On some generalizations of Nadler's contraction principle

Iulia Coroian

Abstract

The purpose of this work is to present some generalizations of the well known Nadler's contraction principle. More precisely, using an axiomatic approach of the Pompeiu-Hausdorff metric we will study the properties of the fractal operator generated by a multivalued contraction.

Mathematics Subject Classification (2010): $47 \mathrm{H} 25,54 \mathrm{H} 10$.
Keywords: H^{+}-type multivalued mapping, Lipschitz equivalent metric, multivalued operator, contraction.

1. Introduction

Let (X, d) be a metric space and $\mathcal{P}(\mathrm{X})$ be the set of all subsets of X . Consider the following families of subsets of X :
$\mathrm{P}(\mathrm{X}):=\{\mathrm{Y} \in \mathcal{P}(\mathrm{X}) \mid \mathrm{Y} \neq \emptyset\}, P_{b, c l}(\mathrm{X}):=\{\mathrm{Y} \in \mathcal{P}(\mathrm{X}) \mid \mathrm{Y}$ is bounded and closed $\}$
The following (generalized) functionals are used in the main sections of the paper.

1. The gap functional generated by d :

$$
D_{d}: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, D_{d}(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\}
$$

2. The diameter generalized functional:

$$
\delta: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \delta(A, B)=\sup \{d(a, b) \mid a \in A, b \in B\}
$$

3. The excess generalized functional:

$$
\rho_{d}: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \rho_{d}(A, B)=\sup \{D(a, B) \mid a \in A\}
$$

4. The Pompeiu-Hausdorff generalized functional:

$$
H_{d}: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, H_{d}(A, B)=\max \left\{\sup _{a \in A} D_{d}(a, B), \sup _{b \in B} D_{d}(b, A)\right\}
$$

[^0]5. The H^{+}-generalized functional:
$$
H^{+}: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, H^{+}(A, B):=\frac{1}{2}\{\rho(A, B)+\rho(B, A)\}
$$

Let (X, d) be a metric space. If $T: X \rightarrow P(X)$ is a multivalued operator, then $x \in X$ is called fixed point for T if and only if $x \in T(x)$. The following concepts are well-known in the literature.

Definition 1.1. [7] Let (X, d) be a metric space. A mapping $T: X \rightarrow P_{b, c l}(X)$ is called a multivalued contraction if there exist a constant $k \in(0,1)$ such that:

$$
H_{d}(T(x), T(y)) \leq k d(x, y), \text { for all } x, y \in X
$$

Definition 1.2. [5] Let X be a nonempty set and d, ρ two metrics on X. Then, by definition, d, ρ are called strongly(or Lipschitz) equivalent if there exists $c_{1}, c_{2}>0$ such that:

$$
c_{1} \rho(x, y) \leq d(x, y) \leq c_{2} \rho(x, y), \text { for all } x, y \in X
$$

Definition 1.3. [7] Let (X, d) be a metric space. Then, by definition, the pair $\left(d, H_{d}\right)$ has the property $\left(p^{*}\right)$ if for $q>1$, for all $A, B \in P(X)$ and any $a \in A$, there exists $b \in B$ such that:

$$
d(a, b) \leq q H_{d}(A, B)
$$

Definition 1.4. [6] Let (X, d) be a metric space. $T: X \rightarrow P_{b, c l}(x)$ is called $H_{d}-$ upper semi-continuous in $x_{0} \in X$ (H_{d}-u.s.c) respectively $H_{d}-$ lower semi-continuous ($H_{d}-$ l.s.c) if and only if for each sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x_{0}
$$

we have

$$
\lim _{n \rightarrow \infty} \rho_{d}\left(T\left(x_{n}\right), T\left(x_{0}\right)\right)=0 \text { respectively } \lim _{n \rightarrow \infty} \rho_{d}\left(T\left(x_{0}\right), T\left(x_{n}\right)\right)=0
$$

2. Main results

Concerning the functional H^{+}defined below, we have the following properties.
Lemma 2.1. [2] H^{+}is a metric on $P_{b, c l}(X)$.
Lemma 2.2. [1] We have the following relations:

$$
\begin{equation*}
\frac{1}{2} H_{d}(A, B) \leq H^{+}(A, B) \leq H_{d}(A, B), \text { for all } A, B \in P_{b, c l}(X) \tag{2.1}
\end{equation*}
$$

(i.e., H_{d} and H^{+}are strongly equivalent metrics).

Proposition 2.3. [2] Let $(X,\|\cdot\|)$ be a normed linear space. For any λ (real or complex), $A, B \in P_{b, c l}(X)$

1. $H^{+}(\lambda A, \lambda B)=|\lambda| H^{+}(A, B)$.
2. $H^{+}(A+a, B+a)=H^{+}(A, B)$.

