Coincidence point and fixed point theorems for rational contractions

Anca Maria Oprea

Abstract

The purpose of this work is to present some coincidence point theorems for singlevalued and multivalued rational contractions. A comparative study of different rational contraction conditions is also presented. Our results extend some recent theorems in the literature.

Mathematics Subject Classification (2010): $47 \mathrm{H} 10,54 \mathrm{H} 25$.
Keywords: Fixed point, common fixed point, multivalued operator, coincidence point.

1. Introduction

In this first section, for the convenience of the reader, we will recall the standard terminologies and notations in non-linear analysis. See, for example [4], [11], [6], [9].

Let (X, d) be a metric space, $x_{0} \in X$ and $r>0$.
Denote $\widetilde{B}\left(x_{0}, r\right):=\left\{x \in X \mid d\left(x_{0}, x\right) \leq r\right\}$ the closed ball centered at x_{0} with radius r.

If $S: X \rightarrow X$ is an operator, then we denote by $F(S):=\{x \in X \mid x=S(x)\}$ the fixed point set of S.

An operator $f: Y \subseteq X \rightarrow Y$ is said to be an α-contraction if $\alpha \in[0,1]$ and $d(f(x), f(y)) \leq \alpha d(x, y)$, for all $x, y \in Y$.

Definition 1.1. Let (X, \leq) be an partially ordered set and A, B be two nonempty subsets of X. Then we will wrote $A \leq_{s} B$ if and only for all $a \in A$ exists $b \in B$ satisfying $a \leq b$.

We denote by $P(X)$ the family of all nonempty subsets of X. Also $P_{p}(X)$ will denote the family of all nonempty subsets of X having the property " p ", where " p "

[^0]could be: $b=$ bounded, $c l=$ closed, $c p=$ compact etc. We consider the following functionals:
\[

$$
\begin{gathered}
D: P(X) \times P(X) \rightarrow \mathbb{R}_{+}, \quad D(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\} \\
\rho: P_{b}(X) \times P_{b}(X) \rightarrow \mathbb{R}_{+}, \quad \rho(A, B)=\{\sup \{D(a, B) \mid a \in A\} \\
H: P_{b}(X) \times P_{b}(X) \rightarrow \mathbb{R}_{+}, \quad H(A, B)=\max \left\{\sup _{a \in A} D(a, B), \sup _{b \in B} D(b, A)\right\} .
\end{gathered}
$$
\]

Definition 1.2. Let (X, \preceq) be a partially ordered set and $T: X \rightarrow P(X)$ be a multivalued mapping, satisfying the following implication

$$
x \preceq y \Rightarrow T x \preceq_{s} T y .
$$

Then T is said to be increasing.
Definition 1.3. ([6]) A function $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}:=[0,+\infty)$ is called an altering distance function if the following properties are satisfied:
$\left(\Psi_{1}\right) \psi(t)=0 \Leftrightarrow t=0$.
$\left(\Psi_{2}\right) \psi$ is monotonically non-decreasing.
$\left(\Psi_{3}\right) \psi$ is continuous.
By Ψ we denote the set of all altering distance functions.
The following theorem is an result proved by B.K. Das and S Gupta, in 1975.
Theorem 1.4. Let (X, d) be a metric space and let $S: X \rightarrow X$ be a given mapping such that,
i) there exist $a, b \in \mathbb{R}_{+}^{*}$ with $a+b<1$ for which $d(S x, S y) \leq a d(x, y)+b m(x, y)$ for all $x, y \in X$ where

$$
m(x, y)=d(y, S y) \frac{1+d(x, S x)}{1+d(x, y)}
$$

ii) there exists $x_{0} \in X$, such that the sequence of iterates $\left(S^{n} x_{0}\right)$ has a subsequence $\left(S^{n_{k}} x_{0}\right)$ with $\lim _{k \rightarrow \infty}\left(S^{n_{k}} x_{0}\right)=z_{0}$. Then z_{0} is the unique fixed point of S.
Definition 1.5. Let S be a self mapping of a metric space (M, d) with a nonempty fixed point set $F(S)$. Then S is said to satisfy the property (P) if $F(S)=F\left(S^{n}\right)$ for each $n \in \mathbb{N}$.

