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Coincidence point and fixed point theorems
for rational contractions
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Abstract. The purpose of this work is to present some coincidence point theorems
for singlevalued and multivalued rational contractions. A comparative study of
different rational contraction conditions is also presented. Our results extend
some recent theorems in the literature.
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1. Introduction

In this first section, for the convenience of the reader, we will recall the standard
terminologies and notations in non-linear analysis. See, for example [4], [11], [6], [9].

Let (X, d) be a metric space, x0 ∈ X and r > 0.

Denote B̃(x0, r) := {x ∈ X|d(x0, x) ≤ r} the closed ball centered at x0 with
radius r.

If S : X → X is an operator, then we denote by F (S) := {x ∈ X|x = S(x)} the
fixed point set of S.

An operator f : Y ⊆ X → Y is said to be an α-contraction if α ∈ [0, 1] and
d(f(x), f(y)) ≤ αd(x, y), for all x, y ∈ Y .

Definition 1.1. Let (X,≤) be an partially ordered set and A, B be two nonempty
subsets of X. Then we will wrote A ≤s B if and only for all a ∈ A exists b ∈ B
satisfying a ≤ b.

We denote by P (X) the family of all nonempty subsets of X. Also Pp(X) will
denote the family of all nonempty subsets of X having the property ”p”, where ”p”
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could be: b = bounded, cl = closed, cp = compact etc. We consider the following
functionals:

D : P (X)× P (X)→ R+, D(A,B) = inf{d(a, b)|a ∈ A, b ∈ B}
ρ : Pb(X)× Pb(X)→ R+, ρ(A,B) = {sup{D(a,B)|a ∈ A}

H : Pb(X)× Pb(X)→ R+, H(A,B) = max{sup
a∈A

D(a,B), sup
b∈B

D(b, A)}.

Definition 1.2. Let (X,�) be a partially ordered set and T : X → P (X) be a multi-
valued mapping, satisfying the following implication

x � y ⇒ Tx �s Ty.
Then T is said to be increasing.

Definition 1.3. ([6]) A function ψ : R+ → R+ := [0,+∞) is called an altering distance
function if the following properties are satisfied:

(Ψ1) ψ(t) = 0⇔ t = 0.
(Ψ2) ψ is monotonically non-decreasing.
(Ψ3) ψ is continuous.

By Ψ we denote the set of all altering distance functions.

The following theorem is an result proved by B.K. Das and S Gupta, in 1975.

Theorem 1.4. Let (X, d) be a metric space and let S : X → X be a given mapping
such that,

i) there exist a, b ∈ R∗+ with a+ b < 1 for which d(Sx, Sy) ≤ ad(x, y) + bm(x, y)
for all x, y ∈ X where

m(x, y) = d(y, Sy)
1 + d(x, Sx)

1 + d(x, y)
.

ii) there exists x0 ∈ X, such that the sequence of iterates (Snx0) has a subse-
quence (Snkx0) with lim

k→∞
(Snkx0) = z0. Then z0 is the unique fixed point of S.

Definition 1.5. Let S be a self mapping of a metric space (M,d) with a nonempty fixed
point set F (S). Then S is said to satisfy the property (P ) if F (S) = F (Sn) for each
n ∈ N.

Definition 1.6. Let (X,�) be a partially ordered set endowed with a metric d on X.
We say that X is regular if and only if the following hypothesis holds:
If {zn} is an non-decreasing sequence in X with respect to � such that lim

n→∞
zn = z ∈

X then zn � z for all n ∈ N.

Definition 1.7. Let (X, d) a complete metric space, with T : X → Pcl(X) and R :
X → X. Then C(R, T ) = {x ∈ X|Rx ∈ Tx} is called the coincidence point set of S
and T . We say that a point x ∈ X is a coincidence point of R and T if Rx = Tx.

We will denote by F (T ) the fixed point set for T and by SF (T ) the strict fixed
point set of T .

