(x). (2.8)

The importance of Λn in interpolation theory stems from the following inequality (“Er-
ror Comparison Theorem”) which can be viewed as a version of Lebesgue’s lemma,
but can also be proved directly [26, Theorem 4.1]:

||f − Ln−1|| ≤ (1 + Λn)||f − P ∗
n−1||, (2.9)

where f ∈ C(I), and P ∗
n−1 denotes the polynomial of best uniform approximation

to f out of the linear space of all algebraic polynomials of degree at most n − 1.
Usually, P ∗

n−1 is much harder to determine than Ln−1, and of course there always
holds ||f − P ∗

n−1|| ≤ ||f −Ln−1||. The estimate (2.9), which is sharp for some f , tells
us that a small Lebesgue constant implies that the approximation to f by the Lagrange
interpolation polynomial is nearly as good as the best uniform approximation to f by
means of P ∗

n−1. Therefore, it is desirable to minimize Λn which can be achieved by a
strategic placement of the interpolation nodes.
It is known [26, p. 100] that for each n ≥ 3 there exists, in I, an extremal (or optimal)
node system Xn = X∗

n : −1 ≤ x∗
1 < x∗

2 < · · · < x∗
n−1 < x∗

n ≤ 1 such that there holds

Λ∗
n = Λn(X

∗
n) ≤ Λn = Λn(Xn) for all possible choices of node systems Xn. (2.10)

Definition 2.4. The Lebesgue constant Λ∗
n is called minimal.

It is furthermore known that for a given n ≥ 3 an extremal node system is not unique,
see [17, Theorem 2], and there in particular exists an extremal node system which
includes the endpoints of I as interpolation nodes, see [26, p. 100]. Obviously, all
extremal node systems, for a given n, generate the same minimal Lebesgue constant.
We take the opportunity to amplify [17, Theorem 2] in the following way:

Theorem 2.5. For each n ≥ 3 there exist uncountable infinitely many optimal node
systems X∗

n : x∗
1 < x∗

2 < · · · < x∗
n−1 < x∗

n in I which all yield (2.10).

Definition 2.6. The construction of Ln−1(f,X
∗
n, x) is called optimal Lagrange poly-

nomial interpolation on I since it furnishes, for a given n, the minimal interpolation
error in the sense of (2.9).
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Definition 2.7. A node system which includes the endpoints of I as interpolation nodes
(that is, x1 = −1 and xn = 1) is called a canonical node system (abbreviated CNS).

In answering a conjecture which goes back to [3], it was proved in [8] and in [14] that
the following deep result holds true:

Proposition 2.8. If a Lebesgue function corresponding to a CNS Xn satisfies the so-
called equioscillation property

µ1 = µ2 = . . . = µn−2 = µn−1, (2.11)

then Xn is an extremal node system, i.e. Xn = X∗
n with Λn(X

∗
n) = Λ∗

n.

Thus, the fulfillment of (2.11) is a sufficient condition for a CNS to be extremal.
Actually, it was additionally proved that a CNS which satisfies (2.11) is unique and
zero-symmetric, i.e., x∗

i = −x∗
n−i+1 for 1 ≤ i ≤ n.

To the best of our knowledge, currently the optimal CNS Xn = X∗
n : −1 = −x∗

n <
−x∗

n−1 < · · · < x∗
n−1 < x∗

n = 1 and the associated minimal Lebesgue constant
Λ∗
n = Λ(X∗

n) are explicitly known only if n = 3 (X∗
3 : −1 < 0 < 1 and Λ∗

3 = 1.25, see
[3], [25], [27] or [33]), or if n = 4 (see next section).

In the next three sections we will focus on cubic interpolation on I by the Lagrange
interpolation polynomial L3, i.e., we set n = 4.

3. The optimal canonical node system and the minimal Lebesgue
constant for cubic Lagrange interpolation

We consider first optimal cubic Lagrange interpolation on a CNS. It must be
zero-symmetric if it has to be extremal, so that the goal is to find, analytically and
explicitly, the unique node x3 = x∗

3 = t in X4 : −1 = −x4 < −x3 < x3 < x4 = 1
which turns X4 into the unique extremal node system X∗

4 : −1 < −t < t < 1
and to determine the associated minimal Lebesgue constant Λ∗

4 = Λ4(X
∗
4 ) for cubic

Lagrange interpolation on I. This problem, which is also addressed in [21, Example
2.5.3] and [22, Exercise 4.10], has been solved in [23], [24] by means of roots of certain
cubic polynomials with integer coefficients: The minimal Lebesgue constant, Λ∗

4, is
the unique real root of the polynomial

P ∗
3 (x) = −11 + 53x− 93x2 + 43x3. (3.1)

This root can be explicitly expressed, with the aid of Cardan’s formula, as

Λ∗
4 =

1

129

(

93+
3

√

125172+11868
√
69+

3

√

125172−11868
√
69

)

(3.2)

= 1.4229195732 . . . . (3.3)

The square of the (unique positive) optimal node x∗
3 = t is the unique real root of the

polynomial

Q∗
3(x) = −1 + 2x+ 17x2 + 25x3. (3.4)
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Hence t itself can be explicitly expressed, with the aid of Cardan’s formula, as

t =
1

5
√
3

√

√

√

√−17 +
3

√

14699 + 1725
√
69

2
+

3

√

14699− 1725
√
69

2
(3.5)

= 0.4177913013 . . . , (3.6)

so that

X∗
4 : −1 < −t < t < 1, with t from (3.5), (3.7)

is the (unique and zero-symmetric) optimal CNS in I.
Furthermore, also the three extremum points ξi = ξ∗i , with ξ∗1 = −ξ∗3 < ξ∗2 = 0 < ξ∗3 ,
of the cubic Lebesgue function λ∗

4(x) = λ∗
4(X

∗
4 , x) are expressed in an analogous way

in [24], but we only provide here the numerical value ξ∗3 = 0.7331726239 . . . , see
Figure 1.