Definition 1.6. Let (X, \preceq) be a partially ordered set endowed with a metric d on X. We say that X is regular if and only if the following hypothesis holds:
If $\left\{z_{n}\right\}$ is an non-decreasing sequence in X with respect to \preceq such that $\lim _{n \rightarrow \infty} z_{n}=z \in$ X then $z_{n} \preceq z$ for all $n \in \mathbb{N}$.

Definition 1.7. Let (X, d) a complete metric space, with $T: X \rightarrow P_{c l}(X)$ and R : $X \rightarrow X$. Then $C(R, T)=\{x \in X \mid R x \in T x\}$ is called the coincidence point set of S and T. We say that a point $x \in X$ is a coincidence point of R and T if $R x=T x$.

We will denote by $F(T)$ the fixed point set for T and by $S F(T)$ the strict fixed point set of T.

If Y is a nonempty subset of X and $T: Y \rightarrow P(X)$ is a multivalued operator, then by definition, an element $x \in Y$ is said to be:
(i) a fixed point of T if and only if $x \in T(x)$;
(ii) a strict fixed point of T if and only if $x=T(x)$.

The following result appeared in [9].
Theorem 1.8. ($[9]$) Let (X, \preceq) be a partially ordered set equipped with a metric d on X such that (X, d) is a complete metric space. Let $T, R: X \rightarrow X$ be two mappings satisfying (for pair $(x, y) \in X \times X$ where in $R x$ and $R y$ are comparable),

$$
\begin{equation*}
d(T x, T y) \leq \frac{\alpha d(R x, T x) \cdot d(R y, T y)}{1+d(R x, R y)}+\beta d(R x, R y) \tag{1.1}
\end{equation*}
$$

where α, β are non-negative real numbers with $\alpha+\beta<1$. Suppose that
a) X is regular and T is weakly increasing with R.
b) the pair (R, T) is commuting and weakly reciprocally continuous. Then R and T have a coincidence point.

On the other hand, in [2] the following local fix point theorem for multivalued contraction is given.

Theorem 1.9. Let (X, d) be a complete metric space, $x_{0} \in X$ and $r>0$. Let T : $\widetilde{B}\left(x_{0} ; r\right) \rightarrow P_{c l}(X)$ be a multivalued α-contraction such that $D\left(x_{0}, T\left(x_{0}\right)\right)<(1-\alpha) r$. Then $F(T) \neq \emptyset$.

We also mention that the following fixed point theorem, for the so called multivalued rational contractions was presented in [10], as follows.

Theorem 1.10. Let (X, d) a complete metric space and $T: X \rightarrow P_{c l}(X)$ be a multivalued operator such that exists $\alpha, \beta \geq 0$ with $\alpha+\beta<1$ satisfying

$$
\begin{equation*}
H(T x, T y) \leq \frac{\alpha D(y, T y)[1+D(x, T x)]}{1+d(x, y)}+\beta d(x, y), \text { for all } x, y \in X \tag{1.2}
\end{equation*}
$$

Then T has a fixed point.
The purpose of this paper is twofold. First we will extend Theorem 1.8 for the case of multivalued operators. Secondly, we will present a local fixed point theorem for multivalued rational conractions.

2. Main results

Our first main result is the following coincidence point theorem.
Theorem 2.1. Let (X, d) be a complete metric space. Let $T: X \rightarrow P_{c l}(X)$ and R : $X \rightarrow X$ be two operators satisfying

$$
\begin{equation*}
\rho(T x, T y) \leq \frac{\alpha D(R y, T y)[1+D(R x, T x)]}{1+d(R x, R y)}+\beta d(R x, R y), \forall x, y \in X \tag{2.1}
\end{equation*}
$$

where α, β are some non-negative real numbers with $\alpha+\beta<1$. Suppose that R is continuous and $T(X) \subset R(X)$. Then R and T have a coincidence point.

