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The isotomic transformation in the hyperbolic
plane
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Abstract. In this note, we introduce a hyperbolic analogue of the isotomic trans-
formation, originally defined for Euclidean triangle and we investigate some of its
properties.
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1. Introduction

The aim of this paper is to introduce the isotomic transformation in the hy-
perbolic geometry and investigate some of its basic properties. There are several ap-
proaches to the geometry of the hyperbolic plane. We found that the approach most
suitable for our purposes is the so-called Cayley-Klein approach (see [4], [9] or [5]). In
this approach, the hyperbolic plane is thought of as being a region of the projective
plane, bounded by a real, nondegenerate projective conic. This conic is defined by a
polarity of the real projective plane,{

xµ = cµνξν ,

ξµ = Cµνxν ,
(1.1)

where we sum after all the possible values of the indices (µ, ν = 0, 1, 2). Here (xµ)
are the point coordinates, while (ξµ) are the line coordinates. As we are given a
hyperbolic polarity, the matrices [c] and [C] are both symmetric and inverse to each
other. Moreover, the conic given by the point equation

cµνxµxν = 0 (1.2)

is a nondegenerate real conic, called the Absolute. The equation of the Absolute,
written in line coordinates, is

Cµνξµξν = 0. (1.3)

We notice that, usually, we prescribe the polarity, therefore the equations (1.1) give,
implicitly, the definition of the coordinates (homogeneous coordinates, of course).
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The system of coordinates we are going to use is the system of barycentric (or areal)
coordinates, introduced by Sommerville, in 1932 ([10]) by another method. For these
coordinates, the two matrices that define the polarity are

[cµν ] =

 1 cosh c cosh b
cosh c 1 cosh a
cosh b cosh a 1

 (1.4)

and

[Cµν ] =
1

γ

 − sinh2 a sinh a sinh b cosC sinh a sinh c cosB

sinh a sinh b cosC − sinh2 b sinh b sinh b cosA

sinh a sinh c cosB sinh b sinh b cosA − sinh2 c

 , (1.5)

where

γ = 1 + 2 cosh a cosh b cosh c− cosh2 a− cosh2 b− cosh2 c > 0

is the determinant of the matrix [cµν ].
It should be clear that the coordinates defined by a polarity are defined for

any point of the projective plane, not just for the ordinary points. In contrast, the
barycentric coordinates, defined by Sommerville by using a triangle and a unit point,
as it is standard in projective geometry, are valid only for ordinary points. Thus, for
Sommerville, the barycentric (point) coordinates are defined by

X0 = sinh a sinhu,

X1 = sinh b sinh v,

X0 = sinh c sinhw,

(1.6)

where a, b, c are the lengths of the sides BC,CA and AB, respectively, of the reference
triangle, while u, v, w are the distances from the current point to these sides. These
definitions are equivalent to those given by polarisation for ordinary points in the
hyperbolic plane, but they don’t make sense for ideal or ultra-infinite points for the
very simple reason that the lengths u, v, w are not defined.

The homogeneous coordinates in the hyperbolic plane have not been very popu-
lar, lately. Most of the works on analytic hyperbolic geometry prefer the use of Carte-
sian or polar coordinates. Nevertheless, if somebody wants to investigate problems
related to a hyperbolic triangle, it is more convenient to use some coordinates related
closely to the triangle itself. Recently, (see [11]) Ungar introduced a set of barycen-
tric coordinates, in the framework of the so-called Einstein velocity space model of
hyperbolic geometry. We feel, however, that the Cayley-Klein (projective) model is
closer to the intuition and, therefore, we use the barycentric coordinates introduced
by Sommerville ([10]) and, afterwards, reformulated by Coxeter ([4]).

We introduce the following notations, that we will use again and again. For more
details, see [2]. First of all, we denote by H2 the hyperbolic plane, as a subset of the
real projective plane. If (x) and (y) are two points, while [ξ] and [η] are two lines
(from the real projective plane!), then

1. (x, y) = cµνxµyν ;
2. [ξ, η] = Cµνξµην ;
3. {x, η} = xµξη;
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4. {ξ, y} = ξµyν ,

where, as usually, we sum after all the possible values of the indices. We mention that,
if the lines [ξ] and [η] are the polars of the points (x) and (y), the all the all four
brackets defined above are equal.

The brackets we introduce are very convenient for describing different entities
related to hyperbolic geometry. We mention only some of them, that will be used in
the paper.

