On systems of semilinear hyperbolic functional equations

László Simon

Abstract

We consider a system of second order semilinear hyperbolic functional differential equations where the lower order terms contain functional dependence on the unknown function. Existence of solutions for $t \in(0, T)$ and $t \in(0, \infty)$, further, examples and some qualitative properties of the solutions in $(0, \infty)$ are shown.

Mathematics Subject Classification (2010): 35L71, 35L53, 35B40.
Keywords: Semilinear hyperbolic equations, functional partial differential equations, second order hyperbolic systems, qualitative properties of solutions.

1. Introduction

In the present work we shall consider weak solutions of initial-boundary value problems of the form

$$
\begin{gather*}
u_{j}^{\prime \prime}(t)+Q_{j}(u(t))+\varphi(x) D_{j} h(u(t))+H_{j}(t, x ; u)+G_{j}\left(t, x ; u, u^{\prime}\right)=F_{j}, \tag{1.1}\\
t>0, \quad x \in \Omega, \quad j=1, \ldots, N \\
u(0)=u^{(0)}, \quad u^{\prime}(0)=u^{(1)} \tag{1.2}
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain and we use the notations $u(t)=\left(u_{1}(t), \ldots, u_{N}(t)\right)$, $u(t)=\left(u_{1}(t, x), \ldots, u_{N}(t, x)\right), u^{\prime}=\left(u_{1}^{\prime}, \ldots, u_{N}^{\prime}\right)=D_{t} u=\left(D_{t} u_{1}, \ldots, D_{t} u_{N}\right), u^{\prime \prime}=D_{t}^{2} u$, Q_{j} is a linear second order symmetric elliptic differential operator in the variable x; h is a C^{1} function having certain polynomial growth, H_{j} and G_{j} contain nonlinear functional (non-local) dependence on u and u^{\prime}, with some polynomial growth.

There are several papers on semilinear hyperbolic differential equations, see, e.g., [3], [4], [10], [14] and the references there. Semilinear hyperbolic functional equations were studied, e.g. in [5], [6], [7], with certain non-local terms, generally in the form of particular integral operators containing the unknown function. First order quasilinear evolution equations with non-local terms were considered, e.g., in [13] and [15], second

[^0]order quasilinear evolution equations with non-local terms were considered in [11], by using the theory of monotone type operators (see [2], [9], [16]).

This work was motivated by the classical book [9] of J.L. Lions on nonlinear PDEs where a single equation was considered in a particular case (semilinear hyperbolic differential equation). We shall use ideas of the above work.

Semilinear hyperbolic functional equations were considered in a previous work of the author (see [12]).

2. Existence in $(0, T)$

Denote by $\Omega \subset \mathbb{R}^{n}$ a bounded domain with sufficiently smooth boundary, and let $Q_{T}=(0, T) \times \Omega$. Denote by $W^{1,2}(\Omega)$ the Sobolev space with the norm

$$
\|u\|=\left[\int_{\Omega}\left(\sum_{j=1}^{n}\left|D_{j} u\right|^{2}+|u|^{2}\right) d x\right]^{1 / 2}
$$

Further, let $V_{j} \subset W^{1,2}(\Omega)$ be closed linear subspaces of $W^{1,2}(\Omega)$, V_{j}^{\star} the dual space of $V_{j}, V=\left(V_{1}, \ldots, V_{N}\right), V^{\star}=\left(V_{1}^{\star}, \ldots, V_{N}^{\star}\right), H=L^{2}(\Omega) \times \ldots \times L^{2}(\Omega)$, the duality between V_{j}^{\star} and V_{j} (and between V^{\star} and V) will be denoted by $\langle\cdot, \cdot\rangle$, the scalar product in $L^{2}(\Omega)$ and H will be denoted by (\cdot, \cdot). Denote by $L^{2}\left(0, T ; V_{j}\right)$ and $L^{2}(0, T ; V)$ the Banach space of measurable functions $u:(0, T) \rightarrow V_{j}, u:(0, T) \rightarrow V$, respectively, with the norm

$$
\left\|u_{j}\right\|_{L^{2}\left(0, T ; V_{j}\right)}=\left[\int_{0}^{T}\left\|u_{j}(t)\right\|_{V_{j}}^{2} d t\right]^{1 / 2}, \quad\|u\|_{L^{2}(0, T ; V)}=\left[\int_{0}^{T}\|u(t)\|_{V}^{2} d t\right]^{1 / 2}
$$

respectively.
Similarly, $L^{\infty}\left(0, T ; V_{j}\right), L^{\infty}(0, T ; V), L^{\infty}\left(0, T ; L^{2}(\Omega)\right), L^{\infty}(0, T ; H)$ is the set of measurable functions $u_{j}:(0, T) \rightarrow V_{j}, u:(0, T) \rightarrow V, u_{j}:(0, T) \rightarrow L^{2}(\Omega)$, $u:(0, T) \rightarrow H$, respectively, with the $L^{\infty}(0, T)$ norm of the functions $t \mapsto\left\|u_{j}(t)\right\|_{V_{j}}$, $t \mapsto\|u(t)\|_{V}, t \mapsto\left\|u_{j}(t)\right\|_{L^{2}(\Omega)}, t \mapsto\|u(t)\|_{H}$, respectively.

Now we formulate the assumptions on the functions in (1.1).
$\left(A_{1}\right) \cdot Q: V \rightarrow V^{\star}$ is a linear continuous operator defined by

$$
\begin{gathered}
\langle Q(u), v\rangle=\sum_{j=1}^{N}\left\langle Q_{j}(u), v_{j}\right\rangle=\sum_{j=1}^{N}\left[\sum_{k=1}^{N}\left\langle Q_{j k}\left(u_{k}\right), v_{j}\right\rangle\right], \\
u=\left(u_{1}, \ldots, u_{N}\right), \quad v=\left(v_{1}, \ldots, v_{N}\right),
\end{gathered}
$$

where $Q_{j k}: W^{1,2}(\Omega) \rightarrow\left[W^{1,2}(\Omega)\right]^{\star}$ are continuous linear operators satisfying

$$
\left\langle Q_{j k}\left(u_{k}\right), v_{j}\right\rangle=\left\langle Q_{j k}\left(v_{j}\right), u_{k}\right\rangle, \quad Q_{j k}=Q_{k j}, \text { thus }\langle Q(u), v\rangle=\langle Q(v), u\rangle
$$

for all $u, v \in V$ and

$$
\langle Q(u), u\rangle \geq c_{0}\|u\|_{V}^{2} \text { with some constant } c_{0}>0 .
$$

$\left(A_{2}\right) \cdot \varphi: \Omega \rightarrow \mathbb{R}$ is a measurable function satisfying

$$
c_{1} \leq \varphi(x) \leq c_{2} \text { for a.a. } x \in \Omega
$$

with some positive constants c_{1}, c_{2}.
$\left(A_{3}\right) . h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuously differentiable function satisfying

$$
\begin{aligned}
& h(\eta) \geq 0, \quad\left|D_{j} h(\eta)\right| \leq \text { const }|\eta|^{\lambda} \text { for }|\eta|>1 \text { where } \\
& 1<\lambda \leq \lambda_{0}=\frac{n}{n-2} \text { if } n \geq 3, \quad 1<\lambda<\infty \text { if } n=2
\end{aligned}
$$

$\left(A_{3}^{\prime}\right) . h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuously differentiable function satisfying with some positive constants c_{3}, c_{4}

$$
\begin{gathered}
h(\eta) \geq c_{3}|\eta|^{\lambda+1}, \quad\left|D_{j} h(\eta)\right| \leq c_{4}|\eta|^{\lambda} \text { for }|\eta|>1, \quad n \geq 3 \text { where } \lambda>\lambda_{0}=\frac{n}{n-2} \\
\left|D_{j} h(\eta)\right| \leq c_{4}|\eta|^{\lambda} \quad \text { for }|\eta|>1, \quad n=2 \text { where } 1<\lambda<\infty
\end{gathered}
$$

$\left(A_{4}\right) . H_{j}: Q_{T} \times\left[L^{2}\left(Q_{T}\right)\right]^{N} \rightarrow \mathbb{R}$ are functions for which $(t, x) \mapsto H_{j}(t, x ; u)$ is measurable for all fixed $u \in H, H_{j}$ has the Volterra property, i.e. for all $t \in[0, T]$, $H_{j}(t, x ; u)$ depends only on the restriction of u to $(0, t)$; the following inequality holds for all $t \in[0, T]$ and $u \in H$:

$$
\int_{\Omega}\left|H_{j}(t, x ; u)\right|^{2} d x \leq c^{\star}\left[\int_{0}^{t} \int_{\Omega} h(u(\tau)) d x d \tau+\int_{\Omega} h(u) d x\right]
$$

Finally, $\left(u^{(k)}\right) \rightarrow u$ in $\left[L^{2}\left(Q_{T}\right)\right]^{N}$ and $\left(u^{(k)}\right) \rightarrow u$ a.e. in Q_{T} imply

$$
H_{j}\left(t, x ; u^{(k)}\right) \rightarrow H_{j}(t, x ; u) \text { for a.a. }(t, x) \in Q_{T}
$$

