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Rodrigues formula for the Cayley transform
of groups SO(n) and SE(n)

Dorin Andrica and Oana Liliana Chender

Abstract. In Theorem 3.1 we present, in the case when the eigenvalues of the
matrix are pairwise distinct, a direct way to determine the Rodrigues coefficients
of the Cayley transform for the special orthogonal SO(n) by reducing the Ro-
drigues problem in this case to the system (3.2). The similar method is discussed
for the Euclidean group SE(n).
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1. Introduction

The Cayley transform of the group of rotations SO(n) of the Euclidean space
Rn is defined by Cay : so(n) → SO(n),Cay(A) = (In + A)(In − A)−1, where so(n)
is the Lie algebra of SO(n). Because the inverse of the matrix In −A can be written
as (In − A)−1 = In + A+ A2 + . . . on a sufficiently small neighborhood of On, from
the well-known Hamilton-Cayley Theorem, it follows that Cay(A) has the polynomial
form

Cay(A) = b0(A)In + b1(A)A+ · · ·+ bn−1(A)An−1,

where the coefficients b0, b1, . . . , bn−1 depend on the matrix A and are uniquely de-
fined. By analogy with the case of the exponential map (see [1] and [2]), they are
called Rodrigues coefficients of A with respect to the Cayley transform.

Using the main idea in the articles [3] (see also [4]), in this paper we present
a method to derive the Rodrigues coefficients for the Cayley transform of the group
SO(n). The case of the Euclidean group SE(n) is also discussed.
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2. Cayley transform of the group SO(n)

The matrices of the SO(n) group describe the rotations as movements in the
space Rn. If the matrix A belongs to the Lie Algebra so(n) of the Lie group SO(n),
then the matrix In −A is invertible.

Indeed, the eigenvalues λ1, ..., λn of the matrix A are 0 or purely imaginary, so
eigenvalues of the matrix In−A are 1−λ1, ..., 1−λn. They are clearly different from
0, therefore we have det(In −A) = (1− λ1)...(1− λn) 6= 0, so In −A is invertible.

The map Cay : so(n)→ SO(n), defined by

Cay(A) = (In + A)(In −A)−1

is called the Cayley transform of the group SO(n). Let show that this map is well
defined. Let be Cay(A) = R. We have

RtR = (In +A)(In −A)−1t[(In +A)(In −A)−1]

= (In +A)(In −A)−1t[(In −A)−1]t(In +A)

= (In +A)(In −A)−1(In −t A)−1(In +t A)

= (In +A)(In −A)−1(In +A)−1(In −A) = In,

because matrices and their inverses commute. Therefore R ∈ SO(n). The map Cay is
obviously continuous and we have Cay(On) = In ∈ SO(n), hence necessarily we have
R ∈ SO(n).

Denote by
∑

the set of the group SO(n) containing the matrices with eigenvalue
−1. Clearly, we have R ∈

∑
if and only if the matrix In +R is singular.

Theorem 2.1. The map Cay : so(n) → SO(n) \
∑

is bijective and its inverse is
Cay−1 : SO(n) \

∑
→ so(n), where Cay−1(R) = (R+ In)−1(R− In).

Proof. If R ∈ SO(n) \
∑

then, the relation Cay(A) = R is equivalent to

R = (In +A)(In −A)−1 = (2In − (In −A))(In −A)−1 = 2(In −A)−1 − In.

Because R ∈ SO(n)\
∑

, it follows that the matrix R+In is invertible and from above
relation we obtain that its inverse is (R + A)−1 = 1

2 (In − A). Using this relation we
have

(R+ In)−1(R− In) =
1

2
(In −A)(2(In −A)−1 − 2In) = In − In +A = A,

so Cay−1(R) = (R+ In)−1(R− In).