Proof. Let $x_{0} \in X$ be arbitrary. Since $T\left(x_{0}\right) \subset T(X) \subset R(X)$, there exists $x_{1} \in X$ such that $R\left(x_{1}\right) \in T\left(x_{0}\right)$. For $R\left(x_{1}\right) \in T\left(x_{0}\right)$ and $T\left(x_{1}\right)$, by well-known property of the functional ρ, for any $q>1$, there exists $u_{1} \in T\left(x_{1}\right)$ such that

$$
d\left(R x_{1}, u_{1}\right) \leq q \rho\left(T x_{0}, T x_{1}\right)
$$

Since $u_{1} \in T\left(x_{1}\right) \subset T(X) \subset R(X)$ there exists $x_{2} \in X$ such that $u_{1}=R\left(x_{2}\right) \in T\left(x_{1}\right)$. Thus

$$
\begin{aligned}
d\left(R x_{1}, R x_{2}\right) \leq & q \rho\left(T x_{0}, T x_{1}\right) \leq q\left[\frac{\alpha D\left(R x_{1}, T x_{1}\right)\left[1+D\left(R x_{0}, T x_{0}\right)\right]}{1+d\left(R x_{0}, R x_{1}\right)}+\beta d\left(R x_{0}, R x_{1}\right)\right] \\
& \leq q\left[\frac{\alpha d\left(R x_{1}, R x_{2}\right)\left[1+d\left(R x_{0}, R x_{1}\right)\right]}{1+d\left(R x_{0}, R x_{1}\right)}+\beta d\left(R x_{0}, R x_{1}\right)\right]
\end{aligned}
$$

Hence

$$
(1-q \alpha) d\left(R x_{1}, R x_{2}\right) \leq q \beta d\left(R x_{0}, R x_{1}\right)
$$

and so

$$
d\left(R x_{1}, R x_{2}\right) \leq \frac{q \beta}{1-q \alpha} d\left(R x_{0}, R x_{1}\right)
$$

Now, for $R\left(x_{2}\right) \in T\left(x_{1}\right)$ and $T\left(x_{2}\right)$, for the same arbitrary $q>1$, there exists $u_{2} \in$ $T\left(x_{2}\right)$ such that

$$
d\left(R x_{2}, u_{2}\right) \leq q \rho\left(T x_{1}, T x_{2}\right)
$$

Again, since $u_{2} \in T\left(x_{2}\right) \subset T(X) \subset R(X)$ there exists $x_{3} \in X$ such that $u_{2}=R\left(x_{3}\right) \in$ $T\left(x_{2}\right)$. In this case, by a similar procedure, we obtain

$$
d\left(R x_{2}, R x_{3}\right) \leq \frac{q \beta}{1-q \alpha} d\left(R x_{1}, R x_{2}\right) \leq\left(\frac{q \beta}{1-q \alpha}\right)^{2} d\left(R x_{0}, R x_{1}\right)
$$

By this procedure, we obtain a sequence $u_{n}:=R\left(x_{n+1}\right) \in T\left(x_{n}\right), n \in \mathbb{N}^{*}$ such that

$$
d\left(R x_{n}, R x_{n+1}\right) \leq q \rho\left(T x_{n-1}, R x_{n}\right)
$$

and

$$
\begin{equation*}
d\left(R x_{n}, R x_{n+1}\right) \leq\left(\frac{q \beta}{1-q \alpha}\right)^{n} d\left(R x_{0}, R x_{1}\right) \tag{2.2}
\end{equation*}
$$

By choosing $1<q<\frac{1}{\alpha+\beta}$, we obtain thus $r:=\frac{q \beta}{1-q \alpha}<1$.
By (2.2) we get that the sequence $\left(R x_{n}\right)_{n \in \mathbb{N}^{*}}$ is Cauchy in the complete metric space (X, d). Thus, there exists x^{*} such that $R x_{n} \rightarrow x^{*}, n \rightarrow \infty$. We will show that x^{*} is a coincidence point for R and T (i.e. $R x^{*} \in T x^{*}$).