$\left(A_{5}\right) . G_{j}: Q_{T} \times\left[L^{2}\left(Q_{T}\right)\right]^{N} \times L^{\infty}(0, T ; H) \rightarrow \mathbb{R}$ is a function satisfying: $(t, x) \mapsto$ $G_{j}(t, x ; u, w)$ is measurable for all fixed $u \in\left[L^{2}\left(Q_{T}\right)\right]^{N}, w \in L^{\infty}(0, T ; H), G_{j}$ has the Volterra property: for all $t \in[0, T], G_{j}(t, x ; u, w)$ depends only on the restriction of u, w to $(0, t)$ and

$$
G_{j}\left(t, x ; u, u^{\prime}\right)=\varphi_{j}(t, x ; u) u_{j}^{\prime}(t)+\psi_{j}\left(t, x ; u, u^{\prime}\right)
$$

where

$$
\begin{equation*}
\varphi_{j} \geq 0, \quad\left|\varphi_{j}(t, x ; u)\right| \leq \mathrm{const} \tag{2.1}
\end{equation*}
$$

if $\left(A_{3}\right)$ is satisfied.
$\left(A_{5}^{\prime}\right)$ If $\left(A_{3}^{\prime}\right)$ is satisfied, we assume instead of the second inequality in (2.1)

$$
\begin{equation*}
\int_{\Omega}\left|\varphi_{j}(t, x ; u)\right|^{2} d x \leq \text { const }\left[\int_{Q_{t}}|u|^{2 \mu} d \tau d x+\int_{\Omega}|u|^{2 \mu} d x\right] \tag{2.2}
\end{equation*}
$$

where $\mu \leq \frac{n+1}{n-1} \frac{\lambda-1}{\lambda+1}$.
Further, on ψ_{j} we assume

$$
\int_{\Omega}\left|\psi_{j}\left(t, x ; u, u^{\prime}\right)\right|^{2} d x \leq c_{1}+c_{2} \int_{Q_{t}}\left|u^{\prime}\right|^{2} d x d \tau
$$

with some constants c_{1}, c_{2}.
Further, if $\left(u^{(\nu)}\right) \rightarrow u$ in $\left[L^{2}\left(Q_{T}\right)\right]^{N}$ then

$$
\varphi_{j}\left(t, x ; u^{(\nu)}\right) \rightarrow \varphi_{j}(t, x ; u) \text { for a.a. }(t, x) \in Q_{T}
$$

and if

$$
\left(u^{(\nu)}\right) \rightarrow u \text { in }\left[L^{2}\left(Q_{T}\right)\right]^{N} \text { and a.e. in } Q_{T}, \quad\left(w^{(\nu)}\right) \rightarrow w
$$

weakly in $L^{\infty}(0, T ; H)$ in the sense that for all fixed $g_{1} \in L^{1}(0, T ; H)$

$$
\int_{0}^{T}\left\langle g_{1}(t), w^{(\nu)}(t)\right\rangle d t \rightarrow \int_{0}^{T}\left\langle g_{1}(t), w(t)\right\rangle d t
$$

then for a.a. $(t, x) \in Q_{T}$

$$
\psi_{j}\left(t, x ; u^{(\nu)}, w^{(\nu)}\right) \rightarrow \psi_{j}(t, x ; u, w)
$$

Theorem 2.1. Assume $\left(A_{1}\right),\left(A_{2}\right),\left(A_{3}\right),\left(A_{4}\right),\left(A_{5}\right)$. Then for all $F \in L^{2}(0, T ; H)$, $u^{(0)} \in V, u^{(1)} \in H$ there exists $u \in L^{\infty}(0, T ; V)$ such that

$$
u^{\prime} \in L^{\infty}(0, T ; H), \quad u^{\prime \prime} \in L^{2}\left(0, T ; V^{\star}\right)
$$

u satisfies the system (1.1) in the sense: for a.a $t \in[0, T]$, all $v \in V$

$$
\begin{gather*}
\left\langle u_{j}^{\prime \prime}(t), v_{j}\right\rangle+\left\langle Q_{j}(u(t)), v_{j}\right\rangle+\int_{\Omega} \varphi(x) D_{j} h(u(t)) v_{j} d x+\int_{\Omega} H_{j}(t, x ; u) v_{j} d x+ \tag{2.3}\\
\int_{\Omega} G_{j}\left(t, x ; u, u^{\prime}\right) v_{j} d x=\left(F_{j}(t), v_{j}\right) \quad j=1, \ldots, N
\end{gather*}
$$

and the initial condition (1.2) is fulfilled.
If $\left(A_{1}\right),\left(A_{2}\right),\left(A_{3}^{\prime}\right),\left(A_{4}\right),\left(A_{5}\right)$ are satisfied then for all $F \in L^{2}(0, T ; H), u^{(0)} \in$ $V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}, u^{(1)} \in H$ there exists $u \in L^{\infty}\left(0, T ; V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}\right)$ such that

$$
u^{\prime} \in L^{\infty}(0, T ; H)
$$

$$
u^{\prime \prime} \in L^{2}\left(0, T ; V^{\star}\right)+L^{\infty}\left(0, T ;\left[L^{\frac{\lambda+1}{\lambda}}(\Omega)\right]^{N}\right) \subset L^{2}\left(0, T ;\left[V \cap\left(L^{\lambda+1}(\Omega)\right)^{N}\right]^{\star}\right)
$$

and u satisfies (1.1) in the sense: for a.a $t \in[0, T]$, all $v_{j} \in V_{j} \cap L^{\lambda+1}(\Omega)$ (2.3) holds, further, the initial condition (1.2) is fulfilled.

Proof. We apply Galerkin's method. Let $w_{1}^{(j)}, w_{2}^{(j)}, \ldots$ be a linearly independent system in V_{j} if $\left(A_{3}\right)$ is satisfied and in $V_{j} \cap L^{\lambda+1}(\Omega)$ if $\left(A_{3}^{\prime}\right)$ is satisfied such that the linear combinations are dense in V_{j} and $V_{j} \cap L^{\lambda+1}(\Omega)$, respectively. We want to find the m-th approximation of u in the form

$$
\begin{equation*}
u_{j}^{(m)}(t)=\sum_{l=1}^{m} g_{l m}^{(j)}(t) w_{l}^{(j)} \quad(j=1,2, \ldots, N) \tag{2.4}
\end{equation*}
$$

where $g_{l m}^{(j)} \in W^{2,2}(0, T)$ if $\left(A_{3}\right)$ holds and $g_{l m}^{(j)} \in W^{2,2}(0, T) \cap L^{\infty}(0, T)$ if $\left(A_{3}^{\prime}\right)$ holds such that

$$
\begin{gather*}
\left\langle\left(u_{j}^{(m)}\right)^{\prime \prime}(t), w_{k}^{(j)}\right\rangle+\left\langle Q\left(u^{(m)}(t)\right), w_{k}^{(j)}\right\rangle+\int_{\Omega} \varphi(x) D_{j} h\left(u^{(m)}(t)\right) w_{k}^{(j)} d x \tag{2.5}\\
+\int_{\Omega} H_{j}\left(t, x ; u^{(m)}\right) w_{k}^{(j)} d x+\int_{\Omega} G_{j}\left(t, x ; u^{(m)},\left(u^{(m)}\right)^{\prime}\right) w_{k}^{(j)} d x=\left\langle F_{j}(t), w_{k}^{(j)}\right\rangle \\
k=1, \ldots, m, \quad j=1, \ldots, N \\
u_{j}^{(m)}(0)=u_{j 0}^{(m)}, \quad\left(u_{j}^{(m)}\right)^{\prime}(0)=u_{j 1}^{(m)} \tag{2.6}
\end{gather*}
$$

where $u_{j 0}^{(m)}, u_{j 1}^{(m)}(j=1,2, \ldots, N)$ are linear combinations of $w_{1}^{(j)}, w_{2}^{(j)} \ldots, w_{m}^{(j)}$ satisfying

$$
\begin{equation*}
\left(u_{j 0}^{(m)}\right) \rightarrow u_{j}^{(0)} \text { in } V_{j} \text { and } V_{j} \cap L^{\lambda+1}(\Omega), \text { respectively, as } m \rightarrow \infty \text { and } \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\left(u_{j 1}^{(m)}\right) \rightarrow u_{j}^{(1)} \text { in } H \text { as } m \rightarrow \infty . \tag{2.8}
\end{equation*}
$$

It is not difficult to show that all the conditions of the existence theorem for a system of functional differential equations with Carathéodory conditions are satisfied.