1. The equation of the Absolute is (x, x) = 0 (in point coordinates) or [ξ, ξ] = 0 (in
line coordinates);

2. a point (x) is an ordinary point iff (x, x) > 0;
3. a point (x) is an ultra-infinite point iff (x, x) < 0;
4. a line [ξ] is ultra-infinite (i.e. lies outside the hyperbolic plane) iff [ξ, ξ] > 0;
5. the polar of any ordinary point of the hyperbolic plane is ultra-infinite and the

polar of ultra-infinite point is an ordinary line;
6. the lines [ξ] and [η] are perpendicular iff [ξ, η] = 0;
7. if α is the angle between two lines, [ξ] and [η], then

cos2 α =
[ξ, η]2

[ξ, ξ] · [η, η]
.

Notice that this relations makes sense iff the two lines are either both ordinary,
either both ultra-infinite. We cannot compute, for instance, the angle between
an ordinar line and an ultra-ideal one.

8. If (x) and (y) are two points and d is the distance between them, then

cosh d =
|(x, y)|√

(x, x) cot(y, y)
.

Again, we can only compute distances between two ordinary points or two ultra-
infinite points, but not between an ordinary point and an ultra-infinite point.

9. We can, also, compute the distance d between a point (x) and a line [ξ], by using
the formula

sinh d =
|{x, ξ}|√

(x, x) ·
√
−[ξ, ξ]

.

This distance can be computed iff both (x) and (ξ) are ordinary.

From now on, we shall use exclusively barycentric coordinates and we shall denote
them with capital letters, (X0, X1, X2). In this coordinates, as we saw, we have

(X,X) = (X0)
2

+ (X1)
2

+ (X2)
2

+ 2 cosh c ·X0X1+

+ 2 cosh b ·X0X2 + 2 cosh a ·X1X2.
(1.7)

2. The transformation

The isotomic transformation for Euclidean triangles has been introduced by G.
de Longchamps in 1866 (see [6] and [7]). We shall give here a similar definition, using
the hyperbolic barycentric coordinates.
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Definition 2.1. We define, by analogy to the Euclidean case, the isotomic transforma-
tion as being a map

Isot : P2(R) \ T → P2(R),

defined by

Isot (X0, X1, X2) =

(
1

X0
,

1

X1
,

1

X2

)
. (2.1)

Here T is the union of the three sides of the triangle ABC (thought of as projective
lines). We shall say that the points M and M ′ form an isotomic pair. We shall also
say that M ′ is the isotomic conjugate or the isotomic inverse of M . We may, as well,
say, again inspired from the classical case, that the two points are reciprocal (with
respect to the triangle ABC).

As Isot is defined on P2(R) \ T , none of the coordinates Xi vanishes, hence Isot
is well defined.

Remark 2.2. 1. We might have tried, as well, to define the isotomic transformation
just on points of the hyperbolic plane. Nevertheless, as we shall see later, the
image of an ordinary point through the isotomic transformation is not always
an ordinary point, it might be ideal or ultra-infinite.

2. By looking at the formula (2.1), the reader may think that the definition
of the isotomic transformation is identical to the definition from the Eu-
clidean/projective case. This is not the case, however, because the barycentric
coordinates from the hyperbolic case are not the same with the classical barycen-
ter coordinates.

Definition 2.3. We shall say that two points on the side BC of hyperbolic triangle
ABC (ordinary, ideal or ultra-infinite) are isotomically symmetric with respect to the
midpoint A′ of the side BC if they coordinates are A1(0, α1, α2) and A′(0, 1/α1, 1/α2)
or A′

1(0, α2, α1).

The following theorem justifies the name of “isotomic transformation”.

Theorem 2.4. If A1 is an ordinary point on BC, then its isotomic symmetric A′
1 is,

also, ordinary, and A′A1 = A′A′
1 (as hyperbolic lengths). Moreover, is A1 is either

ideal or ultra-infinite, the same holds true for A′
1.

Proof. We notice, first of all, that (A1, A1) = (A′
1, A

′
1), therefore the two numbers

are simultaneously zero, positive or negative. As such, the points A1 and A′
1 have the

same character(ordinary, ideal or ultra-infinite).

Thus, we will consider the particular case when A1 is an ordinary point, and, of
course, the same is true for A′

1. We know, already, that the barycentric coordinates
of A′ are (0, 1, 1). We compute, first, the length of the segment A′A1. We have

coshA′A1 =
|(A′, A1)|√

(A′, A′) · (A1, A1)
.
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On the other hand,

(A′, A′) = 2(1 + cosh a) = 4 cosh2 a

2
,

(A1, A1) = α2
1 + α2

2 + 2α1α2 cosh a,

(A′, A1) = 2(α1 + α2) cosh2 a

2
.