In addition, a simple computation shows that if the matrix R is orthogonal, then
the matrix A = (R+ In)−1(R− In) is antisymmetric. Indeed, we have

tA = (tR− In)(tR+ In)−1 = (R−1 − In)(R−1 + In)−1

= (In −R)R−1R(In +R)−1 = −(R+ In)−1(R− In) = −A,

because the matrices R− In and (R+ In)−1 commute. �
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3. Rodrigues type formulas for Cayley transform

Because the inverse of the matrix In −A can be written in the form

(In −A)−1 = In +A+A2 + ...

for a sufficiently small neighborhood of On, from Hamilton-Cayley theorem, it follows
that the Cayley transform of A can be written in the polynomial form

Cay(A) = b0(A)In + b1(A)A+ ...+ bn−1(A)An−1 (3.1)

where the coefficients b0, ..., bn−1 are uniquely determined and depend on the matrix
A. We will call these numbers, by analogy with the situation of the exponential map,
Rodrigues coefficients of A with respect to the application Cay.

As in the case of the exponential map, an important property of the Rodrigues
coefficients is the invariance with respect to equivalent matrices, i.e. for any invertible
matrix U , the following relations hold

bk(UAU−1) = bk(A), k = 0, ..., n− 1.

This property is obtained from the uniqueness of the Rodrigues coefficients and
from the following property of the Cayley transform

UCay(A)U−1 = Cay(UAU−1).

To justify the last relation just observe that we have successively

UCay(A)U−1 = U(In +A)(In −A)−1U−1 = U(In +A)U−1U(+In −A)−1U−1

= (In + UAU−1)(U−1)−1(In −A)−1U−1(In + UAU−1)(U(In −A)U−1)−1

= (In + UAU−1)(In + UAU−1)−1 = Cay(UAU−1).

Theorem 3.1. Let λ1, ..., λn be the eigenvalues of the matrix A ∈ so(n).
1) Rodrigues coefficients of A relative to the application Cay are solutions of the

system
n−1∑
k=0

Sk+jbk =

n∑
s=1

λjs
1 + λs
1− λs

, j = 0, ..., n− 1, (3.2)

where Sj = λj1 + ...+ λjn.
2) If the eigenvalues λ1, ..., λn of the matrix A are pairwise distinct, then the Ro-

drigues coefficients b0, ..., bn−1 are perfectly determined by this system and are rational
functions of λ1, ..., λn.

Proof. 1) By multiplying the relation (3.1) by the power Aj , j = 0, ..., n−1, we obtain
the matrix relations

AjCay(A) =

n−1∑
k=0

bkA
k+j , j = 0, ..., n− 1.

Now, considering the trace in both sides of the above relations, it follows

n−1∑
k=0

tr(Ak+j)bk = tr(AjCay(A)), j = 0, ..., n− 1. (3.3)
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The matrix Ak+j has the eigenvalues λk+j1 , ..., λk+jn , and the matrix AjCay(A)

has the eigenvalues λj1
1+λ1

1−λ1
, ..., λjn

1+λn

1−λn
and the system (3.3) is equivalent to the system

(3.2).
2) For the second statement, observe that the determinant of the system (3.2)

can be written as

Dn = det


S0 S1 . . . Sn−1

S1 S2 . . . Sn
. . . . . . . . . . . .
Sn−1 Sn . . . S2n−1,


where Sl = Sl(λ1, . . . , λn) = λl1 + . . .+ λln, l = 0, . . . , 2n− 1.

It is clear that

Dn = det


1 . . . 1
λ1 . . . λn
. . . . . . . . .
λn−1
1 . . . λn−1

n

 · det


1 λ1 . . . λn−1

1

1 λ2 . . . λn−1
2

. . . . . . . . . . . .
1 λn . . . λn−1

n


= V 2

n (λ1, ..., λn) =
∏

1≤i<j≤n

(λi − λj)2,

where Vn = Vn (λ1, . . . , λn) is the Vandermonde determinant of order n. According
to the well-known formulas giving the solution b0, . . . , bn−1 to the system (3.2), the
conclusion follows. �

We will continue to illustrate the particular cases n = 2 and n = 3. If A = On,
then Cay(A) = In and so b0(On) = 1, b1(On) = ... = bn−1(On) = 0.

