
Stud. Univ. Babeş-Bolyai Math. 59(2014), No. 4, 523–531

Circular mappings with minimal critical sets
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Abstract. We provide classes of manifolds M satisfying the relation ϕS1(M) =
ϕ(M), we discuss the situation ϕS1(M) = 1, and we formulate a circular version
of the Ganea conjecture.
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1. Introduction

The systematic study of the smooth circular functions defined on a manifold was
initiated by E.Pitcher in the articles [23],[24]. His goal was to extend in this context
the classical Morse theory for real-valued functions. The importance of this study
was pointed out by Novikov in the early 1980s. The Morse - Novikov theory is now a
large and actively developing domain of Differential Topology, with applications and
connections to many geometrical problems (see the monographs [11] and [21]).

The ϕ-category of a manifold M is ϕ(M) = min{µ(f) : f ∈ C∞(M,R)}, and it
represents the ϕ-category of the pair (M,R).

The circular ϕ-category of a manifold M was introduced in the paper [4]. It is
defined as the ϕ-category of the pair (M,S1) corresponding to the family C∞(M,S1),
where S1 is the unit circle. That is

ϕ
S1 (M) = min{µ(f) : f ∈ C∞(M,S1)},

where µ(f) denotes the cardinality of the critical set of mapping f : M → S1.
If we restrict the class of smooth functions to its subclass of Morse functions,

then we obtain, in the real case, the Morse-Smale characteristic

γ(M) = min{µ(f) : f ∈ C∞(M,R), f − Morse},
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and the circular Morse-Smale characteristic

γ
S1 (M) = min{µ(f) : f ∈ C∞(M,S1), f − circular Morse function}

in the circular case. For the Morse-Smale characteristic of the closed surfaces we refere
the reader to [5]. The inequalities

ϕ
S1 (M) ≤ ϕ(M), γ

S1 (M) ≤ γ(M) (1.1)

rely on the property C(exp ◦g) = C(g) which is quite obvious due to the property of
the exponential map to be a local diffeomorphism. Thus, the quality of a real valued
function g : M −→ R to be Morse is transmited to the function exp ◦g and the second
inequality of (1.1) is also justified. On the other hand, the inequalities

ϕ(M) ≤ γ(M), ϕ
S1 (M) ≤ γ

S1 (M) (1.2)

are obvious.
One of the main goals of this paper is to provide classes of manifolds M satisfying

(1.1) with equality, i.e. ϕS1(M) = ϕ(M) and γ
S1 (M) = γ(M). In the last section we

discuss the situation ϕ
S1 (M) = 1 and we formulate a circular version of the Ganea

conjecture.

2. Manifolds with ϕ
S1 (M) = ϕ(M) and γ

S1 (M) = γ(M)

Let us first observe that the inequality ϕS1(M) ≤ ϕ(M) ensured by (1.1) can be
strict. Indeed, the m-dimensional torus Tm = S1× · · · ×S1 (m times) has, according
to [1, Example 3.6.16], the ϕ-category ϕ(Tm) = m + 1. On the other hand, every
projection Tm → S1 is a trivial differentiable fibration, hence it has no critical points,
implying ϕS1(Tm) = 0. This example is part of the following more general remark.
For a closed manifold M we have ϕS1(M) = 0 if and only if there is a differentiable
fibration M → S1. Indeed, the existence of a differentiable fibration M → S1 ensures
the equality ϕS1(M) = 0, as the fibration itself has no critical points at all. Conversely,
the equality ϕS1(M) = 0 ensures the existence of a submersion M → S1, which is also
proper, as its inverse images of the compact sets in S1 are obviously compact. Thus,
by the well-known Ehresmann’s fibration theorem (see for instance the reference [10,
p. 15]) one can conclude that our submersion is actually a locally trivial fibration.
Note that this property works for arbitrary closed target manifolds, not just for the
circle S1.

Assume that every smooth (Morse) circle valued function f : M −→ S1 can be

lifted to a smooth (Morse) real valued function f̃ : M −→ R, i.e. we have exp◦ f̃ = f .
Since the universal cover exp : R −→ S1 is a local diffeomorphism, it follows that
µ(f) = µ(f̃) ≥ ϕ(M), for every smooth function f : M −→ S1. This shows that the
inequalities ϕ

S1 (M) ≥ ϕ(M), γ
S1 (M) ≥ γ(M) hold, which combined to the general

inequalities (1.1), leads to the following result.

