Iterates of increasing linear operators, via Maia's fixed point theorem

Ioan A. Rus

Abstract

Let X be a Banach lattice. In this paper we give conditions in which an increasing linear operator, $A: X \rightarrow X$ is weakly Picard operator (see I.A. Rus, Picard operators and applications, Sc. Math. Japonicae, 58(2003), No. 1, 191-219). To do this we introduce the notion of "invariant linear partition of X with respect to $A "$ and we use contraction principle and Maia's fixed point theorem. Some applications are also given.

Mathematics Subject Classification (2010): 47H10, 46B42, 47B65, 47A35, 34K06.
Keywords: Banach lattice, order unit, increasing linear operator, invariant linear partition of the space, fixed point, weakly Picard operator, Maia's fixed point theorem, functional differential equation.

1. Introduction

There are many techniques to study the iterates of a linear and of increasing linear operators:
(1) for linear operators on a Banach space see: [16], [22], [23], [25], ...
(2) for linear increasing operators on an ordered Banach space see: [4], [8], [11], [12], [21], [23], [38], ...
(3) for some classes of positive linear operators see: [1]-[6], [9], [13]-[15], [17]-[20], [27], [30], [33], [35], ...
In the paper [36] we studied the problem in terms of the following notions:
Definition 1.1. Let X be a nonempty set and $A: X \rightarrow X$ be an operator with $F_{A} \neq \emptyset$, where $F_{A}:=\{x \in X \mid A(x)=x\}$. By definition, a partition of $X, X=\bigcup_{x^{*} \in F_{A}} X_{x^{*}}$, is a fixed point partition of X with respect to A iff:
(i) $A\left(X_{x^{*}}\right) \subset X_{x^{*}}, \forall x^{*} \in F_{A}$;
(ii) $F_{A} \cap X_{x^{*}}=\left\{x^{*}\right\}, \forall x^{*} \in F_{A}$.

Definition 1.2. Let $(X,+, \mathbb{R})$ be a linear space and $A: X \rightarrow X$ be a linear operator with $F_{A} \backslash\{\theta\} \neq \emptyset$. By definition, a fixed point partition, $X=\bigcup_{x^{*} \in F_{A}} X_{x^{*}}$ is a linear fixed point partition of X with respect to A iff:

$$
X_{x^{*}}=\left\{x^{*}\right\}+X_{\theta}, \forall x^{*} \in F_{A} .
$$

If there exists a norm on $X_{\theta},\|\cdot\|: X_{\theta} \rightarrow \mathbb{R}_{+}$, and $\|A(x)\| \leq l\|x\|$, for all $x \in X_{\theta}$ with some $l>0$, then $d_{\|\cdot\|}: X_{x^{*}} \times X_{x^{*}} \rightarrow \mathbb{R}_{+}, d_{\|\cdot\|}(x, y):=\|x-y\|$ is a metric on $X_{x^{*}}$ and the restriction of A to $X_{x^{*}},\left.A\right|_{X_{x^{*}}}$, is a Lipschitz operator with constant l. If $l<1$, in this case we can use the following variant of contraction principle:

Weak contraction principle. Let (X, d) be a metric space and $A: X \rightarrow X$ be an operator. We suppose that:
(i) $F_{A} \neq \emptyset$;
(ii) A is a l-contraction.

Then:
(a) $F_{A}=\left\{x^{*}\right\}$;
(b) $A^{n}(x) \rightarrow x^{*}$ as $n \rightarrow \infty, \forall x \in X$, i.e., A is a Picard operator;
(c) $d\left(x, x^{*}\right) \leq \frac{1}{1-l} d(x, A(x)), \forall x \in X$.

In this paper we do not suppose that $F_{A} \backslash\{\theta\} \neq \emptyset$. So, we introduce the following notion:

Definition 1.3. Let $(X,+, \mathbb{R}, \rightarrow)$ be a linear L-space (see [36]) and $A: X \rightarrow X$ be a linear operator. By definition, a partition of $X, X=\bigcup_{\lambda \in \Lambda} X_{\lambda}$, is an invariant linear partition (ILP) of X with respect to A iff:
(i) there exists $\lambda_{0} \in \Lambda$ such that $X_{\lambda_{0}}$ is a linear subspace of X and

$$
X /_{X_{\lambda_{0}}}=\left\{X_{\lambda} \mid \lambda \in \Lambda\right\}
$$

(ii) $A\left(X_{\lambda}\right) \subset X_{\lambda}, \forall \lambda \in \Lambda$;
(iii) $X_{\lambda}=\bar{X}_{\lambda}, \forall \lambda \in \Lambda$.