Figure 1

An analytical, but implicit, solution for t and Λ∗
4 had been provided earlier in

[29, p. 229], [30, Problem 6.43], see also [23]: t is the unique positive root of the
polynomial

S6(x) = Q∗
3(x

2) (3.8)

and

Λ∗
4 =

1 + t2

1− t2
. (3.9)

The polynomial (3.1) and the explicit expressions (3.2), (3.5) were not given there.
Numerical values for t and/or Λ∗

4 are given, for example, in [1], [2], [4], [11], [20], [21]
and [33].

4. Optimal zero-symmetric node systems for cubic Lagrange
interpolation

We consider next optimal cubic Lagrange interpolation on zero-symmetric node
systems in I.
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Problem 4.1. Find, analytically and explicitly, all optimal zero-symmetric node sys-
tems X∗

4 : −x∗
4 < −x∗

3 < x∗
3 < x∗

4 in I !

Our solution to this problem will be expressed by means of the already deployed
explicit constant t according to (3.5) and by means of a real parameter β ∈ [1, b]
where the right-hand endpoint b > 1 of that interval has still to be determined. We
will first state our solution to Problem 4.1 and then turn to the task of determining
the constant b.

Theorem 4.2. All optimal zero-symmetric node systems for the cubic Lagrange inter-
polation on I are given by X∗

4 : −x∗
4 < −x∗

3 < x∗
3 < x∗

4, where

−x∗
4 = − 1

β
, −x∗

3 = − t

β
, x∗

3 =
t

β
, x∗

4 =
1

β
. (4.1)

Here, t is given by (3.5) and β is an arbitrary number from the interval [1, b]. The
right-hand endpoint b > 1 of that interval will be specified implicitly and numerically
in Lemma 4.3, and explicitly in Lemma 4.4.

Note that the choice β = 1 takes us back to the optimal CNS as given in (3.7). For the
constant b in Theorem 4.2 we will now provide an implicit and an explicit analytical
description. However, both of them are intricate.

Lemma 4.3. The constant b in Theorem 4.2 can be expressed implicitly as the unique
positive root of the following polynomial of degree 18 with integer coefficients:

P18(x) = −121 + 220x− 1014x2 + 1344x3 + 3283x4 − 5166x5 + 4502x6 (4.2)

+ 15692x7 − 84178x8 + 7868x9 + 210676x10 − 25694x11 − 310732x12

+ 34154x13 + 255377x14 − 8450x15 − 124700x16 + 26875x18.

The numerical evaluation of this root by computer algebra systems yields

b = 1.0433133411 . . . . (4.3)

However, the computer algebra systems we have checked do not render the real root
b of P18 by means of radicals. But such an explicit representation of b is possible:

Lemma 4.4. The constant b in Theorem 4.2 can be expressed explicitly in terms of
radicals as follows:

b = b(t) =

(

t+ t3

2 + 2t
−
√

(−1

27

)

(1 + (−1 + t)t)3 +
(t+ t3)2

4(1 + t)2

)1/3

+

(

t+ t3

2 + 2t
+

√

(−1

27

)

(1 + (−1 + t)t)3 +
(t+ t3)2

4(1 + t)2

)1/3

, (4.4)

where t denotes the constant in (3.5), so that b still depends on t. Upon inserting the
value (3.5) for t, one obtains in place of (4.4) a non-parametric explicit expression for
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b which, however, is quite intricate:

b =

((

58 +

(

1

2

(

14699− 1725
√
69
)

)1/3

+

(

1

2

(

14699 + 1725
√
69
)

)1/3
)

(4.5)

/

(150+750
√(

6
/(

−34 + 22/3
(

14699− 1725
√
69
)1/3

+ 22/3
(

14699+1725
√
69
)1/3

)))

−√((
58 21/3 +

(

14699− 1725
√
69
)1/3

+
(

14699 + 1725
√
69
)1/3

)2
/

(

3750 22/3
(√

6 + 30
/(√(−34 + 22/3

(

14699− 1725
√
69
)1/3

+

22/3
(

14699 + 1725
√
69
)1/3

)))2
)

−
1

91125000

(

116 + 22/3
(

14699− 1725
√
69
)1/3

+ 22/3
(

14699 + 1725
√
69
)1/3 −

5
√(

6
(

−34 + 22/3
(

14699− 1725
√
69
)1/3

+

22/3
(

14699 + 1725
√
69
)1/3

)))3
))1/3

+
((

58 +
(

1
2

(

14699− 1725
√
69
))1/3

+
(

1
2

(

14699 + 1725
√
69
))1/3

)/

(150+750
√(

6
/(

−34 + 22/3
(

14699− 1725
√
69
)1/3

+ 22/3
(

14699+1725
√
69
)1/3

)))