If Y is a nonempty subset of X and T : Y → P (X) is a multivalued operator,
then by definition, an element x ∈ Y is said to be:
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(i) a fixed point of T if and only if x ∈ T (x);
(ii) a strict fixed point of T if and only if x = T (x).
The following result appeared in [9].

Theorem 1.8. ([9]) Let (X,�) be a partially ordered set equipped with a metric d on
X such that (X, d) is a complete metric space. Let T,R : X → X be two mappings
satisfying( for pair (x, y) ∈ X ×X where in Rx and Ry are comparable),

d(Tx, Ty) ≤ αd(Rx, Tx) · d(Ry, Ty)

1 + d(Rx,Ry)
+ βd(Rx,Ry) (1.1)

where α, β are non-negative real numbers with α+ β < 1. Suppose that
a) X is regular and T is weakly increasing with R.
b) the pair (R, T ) is commuting and weakly reciprocally continuous.

Then R and T have a coincidence point.

On the other hand, in [2] the following local fix point theorem for multivalued
contraction is given.

Theorem 1.9. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Let T :

B̃(x0; r)→ Pcl(X) be a multivalued α- contraction such that D(x0, T (x0)) < (1−α)r.
Then F (T ) 6= ∅.

We also mention that the following fixed point theorem, for the so called multi-
valued rational contractions was presented in [10], as follows.

Theorem 1.10. Let (X, d) a complete metric space and T : X → Pcl(X) be a multi-
valued operator such that exists α, β ≥ 0 with α+ β < 1 satisfying

H(Tx, Ty) ≤ αD(y, Ty)[1 +D(x, Tx)]

1 + d(x, y)
+ βd(x, y), for all x, y ∈ X. (1.2)

Then T has a fixed point.

The purpose of this paper is twofold. First we will extend Theorem 1.8 for the
case of multivalued operators. Secondly, we will present a local fixed point theorem
for multivalued rational conractions.

2. Main results

Our first main result is the following coincidence point theorem.

Theorem 2.1. Let (X, d) be a complete metric space. Let T : X → Pcl(X) and R :
X → X be two operators satisfying

ρ(Tx, Ty) ≤ αD(Ry, Ty)[1 +D(Rx, Tx)]

1 + d(Rx,Ry)
+ βd(Rx,Ry),∀x, y ∈ X (2.1)

where α, β are some non-negative real numbers with α + β < 1. Suppose that R is
continuous and T (X) ⊂ R(X). Then R and T have a coincidence point.
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Proof. Let x0 ∈ X be arbitrary. Since T (x0) ⊂ T (X) ⊂ R(X), there exists x1 ∈ X
such that R(x1) ∈ T (x0). For R(x1) ∈ T (x0) and T (x1), by well-known property of
the functional ρ, for any q > 1, there exists u1 ∈ T (x1) such that

d(Rx1, u1) ≤ qρ(Tx0, Tx1).

Since u1 ∈ T (x1) ⊂ T (X) ⊂ R(X) there exists x2 ∈ X such that u1 = R(x2) ∈ T (x1).
Thus

d(Rx1, Rx2) ≤ qρ(Tx0, Tx1) ≤ q
[
αD(Rx1, Tx1)[1 +D(Rx0, Tx0)]

1 + d(Rx0, Rx1)
+ βd(Rx0, Rx1)

]
≤ q

[
αd(Rx1, Rx2)[1 + d(Rx0, Rx1)]

1 + d(Rx0, Rx1)
+ βd(Rx0, Rx1)

]
.

Hence

(1− qα)d(Rx1, Rx2) ≤ qβd(Rx0, Rx1)

and so

d(Rx1, Rx2) ≤ qβ

1− qα
d(Rx0, Rx1).

Now, for R(x2) ∈ T (x1) and T (x2), for the same arbitrary q > 1, there exists u2 ∈
T (x2) such that

d(Rx2, u2) ≤ qρ(Tx1, Tx2).