We estimate

$$
\begin{aligned}
& D\left(R x^{*}, T x^{*}\right)=\inf _{y \in T x^{*}} d\left(R x^{*}, y\right) \leq d\left(R x^{*}, R\left(R x_{n}\right)\right)+\inf _{y \in T x^{*}} d\left(R\left(R x_{n}\right), y\right) \\
& \leq d\left(R x^{*}, R\left(R x_{n}\right)\right)+D\left(R x_{n+1}, T x^{*}\right) \leq d\left(R x^{*}, R\left(R x_{n}\right)\right)+\rho\left(T x_{n}, T x^{*}\right) \\
& \leq d\left(R x^{*}, R\left(R x_{n}\right)\right)+\frac{\alpha D\left(R x^{*}, T x^{*}\right)\left[1+D\left(R x_{n}, T x_{n}\right)\right]}{1+D\left(R x_{n}, R x^{*}\right)}+\beta d\left(R x_{n}, R x^{*}\right) \\
& \leq d\left(R x^{*}, R\left(R x_{n}\right)\right)+\frac{\alpha D\left(R x^{*}, T x^{*}\right)\left[1+d\left(R x_{n}, R x_{n+1}\right)\right]}{1+d\left(R x_{n}, R x^{*}\right)}+\beta d\left(R x_{n}, R x^{*}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$ and R continuous, we obtain

$$
\begin{gathered}
D\left(R x^{*}, T x^{*}\right) \leq \alpha D\left(R x^{*}, T x^{*}\right) \\
\quad(1-\alpha) D\left(R x^{*}, T x^{*}\right) \leq 0
\end{gathered}
$$

Since $\alpha, \beta>0$, then T and R has a coincidence point.
In the next paragraph we will prove Theorem 1.6 using Theorem 1.7 condition.
Theorem 2.2. Let (X, d) be a complete metric space, $x_{0} \in X$ and $r>0$. Let T : $\widetilde{B}\left(x_{0} ; r\right) \rightarrow P_{c l}(X)$ be a multivalued operator for which there exist $\alpha, \beta \in \mathbb{R}_{+}^{*}$ with $\alpha+\beta<1$ such that

$$
\begin{equation*}
H(T x, T y) \leq \frac{\alpha D(y, T y)[1+D(x, T x)]}{1+d(x, y)}+\beta d(x, y), \text { for all } x, y \in X \tag{2.3}
\end{equation*}
$$

We also suppose that $D\left(x_{0}, T x_{0}\right)<\left(\frac{1-\alpha-\beta}{1-\alpha}\right) r$. Then $F(T) \neq \emptyset$.
Proof. We will inductively construct a sequence $x_{n} \subset \widetilde{B}\left(x_{0} ; r\right)$ such that
i) $x_{n} \in T x_{n+1}, \forall n \in \mathbb{N}^{*}$
ii) $d\left(x_{n}, x_{n-1}\right)<k^{n-1} r$. We denote by $k=\frac{\beta}{1-\alpha} \in[0,1)$.