We also need the following fixed point result (see [28], [37], [24], ...):
Maia's fixed point theorem. Let X be a nonempty set, d and ρ be two metrics on X and $A: X \rightarrow X$ be an operator. We suppose that:
(i) there exists $c>0$ such that $d(x, y) \leq c \rho(x, y), \forall x, y \in X$;
(ii) (X, d) is a complete metric space;
(iii) $A:(X, d) \rightarrow(X, d)$ is continuous;
(iv) $A:(X, \rho) \rightarrow(X, \rho)$ is an l-contraction.

Then:
(a) $F_{A}=\left\{x^{*}\right\}$;
(b) $A:(X, d) \rightarrow(X, d)$ is Picard operator;
(c) $A:(X, \rho) \rightarrow(X, \rho)$ is Picard operator;
(d) $\rho\left(x, x^{*}\right) \leq \frac{1}{1-l} \rho(x, A(x)), \forall x \in X$.

The aim of this paper is to study the iterates of a linear operator and of an increasing linear operator on a Banach lattice in terms of an invariant partition of the space and using contraction principle and Maia's fixed point theorem.

2. Invariant linear partitions

In what follows we shall give some generic examples of $I L P$ of the space.
Let $(X,+, \mathbb{R},\|\cdot\|)$ be a normed space, $A: X \rightarrow X$ be a linear operator and $(\Lambda,+, \mathbb{R}, \tau)$ be a linear topological space and $\Phi: X \rightarrow \Lambda$ be a continuous linear and surjective operator. We suppose that Φ is an invariant operator of A (see [10], [4], [36], [26], ...), i.e., $\Phi(A(x))=\Phi(x), \forall x \in X$. For $\lambda \in \Lambda$, let

$$
X_{\lambda}:=\{x \in X \mid \Phi(x)=\lambda\} .
$$

We remark that, $X=\bigcup_{\lambda \in \Lambda} X_{\lambda}$, is an $I L P$ of X with respect to A. In this case, $\lambda_{0}=\theta_{\Lambda}$.

Here are some examples:
Example 2.1. Let \mathbb{B} be a Banach space, $K \in C\left([0,1]^{2}, \mathbb{R}\right)$ and $A: C([0,1], \mathbb{B}) \rightarrow$ $C([0,1], \mathbb{B})$ be defined by

$$
A(x)(t):=x(0)+\int_{0}^{t} K(t, s) x(s) d s, \forall t \in[0,1] .
$$

Let $\Lambda:=\mathbb{B}$ and $\Phi: C([0,1], \mathbb{B}) \rightarrow \mathbb{B}$, be defined by, $\Phi(x)=x(0)$. It is clear that Φ is invariant for A and, $X=\bigcup_{\lambda \in \Lambda} X_{\lambda}$, is an $I L P$ of $(C[0,1], \mathbb{B})$ with respect to A. In this case $\lambda_{0}=\theta_{\mathbb{B}}$.

Example 2.2. Let $A: C[0,1] \rightarrow C[0,1]$ be a continuous linear operator such that $A(x)(0)=x(0)$ and $A(x)(1)=x(1)$ (i.e., 0 and 1 are interpolation points of A (see [34] and the references therein)). Let $\Lambda:=\mathbb{R}^{2}$ and $\Phi: C[0,1] \rightarrow \mathbb{R}^{2}, \Phi(x)=(x(0), x(1))$. Then Φ is invariant for $A, \lambda_{0}=(0,0)$ and $C[0,1]=\bigcup_{\lambda \in \mathbb{R}^{2}} X_{\lambda}$ is an $I L P$ of $C[0,1]$ with respect to A.

Another generic example is the following:
Let $(X,+, \mathbb{R}, \rightarrow)$ be a linear L-space and $A: X \rightarrow X$ be a linear operator. Let us consider the quotient space $X / \overline{(1-A)(X)}=\left\{X_{\lambda} \mid \lambda \in \Lambda\right\}$, with $X_{\lambda_{0}}:=\overline{(1-A)(X)}$. From a remark by Jachymski (see Lemma 1 in [22]), $A\left(X_{\lambda}\right) \subset X_{\lambda}$. From the definition of quotient space it follows that, $X=\bigcup_{\lambda \in \Lambda} X_{\lambda}$ is an ILP of X with respect to A.