Theorem 2.4. [2] If $a, b \in X$ and $A, B \in P_{b, c l}(X)$, then the relations hold:

1. $d(a, b)=H^{+}(\{a\},\{b\})$.
2. $A \subset \bar{S}\left(B, r_{1}\right), B \subset \bar{S}\left(A, r_{2}\right) \Rightarrow H^{+}(A, B) \leq r$ where $r=\frac{r_{1}+r_{2}}{2}$.

Theorem 2.5. [2] If the metric space (X, d) is complete, then $\left(P_{b, c l}(X), H^{+}\right)$and $\left(P_{b, c l}(X), H_{d}\right)$ are complete too.
Definition 2.6. [2] Let (X, d) be a metric space. A multivalued mapping $T: X \rightarrow$ $P_{b, c l}(x)$ is called $\left(H^{+}, k\right)$-contraction if

1. there exists a fixed real number $k, 0<k<1$ such that for every $x, y \in X$

$$
H^{+}(T(x), T(y)) \leq k d(x, y)
$$

2. for every x in X, y in $T(x)$ and $\varepsilon>0$, there exists z in $T(y)$ such that

$$
d(y, z) \leq H^{+}(T(y), T(x))+\varepsilon
$$

Theorem 2.7. [2] Let (X, d) be a complete metric space, $T: X \rightarrow P_{b, c l}(X)$ be a multivalued $\left(H^{+}, k\right)$ contraction. Then FixT $\neq \emptyset$.
Remark 2.8. [1] If T is a multivalued k-contraction in the sense of Nadler then T is a multivalued $\left(H^{+}, k\right)$-contraction but not viceversa.
Example 2.9. Let $X=\left\{0, \frac{1}{2}, 2\right\}$ and $d: X \times X \rightarrow \mathbb{R}$ be a standard metric. Let $T: X \rightarrow P_{b, c l}(X)$ be such that

$$
T(x)= \begin{cases}\left\{0, \frac{1}{2}\right\}, & \text { for } x=0 \\ \{0\}, & \text { for } x=\frac{1}{2} \\ \{0,2\}, & \text { for } x=1\end{cases}
$$

Then T is a $\left(H^{+}, \mathrm{k}\right)$ contraction (with $k \in\left[\frac{2}{3}, 1\right)$) but is not an k - contraction in the sense of Nadler, since

$$
H_{d}(T(0), T(2))=H_{d}\left(\left\{0, \frac{1}{2}\right\},\{0,2\}\right)=2 \leq k d(0,2)=2 k \Rightarrow k \geq 1
$$

which is a contradiction with our assumption that $k<1$.
Theorem 2.10. [3] (Nadler) Let (X, d) be a metric space and $T: X \rightarrow P_{c p}(X)$ be a multivalued contraction. Then

$$
\begin{equation*}
H_{d}(T(A), T(B)) \leq k H_{d}(A, B) \text { for all } A, B \in P_{c p}(X) \tag{2.2}
\end{equation*}
$$

Lemma 2.11. [4] Let (X, d) be a metric space and $A, B \in P_{c p}(X)$.
Then for all $a \in A$ there exists $b \in B$ such that

$$
d(a, b) \leq H_{d}(A, B)
$$

Theorem 2.12. Let (X, d) be a metric space and $T: X \rightarrow P_{c p}(X)$ for which there exists $k>0$ such that:

$$
H_{d}(T(x), T(y)) \leq k d(x, y), \text { for all } x, y \in X
$$

Then

$$
H^{+}(T(A), T(B)) \leq 2 k H^{+}(A, B) \text { for all } A, B \in P_{c p}(X)
$$

Proof. Let $A, B \in P_{c p}(X)$.
From (2.2) we have $\rho(T(A), T(B)) \leq k H_{d}(T(A), T(B))$
Combining the previous result and $\operatorname{Lemma}(2.2)$ we obtain

$$
\begin{equation*}
\rho_{d}(T(A), T(B)) \leq k H_{d}(A, B) \leq 2 k H^{+}(A, B) \tag{2.3}
\end{equation*}
$$

Interchanging the roles of A and B, we get

$$
\begin{equation*}
\rho_{d}(T(B), T(A)) \leq k H_{d}(B, A) \leq 2 k H^{+}(B, A) \tag{2.4}
\end{equation*}
$$

Adding (2.3) and (2.4), and then dividing by 2 , we get

$$
H^{+}(T(A), T(B)) \leq 2 k H^{+}(A, B)
$$

Let us recall the relations between u.s.c and $H_{d}-u . s . c$ of a multivalued operator. If (X, d) is a metric space, then $T: X \rightarrow P_{c p}(X)$ is u.s.c on X if and only if T is $H_{d}-u . s . c$.