+

√((
58 21/3 +

(

14699− 1725
√
69
)1/3

+
(

14699 + 1725
√
69
)1/3

)2
/

(

3750 22/3
(√

6 + 30
/(√(−34 + 22/3

(

14699− 1725
√
69
)1/3

+

22/3
(

14699 + 1725
√
69
)1/3

)))2
)

−
1

91125000

(

116 + 22/3
(

14699− 1725
√
69
)1/3

+ 22/3
(

14699 + 1725
√
69
)1/3 −

5
√(

6
(

−34 + 22/3
(

14699− 1725
√
69
)1/3

+ 22/3
(

14699 + 1725
√
69
)1/3

)))3
))1/3

The first few decimal digits of b read, more precisely as in (4.3), as follows:

b = 1.043313341111592913631086831954493674798479469403995 . . . . (4.6)

To give an example, we consider the shortest sub-interval [−x∗
4, x

∗
4] of I which allows

optimal cubic Lagrange interpolation. According to Theorem 4.2 we have to choose
β = b, so that we get, as a kind of counterpart to the CNS,

Example 4.5. The configuration

−x∗
4 = −1

b
, −x∗

3 = − t

b
, x∗

3 =
t

b
, x∗

4 =
1

b
(4.7)

is the unique optimal zero-symmetric node system in I with the shortest interval
length x∗

4 − (−x∗
4) =

2
b . The corresponding numerical values are:

−0.9584848200 . . .<−0.4004466202 . . .<0.4004466202 . . .<0.9584848200 . . . (4.8)
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and
2

b
= 1.9169696400 . . . . (4.9)

We note that (4.7) is also unique in having the property that the corresponding
Lebesgue function λ4(x) equioscillates on I most, that is, five (= n + 1) times, see
Figure 2.

Figure 2

It is interesting to remark that the analogous configuration for the quadratic

case (n = 3) is − 2
√
2

3 < 0 < 2
√
2

3 , and the corresponding Lebesgue function λ3(x)
equioscillates on I most, that is, four (= n + 1) times. The extremum points −1 <

−
√
2
3 <

√
2
3 < 1 in I of that particular λ3(x) were considered by Bernstein in [3] and

motivated him to state his famous equioscillation conjecture. We therefore call (4.7)
the Bernstein-type node system (BNS).

An analytical, but implicit, solution similar to (4.1) had been provided earlier in [29,
p. 229] (misprinted) and [30, Problem 6.43]: The optimal zero-symmetric nodes in I
are −a < −at < at < 1, where a ∈ [a0, 1] and t is, as before, the unique positive
root of the polynomial S6(x) = Q∗

3(x
2) and a0 is the unique positive root of the

(parameterized) polynomial

S3(x) = −(t+ 1) + (t3 + 1)x2 + (t3 + t)x3. (4.10)

However, Tureckii did not express t and a0 by radicals, and in [29, p. 229] the term
(t3+1)x2 of S3(x) was misprinted as (t3+1)x. We observe that the left-hand endpoint
a0 of the interval [a0, 1] coincides with

1
b , where the constant b is given in Lemma 4.3

and 4.4. After all, we point out that optimal zero-asymmetric node systems are not
mentioned in [29], [30], [31].

5. Optimal arbitrary node systems for cubic Lagrange interpolation

Finally we consider optimal cubic Lagrange interpolation on arbitrary (zero-
symmetric and zero-asymmetric) node systems in I.
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Problem 5.1. Find, analytically and explicitly, all optimal node systems X∗
4 : x∗

1 <
x∗
2 < x∗

3 < x∗
4 in I !

Our solution to this problem is twofold: Building on the already deployed constants b
in (4.4) and t in (3.5), the first solution describes all four optimal nodes by means of
two parameters, α ∈ [−b,−1] and β ∈ [1, b], whereas the second equivalent solution
gives only the selection range for the outer optimal nodes x∗

1 and x∗
4 and expresses

the inner optimal nodes x∗
2 and x∗

3 as functions of them. The first solution is similar
to the one given in [25], whereas the second solution is similar to the one given in
[27], for the quadratic case.

Theorem 5.2. All optimal node systems for the cubic Lagrange interpolation on I are
given by X∗

4 : x∗
1 < x∗

2 < x∗
3 < x∗

4, where

x∗
1=

−2−α−β

−α+ β
, x∗

2=
−2t−α−β

−α+ β
, x∗

3=
2t−α−β

−α+ β
, x∗

4=
2− α− β

−α+ β
, (5.1)

in which α ∈ [−b,−1] and β ∈ [1, b] are arbitrary numbers, and the constants b and t
are defined in (4.4) respectively (3.5).