In the case n = 2, consider the antisymmetric matrix A 6= O2, where

A =

(
0 a
−a 0

)
, a ∈ R∗,

with eigenvalues λ1 = ai, λ2 = −ai. System (3.2) becomes in this case{
2b0 = 1+ai

1−ai + 1−ai
1+ai

−2a2b1 = ai 1+ai1−ai − ai
1−ai
1+ai

and we obtain

b0 =
1− a2

1 + a2
, b1 =

1

1 + a2
.

Thus, the Rodrigues type formula for the Cayley transform is

Cay(A) =
1− a2

1 + a2
I2 +

2

1 + a2
A. (3.4)

For n = 3 any real antisymmetric matrix is of the form

A =

 0 −c b
c 0 −a
−b a 0

 ,
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with the characteristic polynomial pA(t) = t3 + θ2t, where θ =
√
a2 + b2 + c2. The

eigenvalues of the matrix A are λ1 = θi, λ2 = −θi, λ3 = 0. We have A = O3 if and
only if θ = 0, so it is enough to consider only the situation in which θ 6= 0. The system
3.2 becomes 

3b0 − 2θ2b2 = 1+θi
1−θi + 1−θi

1+θi + 1

−2θ2b1 = θi 1+θi1−θi − θi
1−θi
1+θi

−2θ2b0 + θ4b2 = −θ2
(

1+θi
1−θi + 1−θi

1+θi

)
with the solution

b0 = 1, b1 =
2

1 + θ2
, b2 =

2

1 + θ2
.

It follows the Rodrigues type formula for the Cayley transform of group SO(3)

Cay(A) = I3 +
2

1 + θ2
A+

2

1 + θ2
A2. (3.5)

Formula (3.5) offers the possibility to obtain another formula for the inverse of
Cayley transform. Let be R ∈ SO(3) such that

R = I3 +
2

1 + θ2
A+

2

1 + θ2
A2,

where A is an antisymmetric matrix. Considering the matrix transpose in both sides
of the above relation and taking into account that tA = −A, we obtain

R−t R =
4

1 + θ2
A. (3.6)

On the other hand, we have

tr(R) = 3− 4θ2

1 + θ2
= −1 +

4

1 + θ2
,

and by replacing in the relation (3.6), we get the formula

Cay−1(R) =
1

1 + tr(R)
(R−t R). (3.7)

Formula (3.7) makes sense for rotations R ∈ SO(3) for which 1+ tr(R) 6= 0. If R
is a rotation of angle α, then we have tr(R) = 1 + 2 cosα, so application Cay−1 is not
defined for the rotations of angle α = ±π. Because in the domain where is defined,
the application Cay is bijective, it follows that the antisymmetric matrices from so(3)
can be used as coordinates for rotations. Considering the Lie algebra isomorphism ”̂ ”
between (R3,×) and (so(3), [·, ·]), where ”× ” denote the vector product, defined by
v ∈ R3 → v̂ ∈ so(3), where

v =

x1x2
x3


and

v̂ =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 ,
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by composing the applications

R3→̂so(3)
Cay−−→ SO(3)

we get a vectorial parameterization of rotations from SO(3).

4. The Cayley transform for Euclidean group SE(n)

In this subparagraph we will define a Cayley type transformation for the special
Euclidean group SE(n). By analogy with the special orthogonal group SO(n), we
define the application Cayn+1 : se(n)→ SE(n), where

Cayn+1(S) = (In+1 + S)(In+1 − S)−1. (4.1)

We will call this application Cayley transform of the group SE(n). First we show that
it is well defined. Let be S ∈ se(n), a matrix defined in blocks

S =

(
A u
0 0

)
,

where A ∈ so(n) and u ∈ Rn. A simple computation shows that we have the formula

(In+1 + S)(In+1 − S)−1 =

(
R (R+ In)u
0 1

)
,

where R = (In +A)(In −A)−1 = Cay(A) ∈ SO(n), that is the desired formula.
The connection between the transform Cay : so(n) → SO(n) and Cayn+1 :

se(n)→ SE(n) is given by the formula

Cayn+1(S) =

(
Cay(A) (R+ In)u

0 1

)
.