From the condition $D\left(x_{0}, T x_{0}\right)<\left(\frac{1-\alpha-\beta}{1-\alpha}\right) r$ we have that exists $x_{1} \in T\left(x_{0}\right)$ such that $d\left(x_{0}, x_{1}\right)<(1-k) r$. Suppose that we construct $x_{1}, x_{2}, \ldots, x_{n} \in \widetilde{B}\left(x_{0}, r\right)$ with properties i) and ii), now we have to prove the existence of x_{n+1}. We have

$$
\begin{gathered}
H\left(T x_{n-1}, T x_{n}\right) \leq \frac{\alpha D\left(x_{n}, T x_{n}\right)\left[1+D\left(x_{n-1}, T x_{n-1}\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}+\beta d\left(x_{n-1}, x_{n}\right) \\
\leq \frac{\alpha D\left(x_{n}, T x_{n}\right)\left[1+d\left(x_{n-1}, x_{n}\right)\right]}{1+d\left(x_{n-1}, x_{n}\right)}+\beta d\left(x_{n-1}, x_{n}\right) \\
=\alpha D\left(x_{n}, T x_{n}\right)+\beta d\left(x_{n-1}, x_{n}\right)<\alpha H\left(T x_{n-1}, T x_{n}\right)+\beta d\left(x_{n-1}, x_{n}\right) \\
H\left(T x_{n-1}, T x_{n}\right) \leq \frac{\beta}{1-\alpha} d\left(x_{n-1}, x_{n}\right) \leq\left(\frac{\beta}{1-\alpha}\right)^{n} d\left(x_{0}, x_{1}\right) \\
\quad<\left(\frac{\beta}{1-\alpha}\right)^{n}\left(1-\frac{\beta}{1-\alpha}\right) r
\end{gathered}
$$

This proves that $x_{n+1} \in T x_{n}$ such that

$$
d\left(x_{n+1}, x_{n}\right)<\left(\frac{\beta}{1-\alpha}\right)^{n}\left(1-\frac{\beta}{1-\alpha}\right) r
$$

so using k we will have $d\left(x_{n+1}, x_{n}\right)<k^{n}(1-k) r$.
Moreover, we have

$$
\begin{align*}
& d\left(x_{n+p}, x_{n}\right) \leq\left(1+k+\ldots+k^{p-1}\right) k^{n}(1-k) r \\
& \quad \leq \frac{k^{p}}{1-k} k^{n}(1-k) r \rightarrow 0 \quad \text { as } \quad n, p \rightarrow \infty \tag{2.4}
\end{align*}
$$

Therefore $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence, with $\lim _{n \rightarrow \infty} x_{n}=x_{0}^{*} \in \widetilde{B}\left(x_{0}, r\right)$. Because T is closed we obtain

$$
D\left(x_{0}^{*}, T x_{0}^{*}\right) \leq d\left(x_{0}^{*}, x_{n+1}\right)+H\left(T x_{n}, T x_{0}^{*}\right)
$$

$$
\begin{aligned}
& \leq d\left(x_{0}^{*}, x_{n+1}\right)+\frac{\alpha D\left(x_{0}^{*}, T x_{0}^{*}\right)\left[1+D\left(x_{n}, T x_{n}\right)\right]}{1+d\left(x_{n}, x_{0}^{*}\right)}+\beta d\left(x_{n}, x_{0}^{*}\right) \\
& \leq d\left(x_{0}^{*}, x_{n+1}\right)+\frac{\alpha D\left(x_{0}^{*}, T x_{0}^{*}\right)\left[1+d\left(x_{n}, x_{n+1}\right)\right]}{1+d\left(x_{n}, x_{0}^{*}\right)}+\beta d\left(x_{n}, x_{0}^{*}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
D\left(x_{0}^{*}, T x_{0}^{*}\right) \leq \alpha D\left(x_{0}^{*}, T x_{0}^{*}\right) .
$$

This proves that x_{0}^{*} is a fixed point of $T x_{0}^{*}$.
The next part of this section, is devoted to generalize Theorem 1.4 to the case of multivalued operators.