Remark 2.3. Let $(X,+, \mathbb{R}, \rightarrow)$ be a linear L-space and $A: X \rightarrow X$ be a linear operator. Let $X=\bigcup_{\lambda \in \Lambda} X_{\lambda}$ be an ILP of X. Then $Y=\bigcup_{\lambda \in \Lambda} \overline{A\left(X_{\lambda}\right)}$ is an $I L P$ of Y with respect to the operator $\left.A\right|_{Y}: Y \rightarrow Y$. We remark that, $F_{A}=\left.F_{A}\right|_{Y}$.

3. Main results

Our abstract results are the following:
Theorem 3.1. Let $(X,+, \mathbb{R},\|\cdot\|)$ be a Banach space and $A: X \rightarrow X$ be a linear operator. Let $X=\bigcup_{\lambda \in \Lambda} X_{\lambda}$ be an ILP of X with respect to A, with $X_{\lambda_{0}}$ a linear subspace of X. We suppose that there exists $l \in] 0,1[$ such that

$$
\|A(x)\| \leq l\|x\|, \forall x \in X_{\lambda_{0}}
$$

Then:
(a) $F_{A} \cap X_{\lambda}=\left\{x_{\lambda}^{*}\right\}, \forall \lambda \in \Lambda$;
(b) $A^{n}(x) \rightarrow x_{\lambda}^{*}$ as $n \rightarrow \infty, \forall x \in X_{\lambda}, \lambda \in \Lambda$, i.e., A is weakly Picard operator ($W P O$) on X and $A^{\infty}(x)=x_{\lambda}^{*}, \forall x \in X_{\lambda}$;
(c) $\left\|x-A^{\infty}(x)\right\| \leq \frac{1}{1-l}\|x-A(x)\|, \forall x \in X$.

Proof. Let $x, y \in X_{\lambda}$. Then, $x-y \in X_{\lambda_{0}}$ and

$$
\|A(x)-A(y)\|=\|A(x-y)\| \leq l\|x-y\|
$$

From the contraction principle we have that $F_{A} \cap X_{\lambda}=\left\{x_{\lambda}^{*}\right\}$ and $A: X_{\lambda} \rightarrow X_{\lambda}$ is Picard operator. We also have that:

$$
\left\|x-x_{\lambda}^{*}\right\| \leq \frac{1}{1-l}\|x-A(x)\|, \quad \forall x \in X_{\lambda} .
$$

From the definition of A^{∞} it follows (c).
Theorem 3.2. Let $(X,+, \mathbb{R},\|\cdot\|, \leq)$ be a Banach lattice and $A: X \rightarrow X$ be an increasing linear operator. We suppose that:
(i) $X=\bigcup_{\lambda \in \Lambda} X_{\lambda}$ is an ILP of X with respect to A, with $X_{\lambda_{0}}$ a linear subspace of X;
(ii) there exists an order unit element $u \in X$ for $X_{\lambda_{0}}$, such that

$$
A(u) \leq l u, \text { with some } 0<l<1
$$

Then:
(a) A is WPO with respect to $\xrightarrow{\|\cdot\|}$;
(b) $X_{\lambda} \cap F_{A}=\left\{x_{\lambda}^{*}\right\}, \forall \lambda \in \Lambda$;
(c) $A^{\infty}(x)=x_{\lambda}^{*}, \forall x \in X_{\lambda}, \lambda \in \Lambda$;
(d) A is WPO with respect to $\xrightarrow{d_{\|\cdot\| u}}$, where $\|\cdot\|_{u}$ is the Minkowski norm on $X_{\lambda_{0}}$ with respect to u, i.e., $\left\|A^{n}(x)-A^{\infty}(x)\right\|_{u} \rightarrow 0$ as $n \rightarrow+\infty$;
(e) $\left\|x-A^{\infty}(x)\right\|_{u} \leq \frac{1}{1-l}\|x-A(x)\|_{u}, \forall x \in X$.