As for the classical transform Cay : so(n) → SO(n) we can get effective Rodrigues
type formulas for transform Cayn+1 : se(n) → SE(n), for small values of n. Using
the observation from section 5.1 in the paper of R.-A. Rohan [5], we obtain that
for a matrix S ∈ se(n) defined in blocks as above, its characteristic polynomial pS
satisfy the relation pS(t) = tpA(t). The Rodrigues formula for the transform Cayn+1 :
se(n)→ SE(n) is of the form

Cayn+1(S) = c0In+1 + c1S + ...+ cnS
n,

where the coefficients c0, c1, ..., cn depend on the matrix S.
For n = 2, consider the antisymmetric matrix A 6= O2, where

A =

(
0 a
−a 0

)
, a ∈ R∗.

Using the above observation, it follows that the matrix S ∈ se(2) has eigenvalues
λ1 = ai, λ2 = −ai, λ3 = 0, and the corresponding Rodrigues formula has the form

Cay3(S) = c0I3 + c1S + c2S
2.
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We have a result analogous to that of Theorem 3.1, which is reduced to the system
S0c0 + S1c1 + S2c2 = 1 + 1+λ1

1−λ1
+ 1+λ2

1−λ2

S1c0 + S2c1 + S3c2 = λ1
1+λ1

1−λ1
+ λ2

1+λ2

1−λ2

S2c0 + S3c1 + S4c2 = λ21
1+λ1

1−λ1
+ λ22

1+λ2

1−λ2

where in our case we have S0 = 3, S1 = 0, S2 = −2a2, S3 = 0, S4 = 2a2. This system
is equivalent to 

3c0 − 2a2c2 = 1 + 2(1−a2)
1+a2

−2a2c1 = − 4a2

1+a2

−2a2c0 + 2a4c2 = −2a2 1−a2
1+a2

with solution

c0 = 1, c1 =
1

1 + a2
, c2 =

1

1 + a2
.

So Rodrigues formula for transformation Cay3 is

Cay3(S) = I3 +
1

1 + a2
S +

1

1 + a2
S2. (4.2)

For n = 3 we consider an antisymmetric matrix of the form

A =

 0 −c b
c 0 −a
−b a 0

 ,

with the characteristic polynomial pA(t) = t3 + θ2t, where θ =
√
a2 + b2 + c2. The

matrix S ∈ se(3) has the characteristic polynomial pS(t) = tpA(t) = t4 + θ2t2, and
the eigenvalues of its are λ1 = θi, λ2 = −θi, λ3 = 0, λ4 = 0. Rodrigues formula has
the form

Cay4(S) = c0I4 + c1S + c2S
2 + c3S

3.

After a similar computation, we obtain the formula

Cay3(S) = I3 + 2S +
2

1 + θ2
S2 +

2

1 + θ2
S3. (4.3)

As for Cayley transform of the group SO(n), denote by
∑
n+1 the set of matrices

from SE(n) that has −1 as eigenvalue. Clearly we have M ∈ SE(n) if and only if the
matrix In+1 +M is singular. With a similar proof as in Theorem 3.1, we get

Theorem 4.1. The map Cayn+1 : se(n) → SE(n) \
∑
n+1 is bijective and its inverse

is given by

Cay−1
n+1(M) =

(
Cay−1(M) (R+ In)−1t

0 0

)
,

where the matrix M is defined in blocks by

S =

(
R t
0 1

)
.



38 Dorin Andrica and Oana Liliana Chender

References
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