Again, since u2 ∈ T (x2) ⊂ T (X) ⊂ R(X) there exists x3 ∈ X such that u2 = R(x3) ∈
T (x2). In this case, by a similar procedure, we obtain

d(Rx2, Rx3) ≤ qβ

1− qα
d(Rx1, Rx2) ≤

(
qβ

1− qα

)2

d(Rx0, Rx1).

By this procedure, we obtain a sequence un := R(xn+1) ∈ T (xn), n ∈ N∗ such that

d(Rxn, Rxn+1) ≤ qρ(Txn−1, Rxn)

and

d(Rxn, Rxn+1) ≤
(

qβ

1− qα

)n
d(Rx0, Rx1). (2.2)

By choosing 1 < q < 1
α+β , we obtain thus r := qβ

1−qα < 1.

By (2.2) we get that the sequence (Rxn)n∈N∗ is Cauchy in the complete metric
space (X, d). Thus, there exists x∗ such that Rxn → x∗, n → ∞. We will show that
x∗ is a coincidence point for R and T (i.e. Rx∗ ∈ Tx∗).

We estimate

D(Rx∗, Tx∗) = inf
y∈Tx∗

d(Rx∗, y) ≤ d(Rx∗, R(Rxn)) + inf
y∈Tx∗

d(R(Rxn), y)

≤ d(Rx∗, R(Rxn)) +D(Rxn+1, Tx
∗) ≤ d(Rx∗, R(Rxn)) + ρ(Txn, Tx

∗)

≤ d(Rx∗, R(Rxn)) +
αD(Rx∗, Tx∗)[1 +D(Rxn, Txn)]

1 +D(Rxn, Rx∗)
+ βd(Rxn, Rx

∗)

≤ d(Rx∗, R(Rxn)) +
αD(Rx∗, Tx∗)[1 + d(Rxn, Rxn+1)]

1 + d(Rxn, Rx∗)
+ βd(Rxn, Rx

∗)
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Letting n→∞ and R continuous, we obtain

D(Rx∗, Tx∗) ≤ αD(Rx∗, Tx∗)

(1− α)D(Rx∗, Tx∗) ≤ 0.

Since α, β > 0, then T and R has a coincidence point. �

In the next paragraph we will prove Theorem 1.6 using Theorem 1.7 condition.

Theorem 2.2. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Let T :

B̃(x0; r) → Pcl(X) be a multivalued operator for which there exist α, β ∈ R∗+ with
α+ β < 1 such that

H(Tx, Ty) ≤ αD(y, Ty)[1 +D(x, Tx)]

1 + d(x, y)
+ βd(x, y), for all x, y ∈ X. (2.3)

We also suppose that D(x0, Tx0) <

(
1− α− β

1− α

)
r. Then F (T ) 6= ∅.

Proof. We will inductively construct a sequence xn ⊂ B̃(x0; r) such that
i) xn ∈ Txn+1, ∀n ∈ N∗
ii) d(xn, xn−1) < kn−1r. We denote by k = β

1−α ∈ [0, 1).

From the condition D(x0, Tx0) < ( 1−α−β
1−α )r we have that exists x1 ∈ T (x0) such

that d(x0, x1) < (1 − k)r. Suppose that we construct x1, x2, ..., xn ∈ B̃(x0, r) with
properties i) and ii), now we have to prove the existence of xn+1. We have

H(Txn−1, Txn) ≤ αD(xn, Txn)[1 +D(xn−1, Txn−1)]

1 + d(xn−1, xn)
+ βd(xn−1, xn)

≤ αD(xn, Txn)[1 + d(xn−1, xn)]

1 + d(xn−1, xn)
+ βd(xn−1, xn)

= αD(xn, Txn) + βd(xn−1, xn) < αH(Txn−1, Txn) + βd(xn−1, xn)

H(Txn−1, Txn) ≤ β

1− α
d(xn−1, xn) ≤

(
β

1− α

)n
d(x0, x1)

<

(
β

1− α

)n(
1− β

1− α

)
r.