Proof. Let $x \in X_{\lambda_{0}}$. Since u is order unit for $X_{\lambda_{0}}$, there exists $M(x)>0$ such that

$$
|x| \leq M(x) u
$$

From the definition of Minkowski's norm, $\|\cdot\|_{u}: X_{\lambda_{0}} \rightarrow \mathbb{R}_{+}$, we have that

$$
\begin{equation*}
|x| \leq\|x\|_{u} u, \forall x \in X_{\lambda_{0}} . \tag{3.1}
\end{equation*}
$$

Since X is a Banach lattice we also have that

$$
\begin{equation*}
\|x\| \leq\|u\|\|x\|_{u}, \forall x \in X_{\lambda_{0}} \tag{3.2}
\end{equation*}
$$

But A is increasing linear operator. From (3.1) we have

$$
|A(x)| \leq A(|x|) \leq\|x\|_{u} A(u) \leq l\|x\|_{u} u
$$

From this relations it follows

$$
\begin{equation*}
\|A(x)\|_{u} \leq l\|x\|_{u}, \forall x \in X_{\lambda_{0}} \tag{3.3}
\end{equation*}
$$

Now let $x, y \in X_{\lambda}$. Then, $x-y \in X_{\lambda_{0}}$ and from (3.3) we have

$$
\|A(x)-A(y)\|_{u} \leq l\|x-y\|_{u}
$$

On X_{λ} we have two metrics, $d_{\|\cdot\|}(x, y):=\|x-y\|$ and $d_{\|\cdot\|_{u}}(x, y):=\|x-y\|_{u}$. So, by the above considerations, $\left(X_{\lambda}, d_{\|\cdot\|}, d_{\|\cdot\|_{u}}\right)$ and $\left.A\right|_{X_{\lambda}}: X_{\lambda} \rightarrow X_{\lambda}$ satisfy the conditions of Maia's fixed point theorem. From this theorem we have, $(a)-(e)$.

4. Applications

In what follows we present some applications of the above abstract results.
Example 4.1. Let $h>0, b>0$ and $p, q \in C[0, b]$. We consider the following functional differential equation (see [32])

$$
\begin{equation*}
x^{\prime}(t)=p(t) x(t)+q(t) x(t-h), \forall t \in[0, b] . \tag{4.1}
\end{equation*}
$$

By a solution of (4.1) we understand a function $x \in C[-h, b] \cap C^{1}[0, b]$ which satisfies (4.1). The equation (4.1) is equivalent with the following fixed point equation

$$
x(t)=\left\{\begin{array}{l}
x(t), \text { if } t \in[-h, 0] \tag{4.2}\\
x(0)+\int_{0}^{t} p(s) x(s) d s+\int_{0}^{t} q(s) x(s-h) d s, t \in[0, b]
\end{array}\right.
$$

with $x \in C[-h, b]$.
Let $A: C[-h, b] \rightarrow C[-h, b]$ be defined by, $A(x)(t)=$ the second part of (4.2). Let $\Lambda:=C[-h, 0]$ and $\Phi: C[-h, b] \rightarrow C[-h, 0]$ be defined by, $\Phi(x)=\left.x\right|_{[-h, 0]}$.

We observe that, $\Phi(A(x))=\Phi(x), \forall x \in C[-h, b]$. So, $C[-h, b]=\bigcup_{\lambda \in C[-h, b]} X_{\lambda}$ is an $I L P$ of $C[-h, b]$ and λ_{0} is the constant function $0 \in C[-h, 0]$, i.e.,

$$
X_{0}=\left\{x \in C[-h, b]|x|_{[-h, 0]}=0\right\}
$$

It is clear that there exists $\tau>0$ such that $\left.A\right|_{X_{0}}: X_{0} \rightarrow X_{0}$ is a contraction with respect to Bielecki norm $\|\cdot\|_{\tau}$, where

$$
\|x\|_{\tau}:=\max _{t \in[-h, b]}|x(t)| e^{-\tau t}
$$

Let us denote by, $\|\cdot\|$, the max norm on $C[-h, b]$. From Theorem 3.1 we have
Theorem 4.2. In the above considerations we have that:
(a) the operator A is WPO with respect to $\xrightarrow[\rightarrow]{\|\cdot\|}$, i.e., the solution set of (4.1) is $A^{\infty}(C[-h, b]) ;$
(b) $F_{A} \cap X_{\lambda}=\left\{x_{\lambda}^{*}\right\}, \lambda \in C[-h, 0]$, i.e., x_{λ}^{*} is a unique solution of (4.1) which satisfies the condition $\left.x\right|_{[-h, 0]}=\lambda$;
(c) the operator $\left.A\right|_{X_{\lambda}}: X_{\lambda} \rightarrow X_{\lambda}$ is $P O, \forall \lambda \in C[-h, 0]$.