Thus, by using the Volterra property of G and H, we obtain that there exists a solution of (2.5), (2.6) in a neighbourhood of 0 (see [8]). Further, the maximal solution of (2.5), (2.6) is defined in $[0, T]$. Indeed, multiplying (2.5) by $\left[g_{l m}^{(j)}\right]^{\prime}(t)$ and taking the sum with respect to j, and k we obtain

$$
\begin{gather*}
\left\langle\left(u^{(m)}\right)^{\prime \prime}(t),\left(u^{(m)}\right)^{\prime}(t)\right\rangle+\left\langle Q\left(u^{(m)}(t)\right),\left(u^{(m)}\right)^{\prime}(t)\right\rangle \tag{2.9}\\
+\int_{\Omega} \varphi(x) \frac{d}{d t}\left[h\left(u^{(m)}(t)\right)\right] d x \\
+\int_{\Omega}\left(H\left(t, x ; u^{(m)}\right),\left(u^{(m)}\right)^{\prime}(t)\right) d x+\int_{\Omega}\left(G\left(t, x ; u^{(m)},\left(u^{(m)}\right)^{\prime}\right),\left(u^{(m)}\right)^{\prime}(t)\right) d x \\
=\left\langle F(t),\left(u^{(m)}\right)^{\prime}(t)\right\rangle .
\end{gather*}
$$

Integrating the above equality over ($0, t$) we find (see, e.g., [16], [12])

$$
\begin{gather*}
\frac{1}{2}\left\|\left(u^{(m)}\right)^{\prime}(t)\right\|_{H}^{2}+\frac{1}{2}\left\langle Q\left(u^{(m)}(t)\right), u^{(m)}(t)\right\rangle+\int_{\Omega} \varphi(x) h\left(u^{(m)}(t)\right) d x \tag{2.10}\\
+\int_{0}^{t}\left[\int_{\Omega}\left(H\left(\tau, x ; u^{(m)}\right),\left(u^{(m)}\right)^{\prime}\right) d x\right] d \tau+\int_{0}^{t}\left[\int_{\Omega}\left(G\left(\tau, x ; u^{(m)},\left(u^{(m)}\right)^{\prime}\right),\left(u^{(m)}\right)^{\prime}\right) d x\right] d \tau \\
=\int_{0}^{t}\left[\left\langle F(\tau),\left(u^{(m)}\right)^{\prime}(\tau)\right\rangle\right] d \tau
\end{gather*}
$$

Hence, by using Young's inequality, Sobolev's imbedding theorem and the assumptions of our theorem, we obtain

$$
\begin{gathered}
\left\|\left(u^{(m)}\right)^{\prime}(t)\right\|_{H}^{2}+\int_{\Omega} h\left(u^{(m)}(t)\right) d x+\left\|u^{(m)}(t)\right\|_{V}^{2} \\
\leq \text { const }\left\{1+\int_{0}^{t}\left[\left\|\left(u^{(m)}\right)^{\prime}(\tau)\right\|_{H}^{2}+\int_{\Omega} h\left(u^{(m)}(\tau)\right) d x\right] d \tau\right\}
\end{gathered}
$$

where the constant is not depending on t and m. Thus by Gronwall's lemma

$$
\begin{equation*}
\left\|\left(u^{(m)}\right)^{\prime}(t)\right\|_{H}^{2}+\int_{\Omega} h\left(u^{(m)}(t)\right) d x \leq \mathrm{const} \tag{2.11}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\left\|u^{(m)}(t)\right\|_{V}^{2} \leq \text { const } \tag{2.12}
\end{equation*}
$$

Further, the estimates (2.11), (2.12) hold for all $t \in[0, T]$ and all m and in the case $\lambda>\lambda_{0}, n \geq 3$

$$
\begin{equation*}
\left\|u^{(m)}(t)\right\|_{V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}} \leq \text { const. } \tag{2.13}
\end{equation*}
$$

By (2.11), (2.12), if $\left(A_{3}\right)$ is satisfied, there exist a subsequence of $\left(u^{(m)}\right)$, again denoted by $\left(u^{(m)}\right)$ and $u \in L^{\infty}(0, T ; V)$ such that

$$
\begin{align*}
& \left(u^{(m)}\right) \rightarrow u \text { weakly in } L^{\infty}(0, T ; V) \tag{2.14}\\
& \left(u^{(m)}\right)^{\prime} \rightarrow u^{\prime} \text { weakly in } L^{\infty}(0, T ; H) \tag{2.15}
\end{align*}
$$

in the following sense: for any fixed $g \in L^{1}\left(0, T ; V^{\star}\right)$ and $g_{1} \in L^{1}(0, T ; H)$

$$
\begin{aligned}
\int_{0}^{T}\left\langle g(t), u^{(m)}(t)\right\rangle d t & \rightarrow \int_{0}^{T}\langle g(t), u(t)\rangle d t \\
\int_{0}^{T}\left(g_{1}(t),\left(u^{(m)}\right)^{\prime}(t)\right) d t & \rightarrow \int_{0}^{T}\left(g_{1}(t), u^{\prime}(t)\right) d t
\end{aligned}
$$

Similarly, in the case $\lambda>\lambda_{0}, n \geq 3$, (when $\left(A_{3}^{\prime}\right)$ holds) there exist subsequence of $\left(u^{(m)}\right)$ and $u \in L^{\infty}\left(0, T ; V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}\right)$ such that

$$
\begin{equation*}
\left(u^{(m)}\right) \rightarrow u \text { weakly in } L^{\infty}\left(0, T ; V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}\right) \tag{2.16}
\end{equation*}
$$

which means: for any fixed $g \in L^{1}\left(0, T ;\left(V \cap L^{\lambda+1}(\Omega)\right)^{\star}\right)$

$$
\int_{0}^{T}\left\langle g(t), u^{(m)}(t)\right\rangle d t \rightarrow \int_{0}^{T}\langle g(t), u(t)\rangle d t .
$$

Since the imbedding $W^{1,2}(\Omega)$ into $L^{2}(\Omega)$ is compact, by (2.14) - (2.16) we have for a subsequence

$$
\begin{equation*}
\left(u^{(m)}\right) \rightarrow u \text { in } L^{2}(0, T ; H)=\left[L^{2}\left(Q_{T}\right)\right]^{N} \text { and a.e. in } Q_{T} . \tag{2.17}
\end{equation*}
$$

(see, e.g., [9]). Finally, we show that the limit function u is a solution of problem (1.1), (1.2).

As $Q: V \rightarrow V^{\star}$ is a linear and continuous operator, by (2.14) for all $v \in V$ and $v \in V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}$, respectively we have

$$
\begin{equation*}
\left\langle\left(Q\left(u^{(m)} m\right)(t)\right), v\right\rangle \rightarrow\left\langle(Q(u(t)), v\rangle \text { weakly in } L^{\infty}(0, T)\right. \tag{2.18}
\end{equation*}
$$

and by (2.15)

$$
\begin{equation*}
\left\langle\left(u^{(m)}\right)^{\prime \prime}(t), v\right\rangle=\frac{d}{d t}\left\langle\left(u^{(m)}\right)^{\prime}(t), v\right\rangle \rightarrow\left\langle u^{\prime \prime}(t), v\right\rangle \tag{2.19}
\end{equation*}
$$

with respect to the weak convergence of the space of distributions $D^{\prime}(0, T)$.
Further, by (2.17) and the continuity of $D_{j} h$

$$
\begin{equation*}
\varphi(x) D_{j} h\left(u_{m}(t)\right) \rightarrow \varphi(x) D_{j} h(u(t)) \text { for a.e. }(t, x) \in Q_{T} \tag{2.20}
\end{equation*}
$$

Now we show that for any fixed

$$
v \in L^{2}(0, T ; V), \quad v \in L^{2}(0, T ; V) \cap L^{1}\left(0, T ;\left(L^{\lambda+1}(\Omega)\right)^{N}\right)
$$

respectively, the sequence of functions

$$
\begin{equation*}
\varphi(x) D_{j} h\left(u^{(m)}(t)\right) v \quad j=1, \ldots, N \tag{2.21}
\end{equation*}
$$

is equiintegrable in Q_{T}. Indeed, if $\left(A_{3}\right)$ is satisfied then by Sobolev's imbedding theorem and (2.12) for all $t \in[0, T]$

$$
\begin{aligned}
\left\|\varphi(x) D_{j} h\left(u^{(m)}(t)\right)\right\|_{L^{2}(\Omega)}^{2} & \leq \mathrm{const}\left\|D_{j} h\left(u^{(m)}(t)\right)\right\|_{L^{2}(\Omega)}^{2} \\
\leq \mathrm{const}\left[1+\int_{\Omega}\left|u^{(m)}(t)\right|^{2 \lambda_{0}} d x\right] & \leq \mathrm{const}\left[1+\left\|u_{m}(t)\right\|_{V}^{2 \lambda_{0}}\right] \leq \mathrm{const}
\end{aligned}
$$

because $2 \lambda_{0}=\frac{2 n}{n-2}$ and $W^{1,2}(\Omega)$ is continuously imbedded into $L^{\frac{2 n}{n-2}}(\Omega)$, thus Cauchy-Schwarz inequality implies that the sequence of functions (2.21) is equiintegrable in Q_{T}.