Proposition 2.1. ([6]) Let M be a connected smooth manifold. If M satisfies the lifting
property Hom (π(M),Z) = 0, then ϕ

S1 (M) = ϕ(M) and γ
S1 (M) = γ(M). In particular

ϕ
S1 (M) = ϕ(M) and γ

S1 (M) = γ(M) whenever the fundamental group of M is a
torsion group.
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2.1. On the categories of some Grassmann manifolds

Proposition 2.2. If n ≥ 2 is an integer, then ϕ
S1 (Sn) = ϕ(Sn)=γ

S1 (Sn) = γ(Sn)= 2
and

ϕ
S1 (RPn) = ϕ(RPn) = γ

S1 (RPn) = γ(RPn) = cat(RPn) =

ϕ
S1 (CPn) = ϕ(CPn) = γ

S1 (CPn) = γ(CPn) = cat(CPn) = n+ 1,

where cat(CPn) stands for the Lusternik-Schnirelmann category of the complex pro-
jective space CPn.

Proof. We shall only justify the equalities

ϕ
S1 (CPn) = ϕ(CPn) = γ(CPn) = γ

S1 (CPn) = cat(CPn) = n+ 1,

as the other equalities have been already proved in [6]. The equalities ϕ
S1 (CPn) =

ϕ(CPn) and γ
S1 (CPn) = γ(CPn) follow from Proposition 2.1 taking into account

the simply-connectedness of the complex projective space CPn. On the other hand
the inequality ϕ(CPn) ≤ γ(CPn) follow from the general inequality (1.2). Therefore
ϕ
S1 (CPn) = ϕ(CPn) ≤ γ(CPn) = γ

S1 (CPn). In order to prove the equalities γ(CPn) =
cat(CPn) = n+ 1 we observe that

γ(CPn) ≤ µ(f) = card(C(f)) = n+ 1,

as the function

f : CPn −→ R, f([z1 , . . . , zn+1 ]) =
|z1|2 + 2|z2|2 + · · ·+ n|zn|2 + (n+ 1)|zn+1|2

|z1|2 + |z2|2 + · · ·+ |zn|2 + |zn+1|2
.

is a Morse function with the n+ 1 critical points

[1, 0, . . . , 0], [0, 1, . . . , 0], . . . , [0, 0, . . . , 1] ∈ CPn [19, p. 89].

Thus ϕ(CPn) ≤ γ(CPn) ≤ n+ 1. Finally, we use the well-known inequality ϕ(CPn) ≥
cat(CPn) and the relation cat(CPn) = n+ 1 [9, p. 3, pp. 7-13]. �

Note that the equalities ϕ
S1 (RPn) = ϕ(RPn) = cat(RPn) = n + 1 are being

similarly proved in [6] by using the Z2 structure of the fundamental group of RPn,
the Morse function

Fn : RPn −→ R, Fn([x
1
, . . . , x

n+1
]) =

x21 + 2x22 + · · ·+ nx2n + (n+ 1)x2n+1

x21 + x22 + · · ·+ x2n + x2n+1

,

whose critical set is C(Fn) = {[1, 0, . . . , 0], [0, 1, . . . , 0], . . . , [0, 0, . . . , 1]}, and the well-
known relations ϕ(RPn) ≥ cat(RPn) = n+ 1 [22, pp. 190-192].

Proposition 2.3. If n ≥ 3 and 1 ≤ k ≤ n− 1, then

ϕ
S1 (Gk,n) = ϕ (Gk,n) ≤ γ (Gk,n) = γ

S1 (Gk,n) ≤
(
n+ k
k

)
,

where Gk,n stands for the Grassmann manifold of all k-dimensional subspaces of the
space Rn+k.
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Proof. The equalities ϕ
S1 (Gk,n) = ϕ (Gk,n) and γ

S1 (Gk,n) = γ (Gk,n) follow due
to Proposition 2.1 and the Z2 structure of the fundamental group of Gk,n. Thus
ϕ
S1 (Gk,n) = ϕ (Gk,n) ≤ γ (Gk,n) = γ

S1 (Gk,n). Recall that Gk,n can be embedded into

the projective space RPn+k−1 via the Plücker embedding

p : Gk,n ↪→ P
(
Λk(Rn+k)

)
= RPd(n,k)−1, p(W ) = [w1 ∧ · · · ∧ wk],

where {w1, . . . , wk} is an arbitrary basis of W and d(n, k) stands for the dimension
of Λk(Rn+k), i.e.

d(k, n) =

(
n+ k
k

)
.