Remark 4.3. If in addition we suppose that $p \geq 0, q \geq 0$, then the operator A is increasing. From the abstract Gronwall lemma (see [31]) we have that if $x \in C[-h, b] \cap$ $C^{1}[0, b]$ satisfies the inequality

$$
x^{\prime}(t) \leq p(t) x(t)+q(t) x(t-h), \forall t \in[0, b],
$$

then, $x(t) \leq A^{\infty}(x)(t), \forall t \in[-h, b]$.
Example 4.4. Let $(X,+, \mathbb{R},\|\cdot\|)$ be a Banach space and $A: X \rightarrow X$ be a linear and continuous operator. We suppose that A is l-graphic contraction, i.e.,

$$
\left\|A(x)-A^{2}(x)\right\| \leq l\|x-A(x)\|, \forall x \in X
$$

This implies that

Let us denote, $X_{\lambda_{0}}:=\overline{\left(1_{X}-A\right)(X)}$. We consider the quotient space,

$$
X /_{X_{\lambda_{0}}}=\left\{X_{\lambda} \mid \lambda \in \Lambda\right\}
$$

We remark that, $X=\bigcup_{\lambda \in \Lambda} X_{\lambda}$ is ILP of X with respect to A. From Theorem 3.1 we have

Theorem 4.5. In the above considerations we have:
(a) $\left.A\right|_{X_{\lambda}}: X_{\lambda} \rightarrow X_{\lambda}$ is a l-contraction, $\forall \lambda \in \Lambda$;
(b) $F_{A} \cap X_{\lambda}=\left\{x_{\lambda}^{*}\right\}, \lambda \in \Lambda$;
(c) the attraction domain of $x_{\lambda}^{*},(A D)_{A}\left(x_{\lambda}^{*}\right)=X_{\lambda}, \forall \lambda \in \Lambda$.

Example 4.6. Let $\varphi_{0}, \varphi, \psi_{k} \in C\left([0,1], \mathbb{R}_{+}\right), k=\overline{1, m}$ and $0=a_{0}<a_{1}<\ldots<a_{m}=1$. We suppose that the set $\left\{\varphi_{0}, \varphi \cdot \psi_{1}, \ldots, \varphi \cdot \psi_{m}\right\}$ is linearly independent. In addition we suppose that $\varphi_{0}\left(a_{0}\right)=1$ and $\varphi\left(a_{0}\right)=0$. Then the following operator

$$
A: C[0,1] \rightarrow C[0,1], A(f)=f\left(a_{0}\right) \varphi_{0}+\varphi \sum_{k=1}^{m} f\left(a_{k}\right) \psi_{k}
$$

is increasing and linear, with $A(f)\left(a_{0}\right)=f\left(a_{0}\right)$, for all $f \in C[0,1]$. Let

$$
X_{\lambda}:=\left\{f \in C[0,1] \mid f\left(a_{0}\right)=\lambda\right\}, \lambda \in \mathbb{R}
$$

It is clear that, $C[0,1]=\bigcup_{\lambda \in \mathbb{R}} X_{\lambda}$ is an ILP of $C[0,1]$ with respect to A. From the
Theorem 3.2 we have
Theorem 4.7. In addition to the above conditions we suppose that, $A(\varphi) \leq l \varphi$, with $0<l<1$. Then:
(a) the operator A is WPO;
(b) $X_{\lambda} \cap F_{A}=\left\{f_{\lambda}^{*}\right\}, \forall \lambda \in \mathbb{R}$;
(c) $A^{\infty}(f)=f_{\lambda}^{*}, \forall \lambda \in \mathbb{R}$.

Proof. We remark that φ is an order unit for $A\left(X_{0}\right)$.