If $\left(A_{3}^{\prime}\right)$ is satisfied then for all $t \in[0, T]$

$$
\int_{\Omega}\left|\varphi(x) D_{j} h\left(u^{(m)}(t)\right)\right|^{\frac{\lambda+1}{\lambda}} d x \leq \text { const } \int_{\Omega}\left[h\left(u^{(m)}(t)\right)+1\right] d x \leq \text { const }
$$

thus Hölder's inequality implies that the sequence (2.21) is equiintegrable in Q_{T}. Consequently, by (2.20) and Vitali's theorem we obtain that for any fixed

$$
v \in L^{2}(0, T ; V), \quad v \in L^{2}(0, T ; V) \cap L^{1}\left(0, T ; L^{\lambda+1}(\Omega)\right)
$$

respectively

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{Q_{T}} \varphi(x) D_{j} h\left(u^{(m)}(t)\right) v_{j} d t d x=\int_{Q_{T}} \varphi(x) D_{j} h(u(t)) v_{j} d t d x \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(x) D_{j} h(u(t)) \in L^{2}\left(0, T ; V^{\star}\right), \quad \varphi(x) D_{j} h(u(t)) \in L^{\infty}\left(0, T ; L^{\frac{\lambda+1}{\lambda}}(\Omega)\right) \tag{2.23}
\end{equation*}
$$

if $\left(A_{3}\right),\left(A_{3}^{\prime}\right)$ holds, respectively.
Further, by (2.17) and (A_{4})

$$
\begin{equation*}
H_{j}\left(t, x ; u^{(m)}\right) \rightarrow H_{j}(t, x ; u) \text { a.e. in } Q_{T} \tag{2.24}
\end{equation*}
$$

and by (2.11)

$$
\int_{Q_{T}}\left|H_{j}\left(t, x ; u_{m}\right)\right|^{2} d x d t \leq \mathrm{const} \int_{Q_{T}} h\left(u_{m}(t)\right) d x d t \leq \text { const }
$$

hence, by Cauchy-Schwarz inequality, for any fixed $v \in L^{2}(0, T ; V)$, the sequence of functions $H_{j}\left(t, x ; u^{(m)}\right) v_{j}$ is equiintegrable in $Q_{T}(j=1, \ldots, N)$, thus by (2.24) and Vitali's theorem

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{Q_{T}} H_{j}\left(t, x ; u^{(m)}\right) v_{j} d t d x=\int_{Q_{T}} H_{j}(t, x ; u) v_{j} d t d x \tag{2.25}
\end{equation*}
$$

and

$$
H(t, x ; u) \in L^{2}\left(0, T ; V^{\star}\right)
$$

Similarly, (2.15) - (2.17) and (A_{5}) imply

$$
\begin{equation*}
\psi_{j}\left(t, x ; u^{(m)},\left(u^{(m)}\right)^{\prime}\right) \rightarrow \psi_{j}\left(t, x ; u, u^{\prime}\right) \text { a.e. in } Q_{T} \tag{2.26}
\end{equation*}
$$

and for arbitrary $v \in L^{2}(0, T ; V)$ the sequence of functions $\psi_{j}\left(t, x ; u^{(m)},\left(u^{(m)}\right)^{\prime}\right) v_{j}$ is equintegrable in Q_{T} by Cauchy - Schwarz inequality, because by (2.11)

$$
\int_{Q_{T}}\left|\psi_{j}\left(t, x ; u^{(m)},\left(u^{(m)}\right)^{\prime}\right)\right|^{2} d t d x \leq \mathrm{const}\left[1+\int_{Q_{T}}\left|\left(u^{(m)}\right)^{\prime}\right|^{2} d x\right] d t \leq \text { const. }
$$

Consequently, Vitali's theorem implies that for $j=1, \ldots, N$

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{Q_{T}} \psi_{j}\left(t, x ; u^{(m)},\left(u^{(m)}\right)^{\prime}\right) v_{j} d t d x=\int_{Q_{T}} \psi_{j}\left(t, x ; u, u^{\prime}\right) v d t d x \tag{2.27}
\end{equation*}
$$

and

$$
\psi_{j}\left(t, x ; u, u^{\prime}\right) \in L^{2}\left(0, T ; V^{\star}\right)
$$

Further, by using Vitali's theorem, we show that for arbitrary fixed $v \in L^{2}(0, T ; V)$

$$
\begin{equation*}
\varphi_{j}\left(t, x ; u^{(m)}\right) v_{j} \rightarrow \varphi_{j}(t, x ; u) v_{j} \text { in } L^{2}\left(Q_{T}\right), \quad j=1, \ldots, N \tag{2.28}
\end{equation*}
$$

Indeed, by $\left(A_{5}\right)$ and (2.17)

$$
\begin{equation*}
\varphi_{j}\left(t, x ; u^{(m)}\right) \rightarrow \varphi_{j}(t, x ; u) \text { for a.e. }(t, x) \in Q_{T}, \quad j=1, \ldots, N . \tag{2.29}
\end{equation*}
$$

Further, by $\left.\left(A_{5}\right) \mid \varphi_{j}\left(t, x ; u^{(m)}\right)\right)\left.\right|^{2}$ is bounded and so for fixed $v \in L^{2}(0, T ; V)$ the sequence

$$
\int_{Q_{T}}\left|\varphi_{j}\left(t, x ; u^{(m)}\right) v_{j}-\varphi_{j}(t, x ; u) v_{j}\right|^{2} d t d x \leq \text { const }\left|v_{j}\right|^{2}
$$

is equiintegrable which implies with (2.29) by Vitali's theorem (2.28). Consequently, by (2.15) we obtain

$$
\begin{equation*}
\lim \int_{Q_{T}} \varphi_{j}\left(t, x ; u^{(m)}\right)\left(u^{(m)}\right)^{\prime}(t) v_{j} d t d x=\int_{Q_{T}} \varphi_{j}(t, x ; u) u^{\prime}(t) v_{j} d t d x, \quad j=1, \ldots, N \tag{2.30}
\end{equation*}
$$

and $\varphi(t, x ; u) u^{\prime} \in L^{2}\left(0, T ; V^{\star}\right)$.
If $\left(A_{5}^{\prime}\right)\left(\right.$ and $\left.\left(A_{3}^{\prime}\right)\right)$ is satisfied, then for a fixed $v \in L^{2}(0, T ; V) \cap\left[L^{\lambda+1}\left(Q_{T}\right)\right]^{N}$ we also have

$$
\begin{equation*}
\varphi_{j}\left(t, x ; u^{(m)}\right) v_{j} \rightarrow \varphi_{j}(t, x ; u) v_{j} \text { in } L^{2}\left(Q_{T}\right), \quad j=1, \ldots, N . \tag{2.31}
\end{equation*}
$$

Indeed, by $(2.11),(2.12)\left(u^{(m)}\right)$ is bounded in $W^{1,2}\left(Q_{T}\right)$, hence it is bonded in $L^{\frac{2(n+1)}{n-1}}\left(Q_{T}\right)$. Thus Hölder's inequality implies for any measurable $M \subset Q_{T}$

$$
\begin{gather*}
\int_{M}\left|\varphi_{j}\left(t, x ; u^{(m)}\right) v_{j}-\varphi_{j}(t, x ; u) v_{j}\right|^{2} d t d x \tag{2.32}\\
\leq \mathrm{const}\left\{\int_{Q_{T}}\left[\left|u^{(m)}\right|^{2 \mu}+\left|u^{(m)}\right|^{2 \mu}\right]^{q_{1}} d t d x\right\}^{1 / q_{1}} \cdot\left\{\int_{M}\left|v_{j}\right|^{2 p_{1}}\right\}^{1 / p_{1}} \\
\leq \mathrm{const}\left\{\int_{M}\left|v_{j}\right|^{2 p_{1}}\right\}^{1 / p_{1}}
\end{gather*}
$$

where

$$
2 p_{1}=\lambda+1, \quad \frac{1}{p_{1}}+\frac{1}{q_{1}},
$$

thus

$$
2 \mu q_{1}=2 \mu \frac{p_{1}}{p_{1}-1}=2 \mu \frac{\lambda+1}{\lambda-1} \leq \frac{2(n+1)}{n-1}
$$

since

$$
\mu \leq \frac{n+1}{n-1} \cdot \frac{\lambda-1}{\lambda+1}
$$

hence (2.29), (2.32) and Vitali's theorem imply (2.31). Consequently, by (2.15) we obtain (2.30) (when $\left(A_{5}^{\prime}\right)$ holds).