Note that the choice α = −β takes us back to the zero-symmetric case (4.1). To
illustrate Theorem 5.2, we give an analytic example:

Example 5.3. Choose α = −1.04 ∈ [−b,−1] and β = 1.03 ∈ [1, b], say. According to
(5.1) we get

X∗
4 :x

∗
1=−199

207
<x∗

2=
100

207

(

1

100
−2t

)

<x∗
3=

100

207

(

1

100
+2t

)

<x∗
4=

201

207
(5.2)

which is an optimal (zero-asymmetric) node system in I. A little computation reveals
that indeed

max
x∈I

λ4(X
∗
4 , x)=Λ∗

4=
1

129

(

93+
3

√

125172+11868
√
69+

3

√

125172−11868
√
69

)

holds, e.g., λ4(X
∗
4 ,

1
207 ) = Λ∗

4 and λ′
4(X

∗
4 , x)|x= 1

207

= 0. The numerical values in (5.2)

read, after inserting t from (3.6):

x∗
1 = −0.9613526570 · · ·< x∗

2 = −0.3988321752 · · ·<
< x∗

3 = 0.4084940109 · · ·< x∗
4 = 0.9710144927 . . . . (5.3)

The corresponding Lebesgue function λ4(x) = λ4(X
∗
4 , x) is depicted in Figure 3.
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Figure 3

Our second solution to Problem 5.1 likewise builds on the deployed constants b in
(4.4) and t in (3.5). The two parameters α and β and their selection ranges are now
superseded by selection ranges for the two outer optimal nodes which, once fixed,
uniquely determine the corresponding two inner optimal nodes.

Theorem 5.4. (Alternative solution to Problem 5.1) All optimal node systems for the
cubic Lagrange interpolation on I are given by X∗

4 : x∗
1 < x∗

2 < x∗
3 < x∗

4, where either

−1 ≤ x∗
1≤−1

b
=−0.9584848200 . . . and

(

b− 1

b+ 1

)

x∗
1+

2

b+ 1
≤x∗

4≤1 (5.4)

or

−1

b
<x∗

1≤
b− 3

b+ 1
=−0.9576047978 . . . and

(

b+ 1

b− 1

)

x∗
1+

2

b− 1
≤x∗

4≤1 (5.5)

with

x∗
2 =

(

1 + t

2

)

x∗
1 +

(

1− t

2

)

x∗
4, (5.6)

and with

x∗
3 =

(

1− t

2

)

x∗
1 +

(

1 + t

2

)

x∗
4. (5.7)

When the outer optimal nodes x∗
1 and x∗

4 vary in their respective ranges (5.4) and
(5.5), then also the ranges of the inner optimal nodes x∗

2 and x∗
3 are exhausted. That

ranges are substantiated in the next statement.

Theorem 5.5. The two inner optimal nodes x∗
2 and x∗

3 in Theorem 5.4 may vary within
the ranges

−1

b+ 1
(2t+b−1)=−0.4301327291 . . .≤x∗

2≤
−1

b+ 1
(2t−b+1)=−0.3877375269 . . . (5.8)

and

1

b+ 1
(2t− b+1)=0.3877375269 · · · ≤x∗

3≤
1

b+ 1
(2t+ b− 1)=0.4301327291 . . . (5.9)
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To illustrate Theorems 5.4 and 5.5 we give a numerical example which can be turned
into an analytical one:

Example 5.6. Choose x∗
1 = −0.99, say. Then one gets, according to (5.4),

0.9578167738 · · · ≤ x∗
4 ≤ 1. Choose now x∗

4 = 0.96, say. This implies, according
to (5.6) and (5.7), x∗

2 = −0.4223465188 . . . and x∗
3 = 0.3923465188 . . . . Hence these

four numerical values constitute a zero-asymmetric optimal node system for the cubic
Lagrange interpolation on I. The associated Lebesgue function is depicted in Figure
4. It is readily verified that this specific optimal node system corresponds to (5.1) if
we insert there α = − 197

195 = −1.0102564102 . . . and β = 203
195 = 1.0410256410 . . . . In

particular, the two inner nodes can thus be expressed explicitly as x∗
2 = 1

200 (−195t−3)

and x∗
3 = 1

200 (195t− 3).

Figure 4

The somewhat curious description of the ranges of the two outer optimal nodes x∗
1 and

x∗
4 in Theorem 5.4 can be given a geometric visualization by a 2D-quadrilateral whose

one 1D-diagonal represents the zero-symmetric node systems (ZSNS) (4.1). The two
endpoints of that diagonal are represented by the CNS (3.7) and by the BNS (4.7).
The quadrilateral itself is not quite a square, rather two of its sides (the lower one
and the right one) can be expressed as line segments of linear functions g (flat) and
h (steep) of the variable x∗

1, see (5.4) and (5.5):

g(x∗
1) =

(

b− 1

b+ 1

)

x∗
1 +

2

b+ 1
= 0.0211976010 . . . x∗

1 + 0.9788023989 . . . (5.10)

and

h(x∗
1) =

(

b+ 1

b− 1

)

x∗
1 +

2

b− 1
= 47.1751494729 . . . x∗

1 + 46.1751494729 . . . . (5.11)

The graphical representation is given in Figure 5.