References

[1] Abel, V., Ivan, M., Over-iterates of Bernstein operators: a short elementary proof, Amer. Math. Monthly, 116(2009), no. 6, 535-538.
[2] Agratini, O., Rus, I.A., Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Anal. Forum, 8(2003), no. 2, 159-168.
[3] Agratini, O., Rus, I.A., Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Carolinae, 44, 3(2003), 555-563.
[4] Altomare, F., Campiti, M., Korovkin-type Approximation Theory and its Applications, de Gruyter, Berlin, 1999.
[5] András, S., Iterates of the multidimensional Cesàro operators, Carpathian J. Math., 28(2012), no. 2, 191-198.
[6] András, S., Rus, I.A., Iterates of Cesàro operators, via fixed point principle, Fixed Point Theory, 11(2010), no. 2, 171-178.
[7] Berinde, V., Iterative Approximation of Fixed Points, Springer, 2007.
[8] Bohl, E., Linear operator equations on a partially ordered vector space, Aequationes Math. 4(1970), no. 1/2, 89-98.
[9] Cătinaş, T., Otrocol, D., Iterates of Bernstein type operators on a square with one curved side via contraction principle, Fixed Point Theory, 13(2012), no. 1, 97-106.
[10] Cristescu, R., Spaţii liniare ordonate, Editura Academiei, Bucureşti, 1959.
[11] Cristescu, R., Ordered vector spaces and linear operators, Abacus Press, 1976.
[12] Cristescu, R., Structuri de ordine în spaţii liniare normate, Editura Ştiinţifică şi Enciclopedică, Bucureşti, 1983.
[13] Gavrea, I., Ivan, M., On the iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372(2010), 366-368.
[14] Gavrea, I., Ivan, M., On the iterates of positive linear operators, J. Approx. Theory, 163(2011), 1076-1079.
[15] Gavrea, I., Ivan, M., The iterates of positive linear operators preserving constants, Appl. Math. Letters, 24(2011), 2068-2071.
[16] Gohberg, I., Goldberg, S., Kaashoek, M.A., Basic Classes of Linear Operators, Birkhäuser, Basel, 2003.
[17] Gonska, H., Kacsó, D., Piţul, P., The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1(2006), 403-423.
[18] Gonska, H., Piţul, P., Remarks on an article of J.P. King, Comment. Math. Univ. Carolinae, 46, 4(2005), 645-652.
[19] Gonska, H., Piţul, P., Raşa, I., Over-iterates of Berstein-Stancu operators, Calcolo, 44(2007), 117-125.
[20] Gonska, H., Raşa, I., The limiting semigroup of the Berstein iterates: degree of convergence, Acta Math. Hungar., 111(2006), no. 1-2, 119-130.
[21] Heikkila, S., Roach, G.F., On equivalent norms and the contraction mapping principle, Nonlinear Anal., 8(1984), no. 10, 1241-1252.
[22] Jachymski, J., Convergence of iterates of linear operators and the Kelisky-Rivlin type theorems, Studia Math., 195(2009), no. 2, 99-112.
[23] Kantorovici, L.V., Akilov, G.P., Analiză funcţională, Bucureşti, 1986.
[24] Kirk, W.A., Sims, B. (eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001.
[25] Koliha, J.J., Convergent and stable operators and their generalization, J. Math. Anal. Appl., 43(1973), 778-794.
[26] Petruşel, A., Rus, I.A., Şerban, M.-A., Nonexpansive operators as graphic contractions (to appear).
[27] Raşa, I., Asymptotic behavior of iterates of positive linear operators, Jaen J. Approx., 1(2009), no. 2, 195-204.
[28] Rus, I.A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.
[29] Rus, I.A., Picard operators and applications, Sc. Math. Japonicae, 58(2003), no. 1, 191219.
[30] Rus, I.A., Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.
[31] Rus, I.A., Gronwall lemmas: ten open problems, Sc. Math. Japonicae, 70(2009), no. 2, 221-228.
[32] Rus, I.A., Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.
[33] Rus, I.A., Iterates of Stancu operators (via fixed point principles) revisited, Fixed Point Theory, 11(2010), no. 2, 369-374.
[34] Rus, I.A., Fixed point and interpolation point set of positive linear operator on $C(\bar{D})$, Studia Univ. Babeş-Bolyai Math., 55(2010), no. 4, 243-248.
[35] Rus, I.A., Five open problems in fixed point theory in terms of fixed point structures (I): singlevalued operators, Proc. $10^{\text {th }}$ ICFPTA, 39-40, 2012, Cluj-Napoca, 2013.
[36] Rus, I.A., Heuristic introduction to weakly Picard operator theory, Creat. Math. Inform., 23(2014), no. 2, 243-252.
[37] Rus, I.A., Petruşel, A., Petruşel, G., Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.
[38] Schaefer, H.H., Banach Lattices and Positive Operators, Springer, 1974.

Ioan A. Rus
Babeş-Bolyai University
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street
400084 Cluj-Napoca, Romania
e-mail: iarus@math.ubbcluj.ro