Now let

$$
v=\left(v_{1}, \ldots, v_{N}\right) \in V \text { and } \chi_{j} \in C_{0}^{\infty}(0, T) \quad(j=1, \ldots, N)
$$

be arbitrary functions. Further, let $z_{j}^{M}=\sum_{l=1}^{M} b_{l j} w_{l}^{(j)}, b_{l j} \in \mathbb{R}$ be sequences of functions such that

$$
\begin{equation*}
\left(z_{j}^{M}\right) \rightarrow v_{j} \text { in } V_{j} \text { and } V_{j} \cap L^{\lambda+1}(\Omega), \quad j=1, \ldots, N \tag{2.33}
\end{equation*}
$$

respectively, as $M \rightarrow \infty$. Further, by (2.5) we have for all $m \geq M$

$$
\begin{gather*}
\int_{0}^{T}\left\langle-\left(u_{j}^{(m)}\right)^{\prime}(t), z_{j}^{M}\right\rangle \chi_{j}^{\prime}(t) d t+\int_{0}^{T}\left\langle Q\left(u^{(m)}(t)\right), z_{j}^{M}\right\rangle \chi_{j}(t) d t \tag{2.34}\\
+\int_{0}^{T} \int_{\Omega} \varphi(x) D_{j} h\left(u^{(m)}(t)\right) z_{j}^{M} \chi_{j}(t) d t d x+\int_{0}^{T} \int_{\Omega} H_{j}\left(t, x ; u^{(m)}\right) z_{j}^{M} \chi_{j}(t) d t d x \\
+\int_{0}^{T} \int_{\Omega} G_{j}\left(t, x ; u^{(m)},\left(u^{(m)}\right)^{\prime}\right) z_{j}^{M} \chi_{j}(t) d t d x \\
=\int_{0}^{T}\left\langle F_{j}(t), z_{j}^{M}\right\rangle \chi_{j}(t) d t
\end{gather*}
$$

By (2.15), (2.18), (2.22), (2.25), (2.27), (2.30) we obtain from (2.34) as $m \rightarrow \infty$

$$
\begin{gather*}
-\int_{0}^{T}\left\langle u_{j}^{\prime}(t), z_{j}^{M}\right\rangle \chi_{j}^{\prime}(t) d t+\int_{0}^{T}\left\langle Q_{j}(u(t)), z_{j}^{M}\right\rangle \chi_{j}(t) d t \tag{2.35}\\
+\int_{0}^{T} \int_{\Omega} \varphi(x) D_{j} h(u(t)) z_{j}^{M} \chi_{j}(t) d t d x \\
+\int_{0}^{T} \int_{\Omega} H_{j}(t, x ; u) z_{j}^{M} \chi_{j}(t) d t d x+\int_{0}^{T} \int_{\Omega} G_{j}\left(t, x ; u, u^{\prime}\right) z_{j}^{M} \chi_{j}(t) d t d x \\
=\int_{0}^{T}\left\langle F_{j}(t), z_{j}^{M}\right\rangle \chi(t) d t
\end{gather*}
$$

From equality (2.35) and (2.33) we obtain as $M \rightarrow \infty$

$$
\begin{gather*}
-\int_{0}^{T}\left\langle u_{j}^{\prime}(t), v_{j}\right\rangle \chi_{j}^{\prime}(t) d t+\int_{0}^{T}\left\langle Q_{j}(u(t)), v_{j}\right\rangle \chi_{j}(t) d t \tag{2.36}\\
+\int_{0}^{T} \int_{\Omega} \varphi(x) D_{j} h(u(t)) v_{j} \chi_{j}(t) d t d x \\
+\int_{0}^{T} \int_{\Omega} H_{j}(t, x ; u) v_{j} \chi_{j}(t) d t d x+\int_{0}^{T} \int_{\Omega} G_{j}\left(t, x ; u, u^{\prime}\right) v_{j} \chi_{j}(t) d t d x \\
=\int_{0}^{T}\left\langle F_{j}(t), v_{j}\right\rangle \chi_{j}(t) d t
\end{gather*}
$$

Since $v_{j} \in V_{j}$ and $\chi_{j} \in C_{0}^{\infty}(0, T)$ are arbitrary functions, (2.36) means that

$$
\begin{equation*}
u_{j}^{\prime \prime} \in L^{2}\left(0, T ; V_{j}^{\star}\right) \text { and } u_{j}^{\prime \prime} \in L^{2}\left(0, T ;\left(V \cap L^{\lambda+1}(\Omega)\right)^{\star}\right), \tag{2.37}
\end{equation*}
$$

respectively (see, e.g. [16]) and for a.a. $t \in[0, T]$

$$
\begin{equation*}
u_{j}^{\prime \prime}+Q_{j}(u(t))+\varphi(x) D_{j} h(u(t))+H_{j}(t, x ; u)+G_{j}\left(t, x ; u, u^{\prime}\right)=F_{j}, \quad j=1, \ldots, N \tag{2.38}
\end{equation*}
$$

i.e. we proved (1.1).

Now we show that the initial condition (1.2) holds. Since $u \in L^{\infty}(0, T ; V)$, $u^{\prime} \in L^{\infty}(0, T ; H)$, we have $u \in C([0, T] ; H)$ and for arbitrary $\chi_{j} \in C^{\infty}[0, T]$ with the properties $\chi_{j}(0)=1, \chi_{j}(T)=0$, all j, k

$$
\int_{0}^{T}\left\langle u_{j}^{\prime}(t), w_{k}^{(j)}\right\rangle \chi_{j}(t) d t=-\left(u_{j}(0), w_{k}^{(j)}\right)_{L^{2}(\Omega)}-\int_{0}^{T}\left\langle u_{j}(t), w_{k}^{(j)}\right\rangle \chi_{j}^{\prime}(t) d t
$$

$$
\int_{0}^{T}\left\langle\left(u_{j}^{(m)}\right)^{\prime}(t), w_{k}^{(j)}\right\rangle \chi_{j}(t) d t=-\left(u_{j}^{(m)}(0), w_{k}^{(j)}\right)_{L^{2}(\Omega)}-\int_{0}^{T}\left\langle u_{j}^{(m)}(t), w_{k}^{(j)}\right\rangle \chi_{j}^{\prime}(t) d t
$$

Hence by (2.6), (2.7), (2.8), (2.14), (2.15), we obtain as $m \rightarrow \infty$

$$
\begin{aligned}
& \left(u^{(0)}, w_{k}^{(j)}\right)_{L^{2}(\Omega)}=\lim _{m \rightarrow \infty}\left(u_{j 0}^{(m)}, w_{k}^{(j)}\right)_{L^{2}(\Omega)} \\
= & \lim _{m \rightarrow \infty}\left(u_{j}^{(m)}(0), w_{k}^{(j)}\right)_{L^{2}(\Omega)}=\left(u_{j}(0), w_{k}^{(j)}\right)_{L^{2}(\Omega)}
\end{aligned}
$$

for all j and k which implies $u(0)=u^{(0)}$.
Similarly can be shown that $u^{\prime}(0)=u^{(1)}$.

3. Examples

Let the operator Q be defined by

$$
\left\langle Q_{j k}\left(u_{k}\right), v_{j}\right\rangle=\int_{\Omega}\left[\sum_{i, l=1}^{n} a_{i l}^{j k}(x)\left(D_{l} u_{k}\right)\left(D_{i} v_{j}\right)+d^{j k}(x) u_{k} v_{j}\right] d x
$$

where $a_{i l}^{j k}, d^{j k} \in L^{\infty}(\Omega), a_{i l}^{j k}=a_{l i}^{j k}, \sum_{i, l=1}^{n} a_{i l}^{j j}(x) \xi_{i} \xi_{l} \geq c_{1}|\xi|^{2}, d^{i i}(x) \geq c_{0}$ with some positive constants c_{0}, c_{1}; further, $a_{i l}^{j k}=a_{i l}^{k j}$ and for some $\tilde{c}_{0}<c_{1}$

$$
\left\|a_{i l}^{j k}\right\|_{L^{\infty}(\Omega)}<\frac{\tilde{c}_{0}}{n-1}, \quad\left\|d^{j k}\right\|_{L^{\infty}(\Omega)}<\frac{\tilde{c}_{0}}{n-1} \text { for } j \neq k
$$

Then assumption $\left(A_{1}\right)$ is satisfied.
If h is a C^{1} function such that $h(\eta)=|\eta|^{\lambda+1}$ if $|\eta|>1$ then $\left(A_{3}\right),\left(A_{3}^{\prime}\right)$, respectively, are satisfied.

Further, let $\tilde{h}_{j}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be continuous functions satisfying

$$
\left|\tilde{h}_{j}(\eta)\right| \leq \text { const }|\eta|^{\frac{\lambda+1}{2}} \text { for }|\eta|>1, \quad j=1, \ldots, N
$$

with some positive constant. It is not difficult to show that operators H_{j} defined by one of the formulas

$$
\begin{gathered}
H_{j}(t, x ; u)=\chi_{j}(t, x) \tilde{h}_{j}\left(\int_{Q_{t}} u_{1}(\tau, \xi) d \tau d \xi, \ldots, \int_{Q_{t}} u_{N}(\tau, \xi), d \tau d \xi\right) \\
H_{j}(t, x ; u)=\chi_{j}(t, x) \tilde{h}_{j}\left(\int_{0}^{t} u_{1}(\tau, x) d \tau, \ldots, \int_{0}^{t} u_{N}(\tau, x) d \tau\right) \\
H_{j}(t, x ; u)=\chi_{j}(t, x) \tilde{h}_{j}\left(\int_{\Omega} u_{1}(t, \xi) d \xi, \ldots, \int_{\Omega} u_{N}(t, \xi) d \xi\right) \\
H_{j}(t, x ; u)=\chi_{j}(t, x) \tilde{h}_{j}\left(u_{1}\left(\tau_{1}(t), x\right), \ldots, u_{N}\left(\tau_{k}(t), x\right)\right) \text { where } \\
\tau_{k} \in C^{1}, \quad 0 \leq \tau_{k}(t) \leq t, \quad \tau_{k}^{\prime}(t) \geq c_{1}>0, \quad k=1, \ldots, N
\end{gathered}
$$

satisfy $\left(A_{4}\right)$ if $\chi_{j} \in L^{\infty}\left(Q_{T}\right)$.
The operators φ_{j}, ψ_{j} may have forms, similar to the above forms of H_{j} with bounded continuous functions \tilde{h}_{j}. Then $\left(A_{5}\right)$ is fulfilled.