Optimal cubic Lagrange interpolation 163

Figure 5

We are not aware of any published studies that provide explicit analytical solutions
to the problem of determining all optimal node systems in the frame of optimal
polynomial Lagrange interpolation on I with polynomials of degree ≥ 4 (i.e., n ≥ 5),
notwithstanding that this large project is vibrant, see [5], and also Remark 7.5 below.
The results for the polynomial degree = 3 as obtained in [23], [24], and [30, Problem
6.43] do not cover zero-asymmetric node systems. Thus the present paper seems to
be the first one where, for the polynomial degree = 3, all optimal node systems in I
have been determined, explicitly and analytically. For the polynomial degree = 2 this
has been achieved in [25] and in [27].

6. Proofs

6.1. Proof of Theorem 2.5

Proof. Let λ∗
n(x) = λ∗

n(X
∗
n, x) denote the Lebesgue function corresponding to the

optimal CNS X∗
n : −1 = −x∗

n = x∗
1 < −x∗

n−1 = x∗
2 < · · · < x∗

n−1 < x∗
n = 1 in

I. We know that λ∗
n(±1) = 1 and that λ∗

n(x) is strictly decreasing resp. increasing
in (−∞,−1) and (1,∞), see Proposition 2.2. As Λ∗

n > 1, there exist unique values
x = cn < −1 resp. x = bn > 1 with the property λ∗

n(cn) = λ∗
n(bn) = Λ∗

n. Hence,
maxx∈[cn,bn] λ

∗
n(x) = Λ∗

n and in particular maxx∈[α,β] λ
∗
n(x) = Λ∗

n for any subinterval
[α, β] of [cn, bn] which covers I. Choose now an arbitrary α ∈ [cn,−1] and an arbitrary
β ∈ [1, bn] and consider the linear transformation

S(x) =
1

−α+ β
(2x− α− β) (6.1)

which maps [α, β] onto I, because S(α) = −1 and S(β) = 1. In particular, the nodes
of the optimal CNS X∗

n (which is contained in [α, β]) will be mapped as follows:
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S(−1) = y∗1 =
1

−α+ β
(−2− α− β)

S(−x∗
n−1) = y∗2 =

1

−α+ β
(−2x∗

n−1 − α− β)

. . .

S(x∗
n−1) = y∗n−1 =

1

−α+ β
(2x∗

n−1 − α− β)

S(1) = y∗n =
1

−α+ β
(2− α− β). (6.2)

As S(x) has the positive slope 2
−α+β , these images are ordered ascendingly in I:

Y ∗
n = Y ∗

n,α,β : y∗1 < y∗2 · · · < y∗n−1 < y∗n. (6.3)

We proceed to show that Y ∗
n is an extremal node system (with minimal Lebesgue

constant) in I. To this end, we observe that, for y ∈ I and x ∈ [α, β], we have

λn(Y
∗
n , y) =

n
∑

j=1

n
∏

i=1

i6=j

|y − y∗i |
|y∗j − y∗i |

=

n
∑

j=1

n
∏

i=1

i6=j

|S(x)− S(x∗
i )|

|S(x∗
j )− S(x∗

i )|
=

=
n
∑

j=1

n
∏

i=1

i6=j

| 1
−α+β (2x−α−β)− 1

−α+β (2x
∗
i −α−β)|

| 1
−α+β (2x

∗
j−α−β)− 1

−α+β (2x
∗
i −α−β)|=

n
∑

j=1

n
∏

i=1

i6=j

|x− x∗
i |

|x∗
j − x∗

i |
=

= λ∗
n(x), (6.4)

and hence

max
y∈I

λn(Y
∗
n , y) = max

x∈[α,β]
λ∗
n(x) = Λ∗

n,

see also [21, Theorem 2.5.3] and [6, Problem 1, p. 22]. Thus, Y ∗
n = Y ∗

n,α,β is indeed
an optimal node system in I, and since α and β were chosen arbitrarily, there exist
uncountable infinitely many such Y ∗

n ’s. �

6.2. Proof of Theorem 4.2

Proof. The statement is a corollary to Theorem 5.2: insert there α = −β. �

6.3. Proof of Theorem 5.2

Proof. The Lebesgue function λ∗
4(x) = λ∗

4(X
∗
4 , x) which corresponds to the optimal

CNS X∗
4 in (3.7) is readily found to be given by

λ∗
4(x) = |ℓ31(x)| + |ℓ32(x)|+ |ℓ33(x)| + |ℓ34(x)| = (6.5)

= |(−t− x)(−1 + x)(−t+ x)/(2(−1− t)(−1 + t))|+
|(−1 + x)(1 + x)(−t+ x)/(2(−1− t)(1 − t)t)|+
|(−1 + x)(1 + x)(t+ x)/(2(−1 + t)t(1 + t))|+
|(1 + x)(−t+ x)(t+ x)/(2(1 − t)(1 + t))|,

where t is defined in (3.5).