The composed function Fd(k,n)−1◦p : Gk,n −→ R is, according to Hangan [15], a Morse

function with d(k, n) critical points and show that γ (Gk,n) ≤ µ
(
Fd(k,n)−1 ◦ p

)
=

d(k, n). �

Corollary 2.4. If n = 1 or k = 1 or (n = 2 and k = 2p− 1 for some p) or (n = 2p− 1

and k = 2), then nk ≤ ϕ
S1 (Gk,n) = ϕ (Gk,n) ≤ γ

S1 (Gk,n) = γ (Gk,n) ≤
(
n+ k
k

)
.

Proof. We only need to use the inequality ϕ (Gk,n) ≥ cat (Gk,n) and the equalities
cat (Gk,n) = nk, proved by Berstein [8], whenever n = 1 or k = 1 or (n = 2 and
k = 2p− 1 for some p) or (n = 2p− 1 and k = 2). �

2.2. On the categories of some classical Lie groups

Proposition 2.5. If n ≥ 3, then the following relations hold

ϕ
S1 (SO(n)) = ϕ (SO(n)) ≤ γ (SO(n)) = γ

S1 (SO(n)) ≤ 2n−1.

Proof. The equalities ϕ
S1 (SO(n)) = ϕ (SO(n)) and γ (SO(n)) = γ

S1 (SO(n)) follow
from Proposition 2.1 by using the fundamental group of SO(n) which is Z2. Thus
ϕ
S1 (SO(n)) = ϕ (SO(n)) ≤ γ (SO(n)) = γ

S1 (SO(n)). In order to prove the inequality

γ (SO(n)) ≤ 2n−1 we observe that

γ (SO(n)) ≤ µ(f) = card(C(f)) = 2n−1,

where f : SO(n) −→ R, f ([aij ]n×n) = a
11

+2a
22

+ · · ·+na
nn

is a Morse function. The
critical set of f consists in all diagonal matrices D with ±1 as diagonal entries and
det(D) = 1 [19, p. 92]. In other words, C(f) is the collection of all diagonal matrices
D with an even number of −1 on the main diagonal. The number of such diagonal

matrices is

(
n
0

)
+

(
n
2

)
+ · · · = 2n−1, i.e. µ(f) = 2n−1. �

Remark 2.6. If n ≥ 3, then the following relations hold

ϕ
S1 (Spin(n)) = ϕ (Spin(n)) ≤ γ (Spin(n)) = γ

S1 (Spin(n)) ≤ 2n.

Moreover, ϕ (Spin(9)) ≥ cat(Spin(9)) = 9 [17]. We only need to justify the inequality
γ
S1 (Spin(n)) ≤ 2n, as the other ones rely on the general inequalities (1.2) and the

simply connectedness of Spin(n). The inequlity γ
S1 (Spin(n)) ≤ 2n follows from the
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general inequality γ
S1 (M̃) ≤ k·γ

S1 (M), where M̃ is a k-fold cover of M [5, Proposition
1.5], taking into account that the universal cover Spin(n) −→ SO(n) is a 2-fold cover.

Corollary 2.7. 9 ≤ ϕ (SO(5)) = ϕ
S1 (SO(5)) ≤ γ

S1 (SO(5)) = γ (SO(5)) ≤ 16.

Proof. The relations ϕ (SO(5)) = ϕ
S1 (SO(5)) ≤ γ

S1 (SO(5)) = γ (SO(5)) ≤ 16 follow
from Proposition 2.5 and the left hand side inequality follows by means of the following
well-known relations ϕ (SO(5)) ≥ cat (SO(5)) and cat (SO(5)) = 9 [9, p. 279], [18].

�

Unfortunately, we do not know at this moment the precise values of these cate-
gories among the values 9, 10, . . . , 16.

Proposition 2.8. The following relations hold:

1. n ≤ ϕ (U(n)) ≤ γ (U(n)) ≤ 2n.
2. n− 1 ≤ ϕ

S1 (SU(n)) = ϕ (SU(n)) ≤ γ (SU(n)) = γ
S1 (SU(n)) ≤ 2n−1.

Proof. (1) In order to prove the inequality γ (U(n)) ≤ 2n we recall that

γ (U(n)) ≤ µ(f) = card(C(f)) = 2n,

where f : U(n) −→ R, f ([zij ]n×n) = Re (z11 + 2z22 + · · ·+ nznn), which is a Morse
function and its critical set consists in all diagonal matrices D with ±1 as diagonal
entries [19, p. 98]. The number of such diagonal matrices is obviously 2n. For the
left-hand-side inequality we have ϕ (U(n)) ≥ cat (U(n)) and cat (U(n)) = n [25].