Remark. One can show uniqueness and continuous dependence of the solution of (1.1), (1.2) if the following additional conditions are satisfied:

$$
G_{j}\left(t, x ; u, u^{\prime}\right)=\tilde{\varphi}_{j}(x) u_{j}^{\prime}(t)
$$

where $\tilde{\varphi}_{j}$ is measurable and $0 \leq \tilde{\varphi}_{j}(x) \leq$ const, h is twice continuously differentiable and

$$
\left|D_{i} D_{k} h(\eta)\right| \leq \text { const }|\eta|^{\lambda-1} \text { for }|\eta|>1
$$

Further $H_{j}(t, x ; u)$ satisfy some Lipschitz condition with respect to u.

4. Solutions in $(0, \infty)$

Now we formulate and prove existence of solutions for $t \in(0, \infty)$. Denote by $L_{l o c}^{p}(0, \infty ; V)$ the set of functions $u:(0, \infty) \rightarrow V$ such that for each fixed finite $T>0$, their restrictions to $(0, T)$ satisfy $\left.u\right|_{(0, T)} \in L^{p}(0, T ; V)$ and let $Q_{\infty}=(0, \infty) \times \Omega$, $L_{l o c}^{\alpha}\left(Q_{\infty}\right)$ the set of functions $u: Q_{\infty} \rightarrow \mathbb{R}^{N}$ such that $\left.u_{j}\right|_{Q_{T}} \in L^{\alpha}\left(Q_{T}\right)(j=1, \ldots, N)$ for any finite T.

Now we formulate assumptions on H_{j} and G_{j}.
$\left(B_{4}\right)$ The functions $H_{j}: Q_{\infty} \times\left[L_{l o c}^{2}\left(Q_{\infty}\right)\right]^{N} \rightarrow \mathbb{R}$ are such that for all fixed $u \in\left[L_{l o c}^{2}\left(Q_{\infty}\right)\right]^{N}$ the functions $(t, x) \mapsto H_{j}(t, x ; u)$ are measurable, H_{j} have the Volterra property (see $\left(A_{4}\right)$) and for each fixed finite $T>0$, the restrictions of H_{j} to $Q_{T} \times\left[L^{2}\left(Q_{T}\right)\right]^{N}$ satisfy $\left(A_{4}\right)$.
Remark. Since H_{j} has the Volterra property, this restriction H_{j}^{T} is well defined by the formula

$$
H_{j}^{T}(t, x ; \tilde{u})=H_{j}(t, x ; u), \quad(t, x) \in Q_{T}, \quad \tilde{u} \in\left[L^{2}\left(Q_{T}\right)\right]^{N}
$$

where $u \in\left[L_{l o c}^{2}\left(Q_{\infty}\right)\right]^{N}$ may be any function satisfying $u(t, x)=\tilde{u}(t, x)$ for $(t, x) \in$ Q_{T}.
$\left(B_{5}\right)$ The operators

$$
G_{j}: Q_{\infty} \times\left[L_{l o c}^{2}\left(Q_{\infty}\right)\right]^{N} \times L_{l o c}^{\infty}(0, \infty ; H) \rightarrow \mathbb{R}
$$

are such that for all fixed $u \in L_{l o c}^{2}(0, \infty ; V), w \in L_{l o c}^{\infty}(0, \infty ; H)$ the functions $(t, x) \mapsto$ $G_{j}(t, x ; u, w)$ are measurable, G_{j} have the Volterra property and for each fixed finite $T>0$, the restrictions G_{j}^{T} of G_{j} to $Q_{T} \times\left[L^{2}\left(Q_{T}\right)\right]^{N} \times L^{\infty}(0, T ; H)$ satisfy $\left(A_{5}\right)$.
$\left(B_{5}^{\prime}\right)$ It is the same as $\left(B_{5}\right)$ but G_{j}^{T} satisfy $\left(A_{5}^{\prime}\right)$.
Theorem 4.1. Assume $\left(A_{1}\right)-\left(A_{3}\right),\left(B_{4}\right),\left(B_{5}\right)$. Then for all $F \in L_{l o c}^{2}(0, \infty ; H)$, $u^{(0)} \in V, u^{(1)} \in H$ there exists

$$
u \in L_{l o c}^{\infty}(0, \infty ; V) \text { such that } u^{\prime} \in L_{l o c}^{\infty}(0, \infty ; H), \quad u^{\prime \prime} \in L_{l o c}^{2}\left(0, \infty ; V^{\star}\right)
$$

u satisfies (1.1) for a.a. $t \in(0, \infty)$ (in the sense, formulated in Theorem 2.1) and the initial condition (1.2).

If $\left.\left(A_{1}\right), A_{2}\right),\left(A_{3}^{\prime}\right),\left(B_{4}\right),\left(B_{5}\right)$ are fulfilled then for all $F \in L_{l o c}^{2}(0, \infty ; H), u^{(0)} \in$ $V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}, u^{(1)} \in H$ there exists

$$
u \in L_{l o c}^{\infty}\left(0, \infty ; V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}\right) \text { such that } u^{\prime} \in L_{l o c}^{\infty}(0, \infty ; H),
$$

$$
u^{\prime \prime} \in L_{l o c}^{2}\left(0, \infty ; V^{\star}\right)+L_{l o c}^{\infty}\left(0, \infty ;\left[L^{\frac{\lambda+1}{\lambda}}(\Omega)\right]^{N}\right) \subset L_{l o c}^{2}\left(0, \infty ;\left[V \cap\left(L^{\lambda+1}(\Omega)\right)^{N}\right]^{\star}\right)
$$

u satisfies (1.1) for a.a. $t \in(0, \infty)$ (in the sense, formulated in Theorem 2.1) and the initial condition (1.2).

Assume that the following additional conditions are satisfied: there exist T_{0} and a function $\gamma \in L^{2}\left(T_{0}, \infty\right)$ such that for $t>T_{0}$

$$
\begin{equation*}
\left|G\left(t, x ; u, u^{\prime}\right)\right| \leq \gamma(t),|H(t, x ; u)| \leq \gamma(t) \text { and }\|F(t)\|_{V^{\star}} \leq \gamma(t) \tag{4.1}
\end{equation*}
$$

Then for the above solution u we have

$$
\begin{gather*}
u \in L^{\infty}(0, \infty ; V), \quad u \in L^{\infty}\left(0, \infty ; V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}\right), \text { respectively and } \tag{4.2}\\
u^{\prime} \in L^{\infty}(0, \infty ; H) .
\end{gather*}
$$

Further, assume that there exists a positive constant \tilde{c} such that

$$
\begin{equation*}
\varphi_{j}(t, x ; u) \geq \tilde{c}, \quad(t, x) \in Q_{\infty}, \quad j=1, \ldots, N \tag{4.3}
\end{equation*}
$$

and there exist $F_{\infty} \in H, u_{\infty} \in V$ such that

$$
\begin{gather*}
Q\left(u_{\infty}\right)=F_{\infty}, \quad F-F_{\infty} \in L^{2}(0, \infty ; H) \tag{4.4}\\
\left|H_{j}(t, x ; u)\right| \leq \beta(t, x), \quad\left|\psi_{j}\left(t, x ; u, u^{\prime}\right)\right| \leq \beta(t, x), \quad\left|\varphi_{j}(t, x ; u)\right| \leq \text { const } \tag{4.5}
\end{gather*}
$$

with some $\beta \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right)$. Then for the above solution we have

$$
\begin{gather*}
u \in L^{\infty}(0, \infty ; V), \quad u \in L^{\infty}\left(0, \infty ; v \cap\left[L^{\lambda+1}(\Omega)\right]^{N}\right) \tag{4.6}\\
\left\|u^{\prime}(t)\right\|_{H} \leq \text { const } e^{-\tilde{c} t}, \quad t \in(0, \infty) \tag{4.7}
\end{gather*}
$$

and there exists $w^{(0)} \in H$ such that

$$
\begin{equation*}
u(T) \rightarrow w^{(0)} \text { in } H \text { as } T \rightarrow \infty, \quad\left\|u(T)-w^{(0)}\right\|_{H} \leq \text { const } e^{-\tilde{c} T} \tag{4.8}
\end{equation*}
$$

Finally, $w^{(0)} \in V$ and

$$
\begin{equation*}
Q\left(w^{(0)}\right)+\varphi D h\left(w^{(0)}\right)=F_{\infty} \tag{4.9}
\end{equation*}
$$

Proof. Similarly to the proof of Theorem 2.1, we apply Galerkin's method and we want to find the m-th approximation of solution $u=\left(u_{1}, \ldots, u_{N}\right)$ for $t \in(0, \infty)$ in the form (see (2.4))

$$
u_{j}^{(m)}(t)=\sum_{l=1}^{m} g_{l m}^{(j)}(t) w_{l}^{(j)}, \quad j=1, \ldots, N
$$

where $g_{l m}^{(j)} \in W_{l o c}^{2,2}(0, \infty)$ if $\left(A_{3}\right)$ is satisfied and $g_{l m}^{(j)} \in W_{l o c}^{2,2}(0, \infty) \cap L_{l o c}^{\infty}(0, \infty)$ if $\left(A_{3}^{\prime}\right)$ is satisfied. Here $W_{\text {loc }}^{2,2}(0, \infty)$ and $L_{\text {loc }}^{\infty}(0, \infty)$ denote the set of functions $g:(0, \infty) \rightarrow \mathbb{R}$ such that for all T the restriction of g to $(0, T)$ belongs to $W^{2,2}(0, T), L^{\infty}(0, T)$, respectively.