Optimal cubic Lagrange interpolation 165

For x ∈ (1,∞), λ∗
4(x) is strictly increasing and is representable there as

λ∗
4(x) = −ℓ31(x) + ℓ32(x) − ℓ33(x) + ℓ34(x) =

x(1 − t+ t2 − x2)

(−1 + t)t
. (6.6)

Let x = b > 1 denote the unique point on the x-axis where λ∗
4(x) intercepts with the

constant function f(x) = Λ∗
4, see (3.2). A numerical solution of the equation λ∗

4(x)−
Λ∗
4 = 0 is the value b given in (4.3). The expression of b as explicit analytical solution

we will provide below (see the proof of Lemma 4.4). Similarly, for x ∈ (−∞,−1),
λ∗
4(x) is strictly decreasing and is representable there as

λ∗
4(x) = ℓ31(x) − ℓ32(x) + ℓ33(x) − ℓ34(x) =

x(−1 + t− t2 + x2)

(−1 + t)t
, (6.7)

so that x = −b < −1 denotes the unique point on the x-axis where λ∗
4(x) inter-

cepts with the constant function f(x) = Λ∗
4. Thus we have, on the interval [−b, b]

as well as on any subinterval [α, β] thereof which covers I, maxx∈[−b,b] λ
∗
4(x) = Λ∗

4 =
maxx∈I λ

∗
4(x). We now apply the linear transformation (6.1) to X∗

4 in (3.7) with ar-
bitrary α ∈ [−b,−1] and arbitrary β ∈ [1, b], and thus get (5.1), after renaming y∗i to
x∗
i , i = 1, 2, 3, 4 (see the proof of Theorem 2.5). In this way we generate uncountable

infinitely many extremal node systems x∗
1 < x∗

2 < x∗
3 < x∗

4 in I, and in fact we so
obtain all extremal node systems in I.

For let X0
4 : x0

1 < x0
2 < x0

3 < x0
4 be an arbitrary extremal node system in I. The linear

transformation T (x) =
2x−x0

1
−x0

4

−x0

1
+x0

4

maps X0
4 onto I since T (x0

1) = −1 and T (x0
4) = 1.

Since its slope 2
−x0

1
+x0

4

is positive, the mapped values are ordered ascendingly, that

is X0
4,T : −1 = T (x0

1) < T (x0
2) < T (x0

3) < T (x0
4) = 1, and hence X0

4,T is a CNS in

I. The Lebesgue constant corresponding to X0
4 (which equals Λ∗

4 as given in (3.2)) is
identical with the one corresponding to X0

4,T , see the proof of Theorem 2.5 or [21,

Theorem 2.5.3] or [6, Problem 1, p. 22]. But this implies that X0
4,T is necessarily the

unique CNS X∗
4 on I, as given in (3.7). In particular we thus have T (x0

2) = −t and
T (x0

3) = t, and this implies, by the definition of T (x), x0
2 =

(

1+t
2

)

x0
1 +

(

1−t
2

)

x0
4 and

x0
3 =

(

1−t
2

)

x0
1 +

(

1+t
2

)

x0
4, where t is from (3.5).

With this information at hand we proceed as follows: The linear transformation S from

(6.1) with α = α0 =
−2−x0

4
−x0

1

x0

4
−x0

1

and β = β0 =
2−x0

4
−x0

1

x0

4
−x0

1

maps the optimal CNS X∗
4 onto

x0
1 < x0

2 < x0
3 < x0

4. Indeed, S(−1) = x0
1 and S(1) = x0

4 as is immediately verified.
Furthermore we get S(−t) =

(

1+t
2

)

x0
1+
(

1−t
2

)

x0
4 and S(t) =

(

1−t
2

)

x0
1+
(

1+t
2

)

x0
4, and

these values are identical with x0
2 and x0

3 as shown above.

It remains to show that α0 ∈ [−b,−1] and β0 ∈ [1, b]. We will prove it by symbolic
computation employing the built-in language symbols InterpolatingPolynomial and
Resolve in Mathematica R© as well as Mathematica R©-specific notation. Furthermore,
we will use the fact that λn(±1) ≤ Λ∗

n, see Proposition 2.2. Assume that the variable
LF contains the Lebesgue function corresponding to the node system in (5.1). This
can be defined e.g. in Mathematica R© as follows:
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LF=
Abs[InterpolatingPolynomial[
{{x1[α, β], 1}, {x2[α, β], 0}, {x3[α, β], 0}, {x4[α, β], 0}}, x]] +
Abs[InterpolatingPolynomial[
{{x1[α, β], 0}, {x2[α, β], 1}, {x3[α, β], 0}, {x4[α, β], 0}}, x]] +
Abs[InterpolatingPolynomial[
{{x1[α, β], 0}, {x2[α, β], 0}, {x3[α, β], 1}, {x4[α, β], 0}}, x]] +
Abs[InterpolatingPolynomial[
{{x1[α, β], 0}, {x2[α, β], 0}, {x3[α, β], 0}, {x4[α, β], 1}}, x]].

Denote the the specific parameter values α0 and β0 by

α0 =
−2− x4− x1

x4− x1
β0 =

2− x4− x1

x4 − x1
. (6.8)

Then one gets, with Λ = Λ∗
4 as given in (3.2) and (3.9) and b as given in (4.2) and

(4.5),
[in:]

Resolve[ForAll[{x1, x4}, (−1 ≤ x1 < x4 ≤ 1∧
(LF/.x → −1) ≤ Λ ∧ (LF/.x → 1) ≤ Λ/.{α → α0, β → β0})
⇒
(−b ≤ α0 ≤ −1 ∧ 1 ≤ β0 ≤ b)],Reals] (6.9)