Theorem 2.13. Let (X, d) be a metric space and $T: X \rightarrow P_{c p}(X)$ be a multivalued $\left(H^{+}, k\right)$-contraction. Then
(a) T is H_{d}-l.s.c and u.s.c on X.
(b) for all $A \in P_{c p}(X) \Rightarrow T(A) \in P_{c p}(X)$
(c) there exists $k>0$ such that

$$
H^{+}(T(A), T(B)) \leq 2 k H^{+}(A, B) \text { for all } A, B \in P_{c p}(X)
$$

Proof. (a) Let $x \in X$ such that $x_{n} \rightarrow x$. We have:

$$
\rho_{d}\left(T(x), T\left(x_{n}\right)\right) \leq H_{d}\left(T(x), T\left(x_{n}\right)\right) \leq 2 \cdot H^{+}\left(T(x), T\left(x_{n}\right) \leq 2 k \cdot d\left(x, x_{n}\right) \rightarrow 0\right.
$$

In conclusion, T is H_{d}-l.s.c on X .
Using the relation:

$$
\rho_{d}\left(T\left(x_{n}\right), T(x)\right) \leq H_{d}\left(T\left(x_{n}\right), T(x)\right) \leq 2 \cdot H^{+}\left(T\left(x_{n}\right), T(x) \leq 2 k \cdot d\left(x, x_{n}\right) \rightarrow 0\right.
$$

we obtain that T is H_{d}-u.s.c on X .
(b) Let $A \in P_{c p}(X)$. From (a) we obtain the conclusion.
(c) If $u \in T(A)$, then there exists $a \in A$ such that $u \in T(a)$.

From Lemma 2.11 we have that there exists $b \in T(B)$ such that

$$
d(a, b) \leq H_{d}(A, B) \leq 2 H^{+}(A, B)
$$

Since

$$
\begin{equation*}
D(u, T(B)) \leq D(u, T(b)) \leq \rho_{d}(T(a), T(b)) \tag{2.5}
\end{equation*}
$$

taking $\sup _{u \in T(A)}$ in (2.5), we have

$$
\begin{equation*}
\rho_{d}(T(A), T(B)) \leq \rho_{d}(T(a), T(b)) \tag{2.6}
\end{equation*}
$$

Interchanging the roles of A and B, we get

$$
\begin{equation*}
\rho_{d}(T(B), T(A)) \leq \rho_{d}(T(a), T(b)) \tag{2.7}
\end{equation*}
$$

Adding (2.6) and (2.7), and then dividing by 2 , we get for all $A, B \in P_{c p}(X)$ the following result:

$$
H^{+}(T(A), T(B)) \leq H^{+}(T(a), T(b)) \leq k d(a, b) \leq 2 k H^{+}(A, B)
$$

As a consequence of the previous result we obtain the following fixed set theorem for a multivalued contraction with respect to H^{+}.

Theorem 2.14. Let (X, d) be a complete metric space and $T: X \rightarrow P_{c p}(X)$ be a multivalued operator for which there exists $k \in\left[0, \frac{1}{2}\right)$ such that

$$
H^{+}(T(x), T(y)) \leq k d(x, y), \text { for all } x, y \in X
$$

Then, there exists a unique $A^{*} \in P_{c p}(X)$ such that $T\left(A^{*}\right)=A^{*}$.
Proof. From Theorem 2.13 we obtain that:

$$
H^{+}(T(A), T(B)) \leq 2 k H^{+}(A, B), \text { for all } A, B \in P_{c p}(X)
$$

Since $k<\frac{1}{2}$ we obtain that T is a $2 k$-contraction on the complete metric space $\left(P_{c p}(X), H^{+}\right)$. By Banach contraction principle we get the conclusion.

In the second part of this section, we will study when the property $\left(p^{*}\right)$ given in Definition 1.3 can be translated between equivalent metrics on a nonempty set X.

Lemma 2.15. Let X be a nonempty set, d_{1}, d_{2} two Lipschitz equivalent metrics such that there exists $c_{1}, c_{2}>0$ with $c_{1} \leq c_{2}$ i.e

$$
\begin{equation*}
c_{1} d_{1}(x, y) \leq d_{2}(x, y) \leq c_{2} d_{1}(x, y), \text { for all } x, y \in X \tag{2.8}
\end{equation*}
$$

If the pair $\left(d_{1}, H_{d_{1}}\right)$ has the property $\left(p^{*}\right)$, then the pair $\left(d_{2}, H_{d_{2}}\right)$ has the property $\left(p^{*}\right)$.