This proves that xn+1 ∈ Txn such that

d(xn+1, xn) <

(
β

1− α

)n(
1− β

1− α

)
r,

so using k we will have d(xn+1, xn) < kn(1− k)r.
Moreover, we have

d(xn+p, xn) ≤ (1 + k + ...+ kp−1)kn(1− k)r

≤ kp

1− k
kn(1− k)r → 0 as n, p→∞. (2.4)

Therefore (xn)n∈N is a Cauchy sequence, with lim
n→∞

xn = x∗0 ∈ B̃(x0, r). Because T is

closed we obtain
D(x∗0, Tx

∗
0) ≤ d(x∗0, xn+1) +H(Txn, Tx

∗
0)
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≤ d(x∗0, xn+1) +
αD(x∗0, Tx

∗
0)[1 +D(xn, Txn)]

1 + d(xn, x∗0)
+ βd(xn, x

∗
0)

≤ d(x∗0, xn+1) +
αD(x∗0, Tx

∗
0)[1 + d(xn, xn+1)]

1 + d(xn, x∗0)
+ βd(xn, x

∗
0).

Letting n→∞, we have

D(x∗0, Tx
∗
0) ≤ αD(x∗0, Tx

∗
0).

This proves that x∗0 is a fixed point of Tx∗0. �

The next part of this section, is devoted to generalize Theorem 1.4 to the case
of multivalued operators.

Theorem 2.3. Let (X, d) be a complete metric space, let ψ ∈ Ψ and T : X → Pcl(X)
be a multivalued operator for which there exist α, β ∈ R∗+ with α+ β < 1 such that

ψ[H(Tx, Ty)] ≤ αψ[m(x, y)] + βψ[d(x, y)], for all x, y ∈ X (2.5)

where

m(x, y) = D(y, Ty)
1 +D(x, Tx)

1 + d(x, y)
. (2.6)

Then T has a fixed point x∗ ∈ X, and there exists a sequence (xn)n∈N ⊂ X with
x0 ∈ X and xn+1 ∈ T (xn), n ∈ N such that lim

n→∞
xn = x∗.

Proof. Let x0 ∈ X be arbitrary chosen and let (xn) be a sequence defined as follows:
xn+1 ∈ Txn ⊂ Tn+1x0,for each n ≥ 1. Now,

ψ[d(xn, xn+1)] ≤ ψ[qH(Txn−1, Txn)] ≤ qαψ[m(xn−1, xn)] + qβψ[d(xn−1, xn] (2.7)

using (2.6),

m(xn−1, xn) = D(xn, Txn)
1 +D(xn−1, Txn−1)

1 + d(xn−1, xn)

≤ d(xn, xn+1)
1 + d(xn−1, xn)

1 + d(xn−1, xn)
= d(xn, xn+1).

Substituting it into (2.7), it follows that,

ψ[d(xn, xn+1) ≤ qαψ[d(xn, xn+1)] + qβψ[d(xn−1, xn)]

so we have,

ψ[d(xn, xn+1)] ≤ qβ

1− qα
ψ[d(xn−1, xn)]

≤
(

qβ

1− qα

)2

ψ[d(xn−2, xn−1)] ≤ ... (2.8)

≤
(

qβ

1− qα

)n
ψ[d(x0, x1)] (2.9)

Since r = qβ
1−qα ∈ (0, 1), from (2.8) we obtain

lim
n→∞

ψ[d(xn, xn+1)] = 0.
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From the fact that ψ ∈ Ψ, we have

lim
n→∞

d(xn, xn+1) = 0.

Now we will show that (xn) is a Cauchy sequence. Using (2.9), moreover, for n < m,
we have

ψ[d(xn, xm)] ≤ ψ[d(xn−1, xn)] + ...+ ψ[d(xm−1, xm)] ≤ (rn + ...+ rm−1)ψ[d(x0, x1)]

≤ rn

1− r
ψ[d(x0, x1)]→ 0 as n,m→∞. (2.10)

Therefore (xn) is a Cauchy sequence. Since (X, d) is a complete metric space, we get
that x ∈ X lim

n→∞
xn = x∗.