[out:] True. �

6.4. Proof of Lemma 4.3

Proof. We want to determine the point x = b > 1 on the x-axis where λ∗
4(x) intercepts

with the constant function f(x) = Λ∗
4 (see the proof of Theorem 5.2). To this end,

we employ a computer algebra system. The built-in language symbol RootReduce
of Mathematica R© immediately gives, in view of (3.1), (3.4) and (6.6), the claimed
polynomial of degree 18:

[in:]

RootReduce[x/.Solve[x(1− t+ t2 − x2)/((−1 + t)t) ==

Root[−11 + 53#1− 93#12 + 43#13&, 1]

/.t → Root[−1 + 2#12 + 17#14 + 25#16&, 2], x,Reals]] (6.10)

[out:]

{Root[−121 + 220#1− 1014#12 + 1344#13 + 3283#14 − 5166#15+

4502#16 + 15692#17 − 84178#18 + 7868#19 + 210676#110−
25694#111 − 310732#112 + 34154#113 + 255377#114−
8450#115 − 124700#116 + 26875#118&, 2]}. (6.11)

This polynomial P18 can also be deduced in a reverse way: If one employs in
Mathematica R© the built-in language symbol FullSimplify to the explicit expression
(4.5), then one gets (6.11). �
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6.5. Proof of Lemma 4.4

Proof. The equation

x(1 − t+ t2 − x2)/((−1 + t)t) =
1 + t2

1− t2
(6.12)

see (3.9) and (6.6), amounts to the following cubic algebraic equation in x:

(t+ t3) + (1 + t3)x+ (−1− t)x3 = 0. (6.13)

Solving (6.13) with the aid of Cardan’s formula yields the (parametric) solution
x = b = b(t) as given in (4.4). Inserting then into (4.4) the value for the constant t
according to (3.5) and simplifying eventually gives (4.5). The said algebraic manipu-
lations can be executed by pencil and paper, but it is more convenient to guide them
by a computer algebra system. �

6.6. Proof of Theorem 5.4

Proof. To prove (5.4) and (5.5), we use quantifier elimination to eliminate the existen-
tially quantified variables α and β from the parametric representation of x∗

1 = x∗
1(α, β)

and x∗
4 = x∗

4(α, β), taking into account the range of α and β, see Theorem 5.2. This
elimination can be executed by means of the built-in language symbol Resolve in
Mathematica R©:

[in :]

Resolve[Exists[{α, β},
(

b > 1 ∧ −b ≤ α ≤ −1 ∧ 1 ≤ β ≤ b∧
x∗
1(β − α) == −2−α−β ∧ x∗

4(β − α) == 2−α−β
)

], {x∗
1, x

∗
4},Reals]

[out :]

b > 1 ∧
(

(−1 ≤ x∗
1 ≤ −1

b
∧ 2− x∗

1 + bx∗
1

1 + b
≤ x∗

4 ≤ 1)∨

(−1

b
< x∗

1 ≤ −3 + b

1 + b
∧ 2 + x∗

1 + bx∗
1

−1 + b
≤ x∗

4 ≤ 1)
)

, (6.14)

which coincides with (5.4) and (5.5). To prove (5.6) and (5.7), consider the parametric
representation of the optimal nodes x∗

i = x∗
i (α, β), i = 1, 2, 3, 4 in (5.1). Computing

now
(

1+t
2

)

x∗
1(α, β) +

(

1−t
2

)

x∗
4(α, β) and

(

1−t
2

)

x∗
1(α, β) +

(

1+t
2

)

x∗
4(α, β) gives imme-

diately (5.6) and (5.7). �

6.7. Proof of Theorem 5.5

Proof. According to (5.7), the node x∗
3 = x∗

3(x
∗
1, x

∗
4) =

(

1−t
2

)

x∗
1 +

(

1+t
2

)

x∗
4 is a bi-

variate polynomial which is linear in both variables x∗
1 and x∗

4. Hence x∗
3(x

∗
1, x

∗
4) will

attain its extreme values on the boundary of the ranges of x∗
1 and x∗

4, so that it suffices
to investigate the values of x∗

3(x
∗
1, x

∗
4) at five points, see (5.4), (5.5) and also Figure 5:

x∗
3

(

−1,
3− b

b+ 1

)

=
2t− b + 1

b+ 1
= 0.3877375269 . . . (6.15)

x∗
3(−1, 1) = t = 0.4177913013 . . . (6.16)

x∗
3

(−1

b
,
1

b

)

=
t

b
= 0.4004466202 . . . (6.17)
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x∗
3

(−1

b
, 1

)

=
−1 + b + bt+ t

2b
= 0.4298765508 . . . (6.18)

x∗
3

(

b− 3

b− 1
, 1

)

=
2t+ b− 1

b+ 1
= 0.4301327291 . . . . (6.19)

Obviously, (6.15) is the minimum and (6.19) is the maximum of x∗
3 = x∗

3(x
∗
1, x

∗
4) as

claimed in (5.9). The verification of (5.8) follows similar lines and will be left to the
reader. �

7. Concluding remarks

Remark 7.1. Let n = 4. According to (4.7), the largest possible value for the first
optimal interpolation node in I is x∗

1 = − 1
b = −0.9584848200 . . . , if we consider zero-

symmetric node systems. But if we allow arbitrary node configurations, then we can
get beyond this number: the largest possible value for the first optimal interpolation
node in I is in fact x∗

1 = b−3
b+1 = −0.9576047978 . . . , see (5.5).