We have, therefore

coshA′A1 =

∣∣∣2(α1 + α2) cosh2 a

2

∣∣∣
2 cosh

a

2

√
α2
1 + α2

2 + 2α1α2 cosh a
=

|α1 + α2| cosh
a

2√
α2
1 + α2

2 + 2α1α2 cosh a
.

Now, it is easy to check that (A′
1, A

′
1) = (A1, A1) and (A′, A′

1) = (A′, A1), therefore
coshA′A′

1 = coshA′A1, hence A′A′
1 = A′A1. �

The previous theorem justifies the following definition:

Definition 2.5. Two cevians of a hyperbolic triangle ABC, starting from the same
vertex, are called isotomic if they cut the opposite side at isotomically symmetric
points. We shall, also, say that the cevians are isotomically conjugated.

Theorem 2.6. If three cevians (starting from different vertices) are concurrent at a
point, then their isotomic conjugates are also concurrent and the intersection points
are, as well, isotomically conjugated.

Proof. Let M
(
X0

0 , X
0
1 , X

0
2

)
be the intersection point of the three given cevians. It is

easy to see that the equations of these cevians are

AM : X0
2X1 −X0

1X2 = 0,

BM : X0
2X0 −X0

0X2 = 0,

CM : X0
1X0 −X0

0X1 = 0.

As such, their intersection points with the sides BC, CA and AB, respectively, will be
A1

(
0, X0

1 , X
0
2

)
, B1

(
X0

0 , 0, X
0
2

)
and C1

(
X0

0 , X
0
1 , 0
)
, respectively. Then, according to

the previous lemma, their symmetrics with respect to the midpoints of the respective
sides will be A′

1

(
0, X0

2 , X
0
1

)
, B′

1

(
X0

2 , 0, X
0
0

)
and C ′

1

(
X0

1 , X
0
0 , 0
)
, respectively.

We are, thus, led to the equations of the isotomically conjugated of the cevians
AM,BM and CM :

AA′
1 : X0

1X1 −X0
2X2 = 0,

BB′
1 : X0

0X0 −X0
2X2 = 0,

CC ′
1 : X0

0X0 −X0
1X1 = 0.

It turns out that the three cevians do intersect, at the point

M ′ (1/X0
0 , 1/X

0
1 , 1/X

0
2

)
,

as we expected. �
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3. The Steiner quadratix

As we mentioned before, one of the advantages of the Cayley-Klein approach to
the hyperbolic plane is that, in this model, the hyperbolic geometry is, in a certain
sense, a “sub-geometry” of the real projective plane. As such, we have access to all
the points of the projective plane, although they are not treated on the same footing.
We can treat any pair of lines as being intersecting lines, but some of them intersect
at ideal or ultra-infinite points. We can write the equation of the line passing through
an arbitrary pair of points, but some of the lines are either ultra-infinite (they don’t
intersect the hyperbolic plane) or lines at infinity (they are tangents to the Absolute).
The downside is that we cannot compute distances and lengths when ideal or ultra-
infinite points and lengths are involved.

We turn, for a while, to the “classical” language of hyperbolic geometry. Then,
for instance, the theorem 2.6 can be reformulated as

Theorem 3.1. Consider three cevians of a given triangle, starting from different ver-
tices. If the three cevians belong to the same pencil of lines (concurrent, ultra-parallel
or parallel), then the their isotomic conjugates also belong to the same pencil.

The point is that we don’t know what kind of pencil.

We ask the following question: When three concurrent cevians of a given hyper-
bolic triangle, starting from different vertices turn, through the isotomic transforma-
tion, into three parallel lines?

We know the answer in the classical Euclidean (or, rather, projective case): when
they intersect on the line at infinity. But the things are similar, here, only that the
line at infinity gets replaced by the Absolute. Indeed, three lines belong to the same
pencil of parallel lines iff they intersect (according to the Cayley-Klein view of the
hyperbolic geometry) on the Absolute. Therefore, we have the following theorem:

Theorem 3.2. Let us assume that the cevians AA1, BB1 and CC1 of the triangle
ABC intersect at a point M(X0

0 , X
0
1 , X

0
2 ) (ordinary, ideal or ultra-infinite). Then the

isotomic conjugates of the cevians are parallel (i.e. they intersect at an ideal point)
iff M belongs to the curve

X2
0X

2
1 +X2

0X
2
2 +X2

1X
2
2 + 2 cosh cX0X1X

2
2+

+ 2 cosh bX0X
2
1X2 + 2 cosh aX2

0X1X2 = 0.
(3.1)

We shall call the curve (3.1) the Steiner quadratix. It is the hyperbolic analogue of
the first Steiner ellipse.