According to the arguments in the proof of Theorem 2.1, there exists a solution of (2.5), (2.6) in a neighbourhood of $t=0$. Further, we obtain estimates (2.11), (2.12) and (2.13), respectively, for $t \in[0, T]$ with sufficiently small T where on the right hand side are finite constants (depending on T). Consequently, the maximal solutions of $(2.5),(2.6)$ are defined in $(0, \infty)$ and the estimates $(2.11),(2.12),(2.13)$ hold for all
finite $T>0$ (if $t \in[0, T]$), the constants on the right hand sides are depending only on T.

Let $\left(T_{k}\right)_{k \in \mathbb{N}}$ be a monotone increasing sequence, converging to $+\infty$. According to the arguments in the proof of Theorem 2.1, there is a subsequence $\left(u^{(m 1)}\right)$ of $\left(u^{(m)}\right)$ for which $(2.14),(2.15)$ and (2.16) hold, respectively, with $T=T_{1}$. Further, there is a subsequence $\left(u^{(m 2)}\right)$ of $\left(u^{(m 1)}\right)$ for which (2.14), (2.15) and (2.16) hold, respectively, with $T=T_{2}$, etc. By a diagonal process we obtain a sequence $\left(u^{(m m)}\right)_{m \in \mathbb{N}}$ such that (2.14), (2.15), (2.16) hold for every fixed $T>0$; further,

$$
\begin{gathered}
u \in L_{l o c}^{\infty}(0, \infty ; V), \quad u^{\prime} \in L_{l o c}^{\infty}(0, \infty ; H), \quad u^{\prime \prime} \in L_{l o c}^{2}\left(0, \infty ; V^{\star}\right) \text { and } \\
u \in L_{l o c}^{\infty}\left(0, \infty ; V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}\right), \quad u^{\prime} \in L_{l o c}^{\infty}(0, \infty ; H), \\
u^{\prime \prime} \in L_{l o c}^{2}\left(0, \infty ; V^{\star}\right)+L_{l o c}^{\infty}\left(0, \infty ;\left[L^{\frac{\lambda+1}{\lambda}}(\Omega)\right]^{N}\right),
\end{gathered}
$$

respectively and (1.1) holds for $t \in(0, \infty)$.
Now we consider the case when (4.1) holds. Then by (2.10) we obtain for all $t \geq T_{1} \geq T_{0}$

$$
\begin{gathered}
\frac{1}{2}\left\|\left(u^{(m)}\right)^{\prime}(t)\right\|_{H}^{2}+\frac{1}{2}\left\langle\left(Q\left(u^{(m)}\right)(t), u^{(m)}(t)\right\rangle+c_{1} \int_{\Omega} h\left(u^{(m)}(t)\right) d x\right. \\
\leq \int_{0}^{T_{1}} \int_{\Omega}\left|\left\langle G\left(\tau, x ; u^{(m)},\left(u^{(m)}\right)^{\prime}\right),\left(u^{(m)}\right)^{\prime}(\tau)\right\rangle\right| d \tau+\int_{0}^{T_{1}} \int_{\Omega}\left|\left\langle H\left(\tau, x ; u^{(m)}\right),\left(u^{(m)}\right)^{\prime}(\tau)\right\rangle\right| d \tau \\
+\int_{0}^{T_{1}} \int_{\Omega}\left|\left\langle F(\tau),\left(u^{(m)}\right)^{\prime}(\tau)\right\rangle\right| d \tau+3 \lambda(\Omega)\left[\int_{T_{1}}^{\infty}|\gamma(\tau)| d \tau\right] \sup _{\tau \in[0, t]}\left\|\left(u^{(m)}\right)^{\prime}(\tau)\right\|_{H}
\end{gathered}
$$

Choosing sufficiently large $T_{1}>0$, since $\lim _{T_{1} \rightarrow \infty} \int_{T_{1}}^{\infty}|\gamma(\tau)| d \tau=0$, we find

$$
\frac{1}{4}\left\|\left(u^{(m)}\right)^{\prime}(t)\right\|_{H}^{2}+\frac{1}{2}\left\langle Q\left(u^{(m)}(t)\right), u^{(m)}(t)\right\rangle+c_{1} \int_{\Omega} h\left(u^{(m)}(t) d x \leq \mathrm{const}\right.
$$

for all $t>0, m$ which implies (4.2).
Finally, consider the case when (4.3) - (4.5) are satisfied, too. Denoting $u^{(m m)}$ by $u^{(m)}$, for simplicity, by (2.9), $Q u_{\infty}=F_{\infty}$ we obtain for $w_{m}=u_{m}-u_{\infty}$ (since $\left.\left(w^{(m)}\right)^{\prime}=\left(u^{(m)}\right)^{\prime}\right)$:

$$
\begin{gather*}
\left\langle\left(w^{(m)}\right)^{\prime \prime}(t),\left(w^{(m)}\right)^{\prime}(t)\right\rangle+\left\langle\left(Q w^{(m)}\right)(t),\left(w^{(m)}\right)^{\prime}(t)\right\rangle+\int_{\Omega} \varphi(x) \frac{d}{d t}\left[h\left(u^{(m)}(t)\right)\right] d x \tag{4.10}\\
+\int_{\Omega}\left(H\left(t, x ; u^{(m)}\right),\left(w^{(m)}\right)^{\prime}(t)\right) d x+\int_{\Omega}\left(G\left(t, x ; u^{(m)},\left(u^{(m)}\right)^{\prime}\right),\left(w^{(m)}\right)^{\prime}(t) d x\right. \\
=\left\langle F(t)-F_{\infty},\left(w^{(m)}\right)^{\prime}(t)\right\rangle
\end{gather*}
$$

Integrating over $[0, t]$ we find (similarly to (2.10))

$$
\begin{align*}
& \frac{1}{2}\left\|\left(w^{(m)}\right)^{\prime}(t)\right\|_{H}^{2}+\frac{1}{2}\left\langle Q\left(w^{(m)}(t)\right), w^{(m)}(t)\right\rangle+c_{1} \int_{\Omega} h\left(u^{(m)}(t)\right) d x \tag{4.11}\\
& \quad+\tilde{c} \int_{0}^{t}\left[\int_{\Omega}\left|\left(w^{(m)}\right)^{\prime}(\tau)\right|^{2} d x\right] d \tau \\
& \leq \varepsilon \int_{0}^{t}\left[\int_{\Omega}\left|\left(w^{(m)}\right)^{\prime}(\tau)\right|^{2} d x\right] d \tau+C(\varepsilon) \int_{0}^{t}\left\|F(\tau)-F_{\infty}\right\|_{H}^{2} d \tau
\end{align*}
$$

$$
\begin{gathered}
+\frac{1}{2}\left\|\left(u^{(m)}\right)^{\prime}(0)\right\|_{H}^{2}+\frac{1}{2}\left\langle\left(Q u^{(m)}\right)(0), u^{(m)}(0)\right\rangle+c_{2} \int_{\Omega} h\left(u^{(m)}(0)\right) d x \\
+\varepsilon \int_{0}^{t}\left[\int_{\Omega}\left|\left(w^{(m)}\right)^{\prime}(\tau)\right| d x\right] d \tau+C(\varepsilon)\|\beta\|_{L^{2}(0, \infty ; H)}
\end{gathered}
$$

Choosing $\varepsilon=\tilde{c} / 4$ we obtain

$$
\begin{equation*}
\int_{0}^{t}\left[\int_{\Omega}\left|\left(w^{(m)}\right)^{\prime}(\tau)\right|^{2} d x\right] d \tau \leq \text { const. } \tag{4.12}
\end{equation*}
$$