Theorem 2.3. Let (X, d) be a complete metric space, let $\psi \in \Psi$ and $T: X \rightarrow P_{c l}(X)$ be a multivalued operator for which there exist $\alpha, \beta \in \mathbb{R}_{+}^{*}$ with $\alpha+\beta<1$ such that

$$
\begin{equation*}
\psi[H(T x, T y)] \leq \alpha \psi[m(x, y)]+\beta \psi[d(x, y)], \text { for all } x, y \in X \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
m(x, y)=D(y, T y) \frac{1+D(x, T x)}{1+d(x, y)} \tag{2.6}
\end{equation*}
$$

Then T has a fixed point $x^{*} \in X$, and there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ with $x_{0} \in X$ and $x_{n+1} \in T\left(x_{n}\right), n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.
Proof. Let $x_{0} \in X$ be arbitrary chosen and let $\left(x_{n}\right)$ be a sequence defined as follows: $x_{n+1} \in T x_{n} \subset T^{n+1} x_{0}$,for each $n \geq 1$. Now,

$$
\begin{equation*}
\psi\left[d\left(x_{n}, x_{n+1}\right)\right] \leq \psi\left[q H\left(T x_{n-1}, T x_{n}\right)\right] \leq q \alpha \psi\left[m\left(x_{n-1}, x_{n}\right)\right]+q \beta \psi\left[d\left(x_{n-1}, x_{n}\right]\right. \tag{2.7}
\end{equation*}
$$

using (2.6),

$$
\begin{aligned}
& m\left(x_{n-1}, x_{n}\right)=D\left(x_{n}, T x_{n}\right) \frac{1+D\left(x_{n-1}, T x_{n-1}\right)}{1+d\left(x_{n-1}, x_{n}\right)} \\
& \quad \leq d\left(x_{n}, x_{n+1}\right) \frac{1+d\left(x_{n-1}, x_{n}\right)}{1+d\left(x_{n-1}, x_{n}\right)}=d\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

Substituting it into (2.7), it follows that,

$$
\psi\left[d\left(x_{n}, x_{n+1}\right) \leq q \alpha \psi\left[d\left(x_{n}, x_{n+1}\right)\right]+q \beta \psi\left[d\left(x_{n-1}, x_{n}\right)\right]\right.
$$

so we have,

$$
\begin{align*}
& \psi\left[d\left(x_{n}, x_{n+1}\right)\right] \leq \frac{q \beta}{1-q \alpha} \psi\left[d\left(x_{n-1}, x_{n}\right)\right] \\
& \leq\left(\frac{q \beta}{1-q \alpha}\right)^{2} \psi\left[d\left(x_{n-2}, x_{n-1}\right)\right] \leq \ldots \tag{2.8}\\
& \quad \leq\left(\frac{q \beta}{1-q \alpha}\right)^{n} \psi\left[d\left(x_{0}, x_{1}\right)\right] \tag{2.9}
\end{align*}
$$

Since $r=\frac{q \beta}{1-q \alpha} \in(0,1)$, from (2.8) we obtain

$$
\lim _{n \rightarrow \infty} \psi\left[d\left(x_{n}, x_{n+1}\right)\right]=0 .
$$

From the fact that $\psi \in \Psi$, we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0
$$

Now we will show that $\left(x_{n}\right)$ is a Cauchy sequence. Using (2.9), moreover, for $n<m$, we have

$$
\begin{gather*}
\psi\left[d\left(x_{n}, x_{m}\right)\right] \leq \psi\left[d\left(x_{n-1}, x_{n}\right)\right]+\ldots+\psi\left[d\left(x_{m-1}, x_{m}\right)\right] \leq\left(r^{n}+\ldots+r^{m-1}\right) \psi\left[d\left(x_{0}, x_{1}\right)\right] \\
\leq \frac{r^{n}}{1-r} \psi\left[d\left(x_{0}, x_{1}\right)\right] \rightarrow 0 \quad \text { as } \quad n, m \rightarrow \infty \tag{2.10}
\end{gather*}
$$