Proof. Let c_{1}, c_{2} such that

$$
\begin{equation*}
c_{1} d_{1}(a, b) \leq d_{2}(a, b) \leq c_{2} d_{1}(a, b) \text { for all } a \in A, b \in B \tag{2.9}
\end{equation*}
$$

and for all $q>1$, for all $A, B \in P(X)$ and for all $a \in A$, there exists $b^{*} \in B$ such that

$$
\begin{equation*}
d_{1}\left(a, b^{*}\right) \leq q H_{d_{1}}(A, B) \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10) we obtain:

$$
d_{2}\left(a, b^{*}\right) \leq c_{2} d_{1}\left(a, b^{*}\right) \leq c_{2} q H_{d_{1}}(A, B)
$$

If, in $c_{1} d_{1}(a, B) \leq d_{2}(a, B)$ we take $\inf _{b \in B}$, then

$$
c_{1} D_{d_{1}}(a, B) \leq D_{d_{2}}(a, B) \mid \sup _{a \in A} \Leftrightarrow c_{1} \rho_{d_{1}}(A, B) \leq \rho_{d_{2}}(A, B) .
$$

In a similar way,

$$
c_{1} \rho_{d_{1}}(B, A) \leq \rho_{d_{2}}(B, A)
$$

Taking maximum, we get

$$
c_{1} H_{d_{1}}(A, B) \leq H_{d_{2}}(A, B)
$$

Therefore,

$$
d_{2}\left(a, b^{*}\right) \leq \frac{c_{2}}{c_{1}} q H_{d_{2}}(A, B)
$$

which means that there exists $b^{\prime}=b^{*} \in B$ such that

$$
d_{2}\left(a, b^{*}\right) \leq q_{1} H_{d_{2}}(A, B),
$$

where $q_{1}:=\frac{c_{2}}{c_{1}} q>1$.
Lemma 2.16. Let X be a nonempty set, d_{1}, d_{2} two metrics on X such that:

$$
\begin{equation*}
\text { there exists } c>0: d_{2}(x, y) \leq c d_{1}(x, y) \text { for all } x, y \in X \tag{2.11}
\end{equation*}
$$

and G_{1}, G_{2} two metrics on $P_{b, c l}(X)$ such that:
there exists $e>0: e G_{d_{1}}(A, B) \leq G_{d_{2}}(A, B)$, for all $A, B \in P_{b, c l}(X)$
with $e \leq c$. If the pair $\left(d_{1}, G_{1}\right)$ has the property $\left(p^{*}\right)$ then, the property $\left(p^{*}\right)$ is also true for the pair $\left(d_{2}, G_{2}\right)$.

Proof. Let $A, B \in P_{b, c l}(X)$. The pair $\left(d_{1}, G_{d_{1}}\right)$ has the property $\left(p^{*}\right)$ i.e for all $q>1$ and for all $a \in A$ there exists $b^{*} \in B$ such that

$$
\begin{equation*}
d_{1}\left(a, b^{*}\right) \leq q H_{d_{1}}(A, B) \tag{2.13}
\end{equation*}
$$

From (2.11), (2.12) and (2.13) we obtain:

$$
d_{2}\left(a, b^{\prime}\right) \leq c d_{1}\left(a, b^{\prime}\right) \leq c q G_{d_{1}}(A, B) \leq \frac{c}{e} q G_{d_{2}}(A, B)
$$

Therefore,

$$
d_{2}\left(a, b^{\prime}\right) \leq \frac{c}{e} q G_{d_{2}}(A, B)
$$

which means that there exists $b=b^{\prime} \in B$ such that

$$
d_{2}(a, b) \leq q_{1} G_{d_{2}}(A, B)
$$

where $q_{1}:=\frac{c}{e} q>1$ i.e the pair $\left(d_{2}, G_{d_{2}}\right)$ has the property $\left(p^{*}\right)$.
Lemma 2.17. Let X be a nonempty set, d_{1}, d_{2} two metrics on X such that:

$$
\begin{equation*}
\text { there exists } c>0: d_{2}(x, y) \leq c d_{1}(x, y) \text { for all } x, y \in X \tag{2.14}
\end{equation*}
$$

and G_{1}, G_{2} two metrics on $P_{b, c l}(X)$ such that:
there exists $e>0: G_{d_{2}}(A, B) \leq e G_{d_{2}}(A, B)$, for all $A, B \in P_{b, c l}(X)$
with $c \cdot e<1$. If the pair $\left(d_{1}, G_{d_{2}}\right)$ has the property $\left(p^{*}\right)$ then, the property $\left(p^{*}\right)$ is also true for the pair $\left(d_{2}, G_{d_{1}}\right)$.
Proof. Let $A, B \in P_{b, c l}(X)$. The pair $\left(d_{1}, G_{d_{2}}\right)$ has the property $\left(p^{*}\right)$ i.e for all $q>1$ and for all $a \in A$ there exits $b^{*} \in B$ such that

$$
\begin{equation*}
d_{1}\left(a, b^{*}\right) \leq q G_{d_{2}}(A, B) \tag{2.16}
\end{equation*}
$$