(2) The equalities ϕ
S1 (SU(n)) = ϕ (SU(n)) and γ

S1 (SU(n)) = γ (SU(n)) fol-
lows from Proposition 2.1 by using the simply conectedness of SU(n). Consequently
ϕ
S1 (SU(n)) = ϕ (SU(n)) ≤ γ (SU(n)) = γ

S1 (SU(n)). In order to prove the inequality

γ (SU(n)) ≤ 2n−1 we observe that

γ (SU(n)) ≤ µ
(
f
∣∣
SU(n)

)
= card

(
C
(
f
∣∣
SU(n)

))
= 2n−1,

as the restricted function f
∣∣
SU(n)

is also a Morse function and its critical set consists

in all diagonal matrices D with ±1 as diagonal entries and det(D) = 1 [19, p. 99].

In other words, C
(
f
∣∣
SU(n)

)
is the collection of all diagonal matrices D with an

even number of −1 on the main diagonal. The number of such diagonal matrices is(
n
0

)
+

(
n
2

)
+ · · · = 2n−1, i.e. µ(f) = 2n−1. The left-hand-side inequality follows

by means of the relations ϕ (SU(n)) ≥ cat (SU(n)) and cat (SU(n)) = n− 1 [25]. �

Remark 2.9. The inequality ϕ (U(n)) ≤ ϕ
S1 (U(n)) might be strict as the unitary

group is diffeomorphic (but not isomorphic) to the product SU(n) × S1 [19, p. 103]
and Proposition 2.1 does not apply, since the fundamental group of U(n) is therefore
Z.
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2.3. On the categories of some products and connected sums

In this subsection we shall rehearse several computations of (circular) ϕ-category
proved in the previous work [6].

If k, l,m1, . . . ,mk ≥ 2, are integers, then the following relations hold:

1. ϕ
S1 (Sm1 × · · · × Smk)=ϕ(Sm1 × · · · × Smk) = k + 1.

2. ϕ
S1 (RPm1× · · · ×RPmk)=ϕ(RPm1× · · · ×RPmk) ≤ m1 +m2 + · · ·+mk + 1.

3. ϕ
S1 (L(7, 1)×S4)=ϕ(L(7, 1)×S4)=ϕ

S1 (L(7, 1)×S4)=ϕ(L(7, 1)×S4)=5, where
L(r, s) is the lens space of dimension 3 of type (r,s).

4. ϕ
S1 (RPk × Sl) = ϕ(RPk × Sl) ≤ k + 2.

The proofs of the equalities

ϕ(Sm1 × · · · × Smk) = k + 1
ϕ(L(7, 1)× S4) = ϕ(L(7, 1)× S4) = 5

have been done by C. Gavrilă [14, Proposition 4.6, Example 4.7] and the estimate
ϕ(RPk × Sl) ≤ k + 2 relies on [14, Proposition 4.19].

An immediate consequence of Proposition 2.1 is the following

Corollary 2.10. If Mn
1 , . . . ,M

n
r , n ≥ 3, are connected manifolds with torsion fun-

damental groups, then ϕ
S1 (M1# · · ·#Mr) = ϕ(M1# · · ·#Mr). In particular the fo-

llowing equality ϕ
S1 (rRPn) = ϕ(rRPn) holds, where rRPn stands for the connected

sum RPn# · · ·#RPn of r copies of RPn.

The following result is mentioned in the monograph [9, p. 221].

Lemma 2.11. If M and N are closed manifolds, then the following inequality holds
ϕ(M#N) ≤ max{ϕ(M), ϕ(N)}. In particular ϕ(X#X) ≤ ϕ(X) for every closed
manifold X.

Recall that Pg denotes the closed connected non-orientable surface
RP2# · · ·#RP2 of genus g, and Σg stands for the closed connected orientable sur-
face T 2# · · ·#T 2 of genus g.

Based on Corollary 2.10 and Lemma 2.11 we were able to prove in [6] the fol-
lowing relations

• ϕ(Σg) = ϕ(Pg) = 3, g ≥ 1;

• 2 ≤ ϕ(rRPn) = ϕS1(rRPn) ≤ n+ 1, r ≥ 1, n ≥ 3.