Proof. The isotomic conjugates of the cevians are parallel to each other iff they in-
tersect at a point of the Absolute. But, as we saw earlier, the conjugates intersect at
the point M ′ (1/X0

0 , 1/X
0
1 , 1/X

0
2

)
. M ′ belongs to the Absolute iff

1

(X0
0 )

2 +
1

(X0
1 )

2 +
1

(X0
2 )

2 +
2

X0
0 ·X0

1

cosh c+
2

X0
0 ·X0

2

cosh b+
2

X0
1 ·X0

2

cosh a = 0
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or (
X0

0

)2 · (X0
1

)2
+
(
X0

0

)2 · (X0
2

)2
+
(
X0

1

)2 · (X0
2

)2
+

+ 2 cosh c ·X0
0 ·X0

1 ·
(
X0

2

)2
+ 2 cosh b ·X0

0 ·
(
X0

1

)2 ·X0
2+

+ 2 cosh a ·
(
X0

0

)2 ·X0
1 ·X0

2 = 0,

which shows that the point M belongs to the Steiner quadratix. �

Remark 3.3. Clearly, the vertices of the triangle ABC belong to the Steiner quadratix,
which, thus, is not empty.

4. Some remarkable pairs of isotomic points

As examples, we use the hyperbolic analogs of some classical remarkable points
from the geometry of the Euclidean triangles, the Gergonne group of points and the
Nagel group of points. For the Euclidean points, see [1] and [8].

4.1. The Gergonne and Nagel Points

In [3], we introduced the Gergonne and Nagel points associated to a hyperbolic
triangle. Exactly as it happens for a Euclidean triangle, the Gergonne point is the
point obtained by intersecting the lines connecting the vertices of a hyperbolic triangle
ABC to the points of contact of the incircle with the opposite sides. The incircle is,
for any hyperbolic triangle, a proper circle. For the Nagel point, the definition has to
be a little bit adapted to work for an arbitrary hyperbolic triangle. Thus, the Nagel
point is obtained as intersection of the lines connecting the vertices of the triangle
to the points of contact of the opposite sides to the corresponding excycles. Unlike
the Euclidean case, an arbitrary hyperbolic triangle doesn’t always have excircles. In
some cases, these circles become equidistants or horocycles. We use the term “cycle”
to cover all the possible situations.

In [3], we prove that, for each situation, the three cevians really intersect and,
moreover, the intersection points are always ordinary. More specifically, we were able
to prove that they barycentric coordinates are identical to the barycentric coordinates
of their Euclidean analogues, i.e.

• for the Gergonne point we obtain

Γ = Γ

(
tan

A

2
, tan

B

2
, tan

C

2

)
;

• for the Nagel point, we obtain

N = N

(
cot

A

2
, cot

B

2
, cot

C

2

)
.

Thus, the Gergonne and Nagel points are isotomic to each other.
We can see immediately, without any computation, that the points are ordinary

(as all the coordinates are strictly positive, they are in the interior of the triangle)
and they are isotomic to each other.
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4.2. The adjoint Gergonne and Nagel points

We introduce these points in [3], by analogy to the classical case. Thus, the
adjoint Gergonne points Γa,Γb,Γc are the analogues of the Gergonne points, for the
excycles. Thus, consider, for instance the excycles that is tangent to the side BC in
an interior points. We connect the tangency points with the opposite vertices. We
proved in [3] that they intersect at a point Γa (which is not necessarily ordinary) and
the same happens with the other two vertices of the triangle ABC.

We get, thus, three points

Γa = Γa

(
− tan

A

2
, cot

B

2
, cot

C

2

)
,

Γb = Γb

(
cot

A

2
,− tan

B

2
, cot

C

2

)
,

Γc = Γc

(
cot

A

2
, cot

B

2
,− tan

C

2

)
.

The lines connecting the extremities of a side of the triangle ABC to the contact
points of the excycles lying within the angles adjacent to this side, situated on the
extensions of the opposite sides of the one considered and the line that connects the
third vertex to the contact point of the incircle to the opposite side are concurrent at a
point (ordinary, ideal or ultra-infinite). We get, thus (see [3]), three points Na, Nb, Nc,
called the adjoint Nagel points of the triangle ABC:

Na = Na

(
− cot

A

2
, tan

B

2
, tan

C

2

)
,

Nb = Nb

(
tan

A

2
,− cot

B

2
, tan

C

2

)
,

Nc = Nc

(
tan

A

2
, tan

B

2
,− cot

C

2

)
.

It can be seen that each adjoint Nagel point is the isotomic conjugate of the corre-
sponding adjoint Gergonne point.
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