Therefore $\left(x_{n}\right)$ is a Cauchy sequence. Since (X, d) is a complete metric space, we get that $x \in X \lim _{n \rightarrow \infty} x_{n}=x^{*}$.

$$
\begin{gathered}
\psi\left[D\left(x^{*}, T x^{*}\right)\right]=\psi\left[\inf _{y \in T x^{*}} d\left(x^{*}, y\right)\right] \leq \psi\left[d\left(x^{*}, x_{n+1}\right)\right]+\psi\left[\inf _{y \in T x^{*}} d\left(x_{n+1}, y\right)\right] \\
\leq \psi\left[d\left(x^{*}, x_{n+1}\right)\right]+\psi\left[H\left(T x_{n}, T x^{*}\right)\right] \\
\leq \psi\left[d\left(x^{*}, x_{n+1}\right)\right]+\alpha \psi\left[m\left(x_{n}, x^{*}\right)\right]+\beta \psi\left[d\left(x_{n}, x^{*}\right)\right] \\
\left.\leq \psi\left[d\left(x^{*}, x_{n+1}\right)\right]+\alpha \psi\left[D\left(x^{*}, T x^{*}\right) \frac{1+D\left(x_{n}, T x_{n}\right)}{1+d\left(x_{n}, x^{*}\right.}\right)\right]+\beta \psi\left[d\left(x_{n}, x^{*}\right)\right. \\
\leq \psi\left[d\left(x^{*}, x_{n+1}\right)\right]+\alpha \psi\left[D\left(x^{*}, T x^{*}\right) \frac{1+d\left(x_{n}, x_{n+1}\right)}{1+d\left(x_{n}, x^{*}\right)}\right]+\beta \psi\left[d\left(x_{n}, x^{*}\right)\right.
\end{gathered}
$$

Letting $n \rightarrow \infty$ we obtain

$$
\psi\left[D\left(x^{*}, T x^{*}\right)\right](1-\alpha) \leq 0
$$

Since $\psi \in \Psi$, we have $D\left(x^{*}, T x^{*}\right)=0$. This proves that $x^{*} \in F_{T}$.
As a consequence, we obtain the following fixed point theorem.
Corollary 2.4. Let (X, d) be a complete metric space and let $T: X \rightarrow P_{c l}(X)$ be a multivalued operator. We assume that for each $x, y \in X$,

$$
\begin{equation*}
\int_{0}^{H(T x, T y)} \varphi(t) d t \leq \alpha \int_{0}^{D(y, T y)} \int_{0}^{\frac{1+D(x, T x)}{1+d(x, y)}} \varphi(t) d t+\beta \int_{0}^{d(x, y)} \varphi(t) d t \tag{2.11}
\end{equation*}
$$

where $0<\alpha+\beta<1$ and $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, is a Lebesque integrable operator which is summable on each compact subset of $[0,+\infty)$, non negative and such that $\int_{0}^{\varepsilon} \varphi(t) d t>0$ for all $\epsilon>0$. Then T admits a fixed point $x^{*} \in X$ such that for each $x \in X$

$$
\lim _{n \rightarrow \infty} x^{n}=x^{*}, x_{n} \in T^{n} x
$$

Proof. Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, be as in the corollary, we define

$$
\psi_{0}(t)=\int_{0}^{t} \varphi(t) d t, t \in \mathbb{R}_{+}
$$

ψ_{0} is monotonically non decreasing and by hypothesis ψ_{0} is continuous. Therefore, $\psi_{0} \in \Psi$. So the condition (2.11) becomes

$$
\psi_{0}[H(T x, T y)] \leq \alpha \psi_{0}\left[D(y, T y) \frac{1+D(x, T x)}{1+d(x, y)}\right]+\beta \psi_{0}[d(x, y)] \forall x, y \in X
$$

So, from Theorem 2.3 we have that exists $x^{*} \in X$ such that for each $x^{*} \in F(T)$ and there exist a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ with $x_{0} \in X$ and $x_{n+1} \in T\left(x_{n}\right), n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