Remark 7.2. According to section 6.6, Schurer’s description in [27, Theorem 1] of
the optimal arbitrary node systems X∗

3 : x∗
1 < x∗

2 < x∗
3 for quadratic Lagrange

interpolation on I can be restated almost verbatim in the form as given in our Theorem
5.4, if we replace in (5.4) and (5.5) x∗

4 by x∗
3 and if we replace the constant b =

1.0433133411 . . . by the corresponding constant b◦ = 3
2
√
2
= 1.0606601717 . . . . For

example, (5.4) would then read

−1 ≤ x∗
1 ≤ − 1

b◦
(≈−0.9428) ∧

(

b◦ − 1

b◦ + 1

)

x∗
1 +

2

b◦ + 1
≤ x∗

3 ≤ 1 (7.1)

which is identical with

−1 ≤ x∗
1 ≤ −2

√
2

3
(≈−0.9428) ∧ (17− 12

√
2)x∗

1 + 12
√
2− 16 ≤ x∗

3 ≤ 1 (7.2)

as given in [27]. Note that in the quadratic case we have x∗
2 =

x∗
1
+x∗

3

2 .

Remark 7.3. The proof of Theorem 5.4 rests on Theorem 5.2. We have also found
an alternative, computer-aided proof of Theorem 5.4 which avoids Theorem 5.2. It
uses quantifier elimination and can be compared with section 3.5 in [25]. However,
to reduce computational complexity, this automated proof requires a reduction of the
variables by means of

x∗
2 = x∗

1 + x∗
4 − x∗

3. (7.3)

This equation, which is of some interest in itself, follows readily from Theorem 5.2,
but, to stay independent of that theorem, we had to establish an alternative new proof
for (7.3).

Remark 7.4. Suppose one chooses x∗
1 = c (constant) and x∗

4 = d (constant) from the
indicated ranges (5.4) respectively (5.5) in Theorem 5.4. Then one gets, in generalizing

Example 5.6, α = −2−c−d
d−c and β = 2−c−d

d−c , and hence x∗
2 = c+d+t(c−d)

2 and x∗
3 =

c+d+t(d−c)
2 , according to Theorem 5.2, or directly from (5.6) and (5.7).



Optimal cubic Lagrange interpolation 169

Remark 7.5. The natural question arises: How to determine the minimal Lebesgue
constant Λ∗

n and all optimal node systems X∗
n in I for the next cases n = 5, 6, 7, . . . ?

We have achieved some progress for n = 5 and n = 6. For example, we have implicitly
determined the Lebesgue constants Λ∗

5 and Λ∗
6 by symbolic computation as roots

of certain high-degree polynomials with integer coefficients. To be more specific, for
n = 5 (quartic case) we have obtained

Λ∗
5 = 1.5594902098 . . . (7.4)

as a root of a polynomial of degree 73 with integer coefficients. This polynomial has
the contour

P ∗
73(x) = (7.5)

491920844066918518676932058679834515105631225977247880376611328125 + . . .

+14156651510438131445849849962417864414147142283963792181670336004096 x
73
.

We intend to expose our findings in a separate manuscript, see also [32].

Remark 7.6. That the topic of optimal cubic Lagrange interpolation awakens interest
in the reader may be deduced from the fact that the online-version of [23] on the
publishers website has received more than 60 article views subject to charge, see
http://www.tandfonline.com/doi/abs/10.1080/0020739840150312

Remark 7.7. The desire to precisely determine the values of interesting constants
(here: b, t, Λ∗

4) is reflected on in [12, p. 79].

Remark 7.8. In [10, p. 70] it is erroneously claimed that an optimal node system in
I must necessarily be a CNS.
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[11] Ehm, W., Beiträge zur Theorie optimaler Interpolationspunkte, (in German), Doctoral
Dissertation, Universität Münster, 1977.

[12] Glaisher, J.W.L., Logarithms and computation, The Napier Tercentenary (Napier Ter-
centenary Memorial Volume), C.G. Knott (Ed.), Longmans, Green & Co., London, 1915.

[13] Henry, M.S., Approximation by polynomials: Interpolation and optimal nodes, Am. Math.
Mon., 91(1984), 497-499.

[14] Kilgore, Th.A., A characterization of the Lagrange interpolating projection with minimal
Tchebycheff norm, J. Approx. Theory, 24(1978), 273-288.

[15] Lorentz, G.G., Jetter, K., Riemenschneider, S.D., Birkhoff interpolation, Cambridge
University Press, Cambridge, UK, 1984.

[16] Lubinsky, D.S., A taste of Erdös on interpolation, in: Paul Erdös and his mathematics,
Vol. I, G. Halász, L. Lovász, M. Simonovits, V.T. Sós (Eds.), (Budapest, 1999), 423-454,
Bolyai Soc. Math. Stud. 11, J. Bolyai Math. Soc., Budapest and Springer, New York,
2002.

[17] Luttmann, F.W., Rivlin, Th.J., Some numerical experiments in the theory of polynomial
interpolation, IBM J. Res. Develop., 9(1965), 187-191.
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