From (2.14), (2.15) and (2.16) we obtain:

$$
d_{2}\left(a, b^{\prime}\right) \leq c d_{1}\left(a, b^{\prime}\right) \leq c q G_{d_{2}}(A, B) \leq c \cdot e \cdot q G_{d_{1}}(A, B)
$$

Therefore,

$$
d_{2}\left(a, b^{\prime}\right) \leq c \cdot e \cdot q G_{d_{2}}(A, B)
$$

which means that, there exists $b=b^{\prime} \in B$ such that

$$
d_{2}(a, b) \leq q_{1} G_{d_{2}}(A, B)
$$

where $q_{1}:=c \cdot e \cdot q>1$ i.e the pair $\left(d_{2}, G_{d_{1}}\right)$ has the property $\left(p^{*}\right)$.
In the next part of this paper we will give some general abstract results for the metric space $P_{b, c l}(X)$.

Let (X, d) be a metric space, $U \subset P(X)$ and $\Psi: U \rightarrow \mathbb{R}_{+}$. We define some functionals on $U \times U$ as follows:

1. Let $x^{*} \in X, U \subset P_{b}(X)$

$$
G_{\Psi_{1}}(A, B)= \begin{cases}0, & A=B \\ \Psi_{1}(A)+\Psi_{1}(B), & A \neq B\end{cases}
$$

where $\Psi_{1}(A):=\delta\left(A, x^{*}\right)$.
2. Let $U:=P_{b}(X)$ and $A^{*} \in P_{b}(X)$

$$
G_{\Psi_{2}}(A, B)= \begin{cases}0, & A=B \\ \Psi_{2}(A)+\Psi_{2}(B), & A \neq B\end{cases}
$$

Where $\Psi_{2}(A)=H_{d}\left(A, A^{*}\right)$.
Lemma 2.18. Let (X, d) be a metric space and $T: X \rightarrow P_{c p}(X)$ and $A, B \in P_{c p}(X)$. Let

$$
G_{\Psi_{1}}(A, B)= \begin{cases}0, & A=B \\ \Psi_{1}(A)+\Psi_{1}(B), & A \neq B\end{cases}
$$

Where $\Psi_{1}(A)=\delta\left(A, A^{*}\right), A^{*} \in P_{c p}(X)$. Then $G_{\Psi_{1}}$ is a metric on $P_{c p}(X)$.
Proof. We shall prove that the three axioms of the metric hold:
a) $G_{\Psi_{1}}(A, B) \geq 0$ for all $A, B \in P_{c p}(X)$
$G_{\Psi_{1}}(A, B)=\delta\left(A, A^{*}\right)+\delta\left(B, A^{*}\right) \geq 0$
$G_{\Psi_{1}}(A, B)=0 \Leftrightarrow A=B$.
This is equivalent to $\Psi_{1}(A)=0$ and $\Psi_{1}(B)=0$ i.e

$$
\delta\left(A, A^{*}\right)=0 \text { and } \delta\left(B, A^{*}\right)=0 \Leftrightarrow A=A^{*} \text { and } B=A^{*} \Rightarrow A=B
$$

b) $G_{\Psi_{2}}(A, B)=G_{\Psi_{2}}(B, A)$ is quite obviously.
c) For the third axiom of the metric, let consider $A, B, C \in P_{c p}(X)$. We need to show that:

$$
\begin{gathered}
G_{\Psi_{1}}(A, C) \leq G_{\Psi_{1}}(A, B)+G_{\Psi}(B, C) \Leftrightarrow \\
\Leftrightarrow \Psi_{1}(A)+\Psi_{1}(C) \leq \Psi_{1}(A)+\Psi_{1}(B)+\Psi_{1}(B)+\Psi_{1}(C) \Leftrightarrow \\
\Leftrightarrow 0 \leq 2 \Psi_{1}(B)=\delta\left(B, A^{*}\right) \text { which is true. }
\end{gathered}
$$

Lemma 2.19. If (X, d) is a complete metric space, then $\left(P_{c p}(X), G_{\Psi_{1}}\right)$ is complete metric space.
Proof. We will prove that each Cauchy sequence in $\left(P_{c p}(X), G_{\Psi_{1}}\right)$ is convergent. Let $\left(A_{n}\right)_{n \in \mathbb{N}},\left(A_{m}\right)_{m \in \mathbb{N}} \in P_{c p}(X)$, we have:

$$
\begin{gathered}
G_{\Psi_{1}}\left(A_{n}, A_{m}\right) \rightarrow 0, m, n \rightarrow 0 \Leftrightarrow \delta\left(A_{n}, A^{*}\right)+\delta\left(A_{m}, A^{*}\right) \rightarrow 0 \Rightarrow \\
\Rightarrow \delta\left(A_{n}, A^{*}\right) \rightarrow 0 .
\end{gathered}
$$