Example 2.5. Let $X=\{(0,0,0),(0,0,1),(1,0,0)\}$ be endowed with the metric d. Consider the multivalued operator $T: X \rightarrow P_{c l}(X)$ and a singlevalued operator $R: X \rightarrow X$ defined by

$$
\begin{gathered}
T(x)=\left\{\begin{array}{lll}
\{(1,0,0)\}, & \text { if } x=(0,0,1) \\
\{(0,0,0)\}, & \text { if } x=(0,0,0) \\
\{(0,0,0),(1,0,0)\}, & \text { if } x=(1,0,0)
\end{array}\right. \\
R(x)=\left\{\begin{array}{lll}
\{(1,0,0)\}, & \text { if } & x=(0,0,1) \\
\{(0,0,0)\}, & \text { if } & x=(0,0,0) \\
\{(0,0,1)\}, & \text { if } & x=(1,0,0)
\end{array}\right.
\end{gathered}
$$

Then $F_{T}=\{(0,0,0),(1,0,0)\}, F_{R}=\{(0,0,0)\}, C(R, T)=\{(0,0,1),(0,0,0)\}$ and Theorem 2.1 is verified for $\alpha=\frac{1}{9}, \beta=\frac{7}{8}, \alpha+\beta<1$.

References

[1] Cabrera, I., Harjani, J., Sadarangani, K., A fixed point theorem for contractions of rational type in partially ordered metric spaces, Annali dell'Universita di Ferrara, Sez. VII Sci. Mat., 59(2013), no. 2, 251-258.
[2] Frigon, M., Granas, A., Résultats du type de Leray-Schauder pour les contractions multivoques, Topol. Methods Nonlinear Anal., 4(1994), 197-208.
[3] Harjani, J., Lopez, B., Sadarangani, K., Common fixed point theorems for monotone generalized contractions satisfying a contractive condition of rational type in ordered metric spaces, Journal of Convex Analysis, 20(2013), no. 4, 919-935.
[4] Hu, S., Papageorgiou, N.S., Handbook of Multivalued Analysis, Vol. I and II, Kluwer Acad. Publ., Dordrecht, 1997 and 1999.
[5] Jaggi, D.S., Some unique fixed point theorems, Indian J. Pure Appl. Math., 8(1977), 223-230.
[6] Khan, M.S., Swalech, M., Sessa, S., Fixed point theorems by altering distances between the points, Bull. Austral Mah. Soc., 30(1984), 1-9.
[7] Kumam, P., Rouzkard, F., Imdad, M., Gopal, D., Fixed Point Theorems on Ordered Metric Spaces through a Rational Contraction, Abstract and Applied Analysis, Art. 2013, ID 206515, 9 pp.
[8] Lazăr, T.A., Petruşel, A., Shahzad,N., Fixed points for non-self operators and domain invariance theorems, Nonlinear Analysis, 70(2009), 117-125.
[9] Morales, J.R., Rojas, E.M., Altering distance functions and fixed point theorems through rational expression, 2012, no. 2, 110-116.
[10] Oprea, A., Fixed point theorems for multivalued generalized contractions of rational type in complete metric spaces, Creative Mathematics and Informatics, to appear.
[11] Petruşel, A., Rus, I.A., The theory of a metric fixed point theorem for multivalued operators, Yokohama Publ., Yokohama, 2010, 161-175.
[12] Samet, B., Yazidi, H., An extension of Banach fixed point theorem for mappings satisfying a contractive condition of integral type, Int. J. Math. Anal., 3(26)(2009), 1265-1271.

Anca Maria Oprea
Babeş-Bolyai University
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street, 400084 Cluj-Napoca, Romania
e-mail: anca.oprea@math.ubbcluj.ro

[^0]: This paper was presented at the 10th Joint Conference on Mathematics and Computer Science (MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.