• If k, l ≥ 2 are positive integers, then

ϕ
S1

(
(Sk × Sl)# · · ·#(Sk × Sl)

)
= ϕ

(
(Sk × Sl)# · · ·#(Sk × Sl)

)
= 3. (2.1)

3. Manifolds with ϕ
S1 (M) = 1 and the circular version of the Ganea

conjecture

We do not have any example of a closed manifold M such that cat(M) <
ϕ(M), and also the equality cat(M) = ϕ(M) is proved only for some isolated
classes of manifolds. An example in this respect is given by the connected sum
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(Sk × Sl)# · · ·#(Sk × Sl), k, l ≥ 2, justified by equality in (2.1). In order to em-
phasize the difficulty of the above mentioned problem, assume that the equality
cat(M) = ϕ(M) holds for every closed manifold. Let us only look to the follow-
ing particular situation: cat(M) = ϕ(M) = 2. From cat(M) = 2 one obtains that
M is a homotopy sphere. Taking into account the well-known Reeb’s result, from the
equality ϕ(M) = 2 it follows that M is a topological sphere. Therefore, the equalities
cat(M) = ϕ(M) = 2 are related to the Poincaré conjecture, proved by Perelmann, it
follows for instance that for any closed manifold with cat(M) = 2 we have ϕ(M) = 2
and therefore cat(M) = ϕ(M) = 2.

Taking into account these comments, in the article [6] we have formulated the
following Reeb type problem for circular functions : Characterize the closed manifolds
Mm with the property ϕ

S1 (M)=1.

When m = 2, one example of such a manifold, suggested to us by L. Funar, is given
by the closed orientable surface Σg of genus g ≥ 2, i.e. we have the following result :

Proposition 3.1. The following relation holds : ϕ
S1 (Σg) = 1, g ≥ 2.

Proof. We will construct a function with one critical point from Σg to S1 by composing
the projection p : T 2 = S1 × S1 → S1, p(x, y) = x, with a map f : Σg → T 2 having
precisely one critical point. The existence of the map f is assured by [2] (see also
[3] and [12]) as ϕ(Σg, T

2) = 1, and the projection p is a fibration, i.e. the critical
set C(p) is empty. Therefore, the composed function p ◦ f has at most one critical
point as C(p ◦ f) ⊆ C(f) and card(C(f)) = 1. This shows that ϕ

S1 (Σg) ≤ 1. For the

opposite inequality, assume that ϕ
S1 (Σg) = 0 and consider a fibration g : Σg → S1,

whose fiber F is a compact one dimensional manifold without boundary, i.e. a circle
or a disjoint union of circles. By applying the product property of the Euler-Poincaré

characteristic associated to the fibration F ↪→ Σg
g→ S1, one obtains 2−2g = χ(Σg) =

χ(F )χ(S1) = 0 as χ(S1) = 0, a contradiction with the initial assumption g ≥ 2. �

In what follows we rely on the following relation

ϕ
S1 (M ×N) ≤ ϕ

S1 (M) · ϕ
S1 (N). (3.1)

(see [6]) in order to produce other examples of closed manifolds X with ϕ
S1 (X) = 1.

In fact, we will prove that the following class of closed manifolds

M1 := {X − closed manifold : ϕ
S1 (X) = 1 and χ(X) 6= 0}

is closed with respect to the cross product. More precisely, we have:

Proposition 3.2. If M,N ∈M1, then M ×N ∈M1.

Proof. If M,N ∈ M1, then, due to inequality 3.1, we conclude that ϕ
S1 (M × N) ≤

ϕ
S1 (M) · ϕ

S1 (N) = 1. We now assume that ϕ
S1 (M × N) = 0, i.e. there exists a

fibration F ↪→M×N −→ S1. Since the Euler-Poincaré characteristic is multiplicative
with respect to fibrations and vanishes on Lie groups, we deduce that χ(M × N) =
χ(F ) · χ(S1), i.e. χ(M)χ(N) = 0, a contradiction with the initial assumption χ(M),
χ(N) 6= 0. �
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The following example shows the existence of even dimensional manifolds X2k

with ϕ
S1 (X) = 1, k = 1, 2, . . . .

Example 3.3. If g1, . . . , gk ≥ 2, then ϕ
S1 (Σg1 × · · · × Σgk) = 1, where Σg stands for

the closed oriented surface of genus g. Moreover, if M is a closed manifold, then

ϕ
S1 (M × Σg1 × · · · × Σgk) ≤ ϕ

S1 (M).

Ganea’s conjecture is a claim in Algebraic Topology, now disproved. It states
that

cat(X × Sn) = cat(X) + 1, n > 0,

where cat(X) is the Lusternik-Schnirelmann category of the topological space X, and
Sn is the n-dimensional sphere. The conjecture was formulated by T. Ganea in 1971
(see the original reference [13]). Many particular cases of this conjecture were proved,
till finally N. Iwase [16] gave a counterexample in 1998. The ϕ-category version of
Ganea’s conjecture has been studied by C. Gavrilă [14]. Now we formulate the ϕ

S1 -
version of this conjecture :
Conjecture. For every closed manifold N with ϕ

S1 (N) = 1, and for every closed
manifold M, the following relation holds :

ϕ
S1 (M ×N) = ϕ

S1 (M).
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