Therefore,

$$
G_{\Psi_{1}}\left(A_{n}, A^{*}\right)=\delta\left(A_{n}, A^{*}\right)+\delta\left(A^{*}, A^{*}\right) \rightarrow 0, n \rightarrow 0
$$

Lemma 2.20. Let (X, d) be a metric space and $T: X \rightarrow P_{c p}(X)$ and $A, B \in P_{c p}(X)$. Let

$$
G_{\Psi_{1}}(A, B)= \begin{cases}0, & A=B \\ \Psi_{1}(A)+\Psi_{1}(B), & A \neq B\end{cases}
$$

where $\Psi_{1}: P_{c p}(X) \rightarrow \mathbb{R}_{+}, \Psi_{1}(A)=\delta\left(A, A^{*}\right)$ with $A^{*} \in P_{c p}(X)$. Then, the pair $\left(d, G_{\Psi_{1}}\right)$ has the property $\left(p^{*}\right)$.

Proof. We have to show

$$
\begin{aligned}
& d(a, b) \leq q G_{\Psi_{1}}(A, B) \Longleftrightarrow d(a, b) \leq q\left(\Psi_{1}(A)+\Psi_{1}(B)\right) \Leftrightarrow \\
& \Leftrightarrow d(a, b) \leq q\left(\delta\left(A, A^{*}\right)+\delta\left(A, A^{*}\right)\right)
\end{aligned}
$$

Suppose, by absurdum, that there exists $a \in A$ and there exists $q>1$ such that for all $b \in B$ we have:

$$
d(a, b)>q\left(\delta\left(A, A^{*}\right)+\delta\left(B, A^{*}\right)\right)
$$

Then, $\delta(A, b) \geq d(a, b)>q\left(\delta\left(A, A^{*}\right)+\delta\left(B, A^{*}\right)\right)$.
Then, taking $\sup _{b \in B}$, we obtain:

$$
\delta\left(A, A^{*}\right)+\delta\left(A^{*}, B\right) \leq \delta(A, B) \geq q\left(\delta\left(A, A^{*}\right)+\delta\left(B, A^{*}\right)\right)
$$

which is a contradiction with $q>1$.
Theorem 2.21. Let (X, d) be a metric space and $T: X \rightarrow P_{c p}(X)$ be a multivalued operator for which there exists $k \in(0,1)$ such that

$$
\delta(T(x), T(y) \leq k d(x, y)
$$

For all $A, B \in P_{c p}(X)$ we consider

$$
G_{\Psi_{1}}(A, B)= \begin{cases}0, & A=B \\ \Psi_{1}(A)+\Psi_{1}(B), & A \neq B\end{cases}
$$

where $\Psi_{1}: P_{c p}(X) \rightarrow \mathbb{R}_{+}, \Psi_{1}(A)=\delta\left(A, A^{*}\right)$ (with $A^{*} \in P_{c p}(X)$ is a given set satisfying $A^{*}=T\left(A^{*}\right)$). Then,

$$
G_{\Psi_{1}}(T(A), T(B)) \leq k G_{\Psi_{1}}(A, B) \text { for all } A, B \in P_{c p}(X)
$$

Proof. We shall prove that for each $A, B \in P_{c p}(X)$ we have

$$
\begin{equation*}
\left.\delta\left(T(A), A^{*}\right)+\delta\left(T(B), A^{*}\right) \leq k\left(\delta\left(A, A^{*}\right)\right)+\delta\left(B, A^{*}\right)\right) \tag{2.17}
\end{equation*}
$$

Since $A^{*}=T\left(A^{*}\right)$, we have:

$$
\delta\left(A^{*}, T(A)\right)+\delta\left(A^{*}, T(B)\right)=\delta\left(T\left(A^{*}\right), T(A)\right)+\delta\left(T\left(B^{*}\right), T(B)\right)
$$

Since

$$
\delta(T(a), T(b)) \leq k d(a, b) \text { for all } a \in A \text { and } b \in B
$$

We have (taking $\left.\sup _{a \in A, b \in B}\right)$ that

$$
\delta(T(A), T(B)) \leq k \delta(A, B)
$$

We obtain:

$$
\begin{aligned}
\delta\left(A^{*}, T(A)\right) & +\delta\left(A^{*}, T(B)\right)=\delta\left(T\left(A^{*}\right), T(A)\right)+\delta\left(T\left(A^{*}\right), T(B)\right) \\
& \leq k \delta\left(A^{*}, A\right)+k \delta\left(A^{*}, B\right)=k G_{\psi_{1}}(A, B)
\end{aligned}
$$

which means:

$$
G_{\Psi_{1}}(T(A), T(B)) \leq k G_{\Psi_{1}}(A, B) \text { for all } A, B \in P_{c p}(X)
$$

Lemma 2.22. Let (X, d) be a metric space and $T: X \rightarrow P_{c p}(X)$ and $A, B \in P_{c p}(X)$. Let

$$
G_{\Psi_{2}}(A, B)= \begin{cases}0, & A=B \\ \Psi_{2}(A)+\Psi_{2}(B), & A \neq B\end{cases}
$$

where $\Psi_{2}: P_{c p}(X) \rightarrow \mathbb{R}_{+}, \Psi_{2}(A)=H_{d}\left(A, A^{*}\right)$ with $A^{*} \in P_{c p}(X)$. Then $G_{\Psi_{2}}$ is a metric on $P_{c p}(X)$.