ψ[D(x∗, Tx∗)] = ψ[ inf
y∈Tx∗

d(x∗, y)] ≤ ψ[d(x∗, xn+1)] + ψ[ inf
y∈Tx∗

d(xn+1, y)]

≤ ψ[d(x∗, xn+1)] + ψ[H(Txn, Tx
∗)]

≤ ψ[d(x∗, xn+1)] + αψ[m(xn, x
∗)] + βψ[d(xn, x

∗)]

≤ ψ[d(x∗, xn+1)] + αψ[D(x∗, Tx∗)
1 +D(xn, Txn)

1 + d(xn, x∗
)] + βψ[d(xn, x

∗)

≤ ψ[d(x∗, xn+1)] + αψ[D(x∗, Tx∗)
1 + d(xn, xn+1)

1 + d(xn, x∗)
] + βψ[d(xn, x

∗).

Letting n→∞ we obtain

ψ[D(x∗, Tx∗)](1− α) ≤ 0.

Since ψ ∈ Ψ, we have D(x∗, Tx∗) = 0. This proves that x∗ ∈ FT . �

As a consequence, we obtain the following fixed point theorem.

Corollary 2.4. Let (X, d) be a complete metric space and let T : X → Pcl(X) be a
multivalued operator. We assume that for each x, y ∈ X,

H(Tx,Ty)∫
0

ϕ(t)dt ≤ α

D(y,Ty)
1+D(x,Tx)
1+d(x,y)∫

0

ϕ(t)dt+ β

d(x,y)∫
0

ϕ(t)dt (2.11)

where 0 < α + β < 1 and ϕ : R+ → R+, is a Lebesque integrable operator which is

summable on each compact subset of [0,+∞), non negative and such that
ε∫
0

ϕ(t)dt > 0

for all ε > 0. Then T admits a fixed point x∗ ∈ X such that for each x ∈ X

lim
n→∞

xn = x∗, xn ∈ Tnx.

Proof. Let ϕ : R+ → R+, be as in the corollary, we define

ψ0(t) =

t∫
0

ϕ(t)dt, t ∈ R+.
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ψ0 is monotonically non decreasing and by hypothesis ψ0 is continuous. Therefore,
ψ0 ∈ Ψ. So the condition (2.11) becomes

ψ0[H(Tx, Ty)] ≤ αψ0

[
D(y, Ty)

1 +D(x, Tx)

1 + d(x, y)

]
+ βψ0[d(x, y)]∀x, y ∈ X.

So, from Theorem 2.3 we have that exists x∗ ∈ X such that for each x∗ ∈ F (T )
and there exist a sequence(xn)n∈N ⊂ X with x0 ∈ X and xn+1 ∈ T (xn), n ∈ N such
that lim

n→∞
xn = x∗ . �

Example 2.5. Let X = {(0, 0, 0), (0, 0, 1), (1, 0, 0)} be endowed with the metric d.
Consider the multivalued operator T : X → Pcl(X) and a singlevalued operator
R : X → X defined by

T (x) =

 {(1, 0, 0)}, if x = (0, 0, 1)
{(0, 0, 0)}, if x = (0, 0, 0)
{(0, 0, 0), (1, 0, 0)}, if x = (1, 0, 0)

R(x) =

 {(1, 0, 0)}, if x = (0, 0, 1)
{(0, 0, 0)}, if x = (0, 0, 0)
{(0, 0, 1)}, if x = (1, 0, 0)

Then FT = {(0, 0, 0), (1, 0, 0)}, FR = {(0, 0, 0)}, C(R, T ) = {(0, 0, 1), (0, 0, 0)} and
Theorem 2.1 is verified for α = 1

9 , β = 7
8 , α+ β < 1.
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