Proof. We shall prove that the three axioms of the metric hold:
a) $G_{\Psi_{2}}(A, B) \geq 0$ for all $A, B \in P_{c p}(X)$
$G_{\Psi_{2}}(A, B)=H_{d}\left(A, A^{*}\right)+H_{d}\left(B, A^{*}\right) \geq 0$
$G_{\Psi_{2}}(A, B)=0 \Leftrightarrow A=B$.
This is equivalent to $\Psi_{2}(A)=0$ and $\Psi_{2}(B)=0$ i.e

$$
H_{d}\left(A, A^{*}\right)=0 \text { and } H_{d}\left(B, A^{*}\right)=0 \Leftrightarrow A=A^{*} \text { and } B=A^{*} \Rightarrow A=B
$$

b) $G_{\Psi_{2}}(A, B)=G_{\Psi_{2}}(B, A)$ is quite obviously. c) For the third axiom of the metric, let consider $A, B, C \in P_{c p}(X)$. We need to show that:

$$
\begin{gathered}
G_{\Psi_{2}}(A, C) \leq G_{\Psi_{2}}(A, B)+G_{\Psi_{2}}(B, C) \Leftrightarrow \\
\Leftrightarrow \Psi_{2}(A)+\Psi_{2}(C) \leq \Psi_{2}(A)+\Psi_{2}(B)+\Psi_{2}(B)+\Psi_{2}(C) \Leftrightarrow \\
\Leftrightarrow 0 \leq 2 \Psi_{2}(B)=2 H_{d}\left(B, A^{*}\right) \text { which is true. }
\end{gathered}
$$

Lemma 2.23. If (X, d) is a complete metric space, then $\left(P_{c p}(X), G_{\Psi_{2}}\right)$ is complete metric space.

Proof. We will prove that each Cauchy sequence in $\left(P_{c p}(X), G_{\Psi_{2}}\right)$ is convergent. Let $\left(A_{n}\right)_{n \in \mathbb{N}},\left(A_{m}\right)_{m \in \mathbb{N}} \in P_{c p}(X)$, we have:

$$
\begin{aligned}
& G_{\Psi_{2}}\left(A_{n}, A_{m}\right) \rightarrow 0, m, n \rightarrow 0 \Leftrightarrow H_{d}\left(A_{n}, A^{*}\right)+H_{d}\left(A_{m}, A^{*}\right) \rightarrow 0 \Leftrightarrow \\
& \Leftrightarrow H_{d}\left(A_{n}, A^{*}\right) \rightarrow 0
\end{aligned}
$$

Therefore,

$$
G_{\Psi_{2}}\left(A_{n}, A^{*}\right)=H_{d}\left(A_{n}, A^{*}\right)+H_{d}\left(A^{*}, A^{*}\right) \rightarrow 0, n \rightarrow 0 .
$$

Theorem 2.24. Let (X, d) be a metric space and $T: X \rightarrow P_{c p}(x)$ be a multivalued contraction with respect to H_{d} and $A, B \in P_{c p}(X)$. Let

$$
G_{\Psi_{2}}(A, B)= \begin{cases}0, & A=B \\ \Psi_{2}(A)+\Psi_{2}(B), & A \neq B\end{cases}
$$

Where $\Psi_{2}: P_{c p}(X) \rightarrow \mathbb{R}_{+}, \Psi_{2}(A)=H_{d}\left(A, A^{*}\right)$ (with $A^{*} \in P_{c p}(X)$ is a given set satisfying $\left.A^{*}=T\left(A^{*}\right)\right)$. Then, there exists $k \in(0,1)$ such that

$$
G_{\Psi_{2}}(T(A), T(B)) \leq k G_{\Psi_{2}}(A, B) \text { for all } A, B \in P_{c p}(X)
$$

Proof. We shall prove that for each $A, B \in P_{c p}(X)$ we have

$$
\left.H_{d}\left(T(A), A^{*}\right)+H_{d}\left(T(B), A^{*}\right) \leq k\left(H_{d}\left(A, A^{*}\right)\right)+H_{d}\left(B, A^{*}\right)\right)
$$

From (2.2) we have $\rho_{d}(T(A), T(B)) \leq H_{d}(T(A), T(B))$.
Then

$$
\rho_{d}\left(T(A), A^{*}\right)=\rho_{d}\left(T(A), T\left(A^{*}\right)\right) \leq H_{d}\left(T(A), T\left(A^{*}\right)\right) \leq k H_{d}\left(A, A^{*}\right)
$$

Interchanging the roles of A and B, we get

$$
\rho_{d}\left(A^{*}, T(A)\right)=\rho_{d}\left(T\left(A^{*}\right), T(A)\right) \leq H_{d}\left(T\left(A^{*}\right), T(A)\right) \leq k H_{d}\left(A^{*}, A\right)
$$

Making maximum, we get

$$
\begin{equation*}
H_{d}\left(T(A), A^{*}\right) \leq k H_{d}\left(A, A^{*}\right) \tag{2.18}
\end{equation*}
$$

Similarly for $B \in P_{c p}(X)$, we have

$$
\begin{equation*}
H_{d}\left(T(B), A^{*}\right) \leq k H_{d}\left(B, A^{*}\right) \tag{2.19}
\end{equation*}
$$

Adding (2.18) and (2.19) we get:

$$
\left.H_{d}\left(T(A), A^{*}\right)+H_{d}\left(T(B), A^{*}\right) \leq k\left(H_{d}\left(A, A^{*}\right)\right)+H_{d}\left(B, A^{*}\right)\right)
$$

which means:

$$
G_{\Psi_{2}}(T(A), T(B)) \leq k G_{\Psi_{2}}(A, B) \text { for all } A, B \in P_{c p}(X)
$$

Lemma 2.25. Let (X, d) be a metric space and $T: X \rightarrow P_{c p}(X)$ and $A, B \in P_{c p}(X)$. Let

$$
G_{\Psi_{2}}(A, B)= \begin{cases}0, & A=B \\ \Psi_{2}(A)+\Psi_{2}(B), & A \neq B\end{cases}
$$

where $\Psi_{2}: P_{c p}(X) \rightarrow \mathbb{R}_{+}, \Psi_{2}(A)=H_{d}\left(A, A^{*}\right)$ with $A^{*} \in P_{c p}(X)$. Then, the pair $\left(d, G_{\psi_{2}}\right)$ has the property $\left(p^{*}\right)$.
Proof. We have to show

$$
\begin{gathered}
d(a, b) \leq q G_{\Psi_{2}}(A, B) \Longleftrightarrow d(a, b) \leq q\left(\Psi_{2}(A)+\Psi_{2}(B)\right) \Leftrightarrow \\
\Leftrightarrow d(a, b) \leq q\left(H_{d}\left(A, A^{*}\right)+H_{d}\left(A, A^{*}\right)\right)
\end{gathered}
$$

Supposing again contrary: there exists $q>1$ and there exists $a \in A$ such that for all $b \in B$ we have:

$$
d(a, b)>q\left(H_{d}\left(A, A^{*}\right)+H_{d}\left(B, A^{*}\right)\right)
$$

Then, taking $\inf _{b \in B}$

$$
H_{d}(A, B) \geq \rho_{d}(A, B) \geq D(a, B) \geq q\left(H_{d}\left(A, A^{*}\right)+H_{d}\left(B, A^{*}\right)\right)
$$

But

$$
H_{d}\left(A, A^{*}\right)+H_{d}\left(A^{*}, B\right) \geq H_{d}(A, B) \geq q\left(H_{d}\left(A, A^{*}\right)+H_{d}\left(B, A^{*}\right)\right)
$$

Hence $q \leq 1$, a contradiction.

References

[1] Kirk, W.A., Shahzad, N., Remarks on metrics transform and fixed point theorems, Fixed Point Theory and Applications, 2013. Article ID 9612004682934060.
[2] Pathak, H.K., Shahzad, N., A new fixed point result and its application to existence theorem for nonconvex Hammerstein type integral inclusions, Electronic J. of Qual. Th. of Diff. Eq., 62(2012), 1-13.
[3] Nadler, Jr., S.B., Multi-valued contraction mappings, Pacific J. Math., 30(1969), no. 2, 475-487.
[4] Moţ, G., Petruşel, A., Petruşel, G., Topics in Nonlinear Analysis and Applications to Mathematical Economics, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2007.
[5] Petruşel, A., Rus, I.A., Şerban, M.A., The role of equivalent metrics in fixed point theory, Topol. Meth. Nonlinear Anal., 41(2013), 85-112.
[6] Rus, I.A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.
[7] Rus, I.A., Petruşel, A., Petruşel, G., Fixed Point Theory, Cluj University Press, 2008.

Iulia Coroian

Babeş-Bolyai University
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street, 400084 Cluj-Napoca, Romania
e-mail: coroian.iulia@gmail.com

[^0]: This paper was presented at the 10th Joint Conference on Mathematics and Computer Science (MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.