Further, from (4.11), (4.12) we obtain

$$
\left\|\left(u^{(m)}\right)^{\prime}(t)\right\|_{H}^{2}+\tilde{c} \int_{0}^{t}\left\|\left(u^{(m)}\right)^{\prime}(\tau)\right\|_{H}^{2} d \tau \leq c^{\star}
$$

with some positive constant c^{\star} not depending on m and t. Thus by Gronwall's lemma we find

$$
\left\|\left(u^{(m)}\right)^{\prime}(t)\right\|_{H}^{2}=\left\|\left(w^{(m)}\right)^{\prime}(t)\right\|_{H}^{2} \leq c^{\star} \mathrm{e}^{-\tilde{c} t}, \quad t>0
$$

which implies (4.7) as $m \rightarrow \infty$ (since $\left(u^{(m)}\right)^{\prime} \rightarrow u^{\prime}$ weakly in $L^{\infty}(0, T ; H)$). Further, by $\left(A_{1}\right)$ one obtains from (4.11) that for all $t>0, m$

$$
\left\|w^{(m)}(t)\right\|_{V} \leq \text { const, } \quad\left\|w^{(m)}(t)\right\|_{V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}} \leq \text { const }
$$

respectively, which implies (4.6).
Further, for arbitrary $T_{1}<T_{2}$

$$
\begin{gathered}
\left\|u\left(T_{2}\right)-u\left(T_{1}\right)\right\|_{H}^{2}=\left(u\left(T_{2}\right), u\left(T_{2}\right)-u\left(T_{1}\right)\right)_{H}-\left(u\left(T_{1}\right), u\left(T_{2}\right)-u\left(T_{1}\right)\right)_{H} \\
=\int_{T_{1}}^{T_{2}}\left\langle u^{\prime}(t), u\left(T_{2}\right)-u\left(T_{1}\right)\right\rangle d t=\int_{T_{1}}^{T_{2}}\left(u^{\prime}(t), u\left(T_{2}\right)-u\left(T_{1}\right)\right)_{H} d t \\
\leq\left\|u\left(T_{2}\right)-u\left(T_{1}\right)\right\|_{H} \int_{T_{1}}^{T_{2}}\left\|u^{\prime}(t)\right\|_{H} d t
\end{gathered}
$$

which implies

$$
\begin{equation*}
\left\|u\left(T_{2}\right)-u\left(T_{1}\right)\right\|_{H} \leq \int_{T_{1}}^{T_{2}}\left\|u^{\prime}(t)\right\|_{H} d t \tag{4.13}
\end{equation*}
$$

Hence by (4.7)

$$
\left\|u\left(T_{2}\right)-u\left(T_{1}\right)\right\|_{H} \rightarrow 0 \text { as } T_{1}, T_{2} \rightarrow \infty
$$

which implies (4.8) and by (4.10), (4.7) we obtain

$$
\left\|u(T)-w_{0}\right\|_{H} \leq \int_{T}^{\infty}\left\|u^{\prime}(t)\right\|_{H} d t \leq \text { const } \mathrm{e}^{-\tilde{c} T}
$$

Now we show $w_{0} \in V$ and (4.9) holds. Since $u \in L^{\infty}(0, \infty ; V)$,

$$
\begin{equation*}
\left(u\left(T_{k}\right)\right) \rightarrow w_{0}^{\star} \text { weakly in } V, \quad w_{0}^{\star} \in V \tag{4.14}
\end{equation*}
$$

for some sequence $\left(T_{k}\right), \lim \left(T_{k}\right)=+\infty$. Clearly, (4.14) implies

$$
\left(u\left(T_{k}\right)\right) \rightarrow w_{0}^{\star} \text { weakly in } H,
$$

thus by (4.8) $w_{0}=w_{0}^{\star} \in V$ and (4.14) holds for arbitrary sequence $\left(T_{k}\right)$ converging to $+\infty$.

In order to prove (4.9), consider arbitrary fixed $v \in V, v \in V \cap\left[L^{\lambda+1}(\Omega)\right]^{N}$, respectively and

$$
\chi_{T}(t)=\chi(t-T) \text { where } \chi \in C_{0}^{\infty}(\mathbb{R}), \operatorname{supp} \chi \subset[0,1], \quad \int_{0}^{1} \chi(t) d t=1
$$

Multiply (2.3) by $\chi_{T}(t)$ and integrate with respect to t on $(0, \infty)$ and take the sum with respect to j, then we obtain

$$
\begin{gather*}
\int_{0}^{\infty}\left\langle u^{\prime \prime}(t), v\right\rangle \chi_{T}(t) d t+\int_{0}^{\infty}\langle Q(u(t)), v\rangle \chi_{T}(t) d t \tag{4.15}\\
+\int_{0}^{\infty}\left[\int_{\Omega} \varphi(x)((D h)(u(t)), v) d x\right] \chi_{T}(t) d t+\int_{0}^{\infty}\left[\int_{\Omega}(H(t, x ; u), v) d x\right] \chi_{T}(t) d t \\
+\int_{0}^{\infty}\left[\int_{\Omega}\left(G\left(t, x ; u, u^{\prime}\right), v\right) d x\right] \chi_{T}(t) d t=\int_{0}^{\infty}(F(t), v) \chi_{T}(t) d t
\end{gather*}
$$

Let $\left(T_{k}\right)$ be an arbitrary sequence converging to $+\infty$ and consider (4.15) with $T=T_{k}$. For the first term on the left hand side of this equation we have by (4.7) (if $T_{k}>1$)

$$
\begin{equation*}
\int_{0}^{\infty}\left\langle u^{\prime \prime}(t), v\right\rangle \chi_{T_{k}}(t) d t=-\int_{0}^{\infty}\left\langle u^{\prime}(t), v\right\rangle\left(\chi_{T_{k}}\right)^{\prime}(t) d t \rightarrow 0 \text { as } k \rightarrow \infty \tag{4.16}
\end{equation*}
$$

Further, by $\left(A_{1}\right)$, (4.14) and Lebesgue's dominated convergence theorem

$$
\begin{gather*}
\int_{0}^{\infty}\langle Q(u(t)), v\rangle \chi_{T_{k}}(t) d t=\int_{0}^{\infty}\langle Q(v), u(t)\rangle \chi_{T_{k}}(t) d t \tag{4.17}\\
=\int_{0}^{1}\left\langle Q(v), u\left(T_{k}+\tau\right)\right\rangle \chi(\tau) d \tau \rightarrow \int_{0}^{1}\left\langle Q(v), w_{0}\right\rangle \chi(\tau) d \tau=\left\langle Q(v), w_{0}\right\rangle \\
=\left\langle Q\left(w_{0}\right), v\right\rangle \text { as } k \rightarrow \infty
\end{gather*}
$$

For the third term on the left hand side of (4.15) we have

$$
\begin{array}{r}
\int_{0}^{\infty}\left[\int_{\Omega} \varphi(x)((D h)(u(t)), v) d x\right] \chi_{T_{k}}(t) d t \tag{4.18}\\
=\int_{0}^{1}\left[\int_{\Omega} \varphi(x)\left((D h)\left(u\left(T_{k}+\tau\right)\right), v\right) d x\right] \chi(\tau) d \tau \\
\rightarrow \int_{0}^{1}\left[\int_{\Omega} \varphi(x)\left((D h)\left(w_{0}\right), v\right) d x\right] \chi(\tau) d \tau=\int_{\Omega} \varphi(x)\left((D h)\left(w_{0}\right), v\right) d x
\end{array}
$$

as $k \rightarrow \infty$ since by (4.8)

$$
u\left(T_{k}+\tau\right) \rightarrow w_{0} \text { in }\left[L^{2}((0,1) \times \Omega)\right]^{N} \text { as } k \rightarrow \infty
$$

and thus for a.a. $(\tau, x) \in(0,1) \times \Omega$ (for a subsequence), consequently

$$
\begin{equation*}
(D h)\left(u\left(T_{k}+\tau, x\right)\right) \rightarrow(D h)\left(w_{0}(x)\right) \text { for a.a. }(\tau, x) \in(0,1) \times \Omega \tag{4.19}
\end{equation*}
$$

By using Hölder's inequality, $\left(A_{3}\right),\left(A_{3}^{\prime}\right)$, respectively and Vitali's theorem, we obtain (4.18) from (4.19).

The fourth and fifth terms on the left hand side of (4.15) can be estimated by (4.5) and (4.7) as follows: for sufficiently large k

$$
\begin{gather*}
\left|\int_{0}^{\infty}\left[\int_{\Omega}(H(t, x ; u), v) d x\right] \chi_{T_{k}}(t) d t\right|=\left|\int_{0}^{\infty}\left[\int_{\Omega}\left(H\left(T_{k}+\tau, x ; u\right), v\right) d x\right] \chi(\tau) d \tau\right| \tag{4.20}\\
\quad \leq \int_{0}^{\infty}\left[\int_{\Omega} \beta\left(T_{k}+\tau, x\right)|v| d x\right]|\chi(\tau)| d \tau \rightarrow 0 \text { as } k \rightarrow \infty \\
\quad\left|\int_{0}^{\infty}\left[\int_{\Omega}\left(G\left(t, x ; u, u^{\prime}\right), v\right) d x\right] \chi_{T_{k}}(t) d t\right| \tag{4.21}\\
\leq \int_{0}^{1}\left[\int_{\Omega}\left\{c_{5}\left|u^{\prime}\left(T_{k}+\tau\right)\right|+\beta\left(T_{k}+\tau, x\right)\right\}|v| d x\right]|\chi(\tau)| d \tau \rightarrow 0
\end{gather*}
$$

Finally, for the right hand side of (4.15) we obtain by using (4.4) and the Cauchy Schwarz inequality

$$
\begin{equation*}
\int_{0}^{\infty}(F(t), v) \chi_{T_{k}}(t) d t=\int_{0}^{1}\left(F\left(T_{k}+\tau\right), v\right) \chi(\tau) d \tau \rightarrow \int_{0}^{1}\left(F_{\infty}, v\right) \chi(\tau) d \tau=\left(F_{\infty}, v\right) \tag{4.22}
\end{equation*}
$$

From (4.15) - (4.18), (4.20) - (4.22) one obtains (4.9).
Acknowledgments. This work was supported by the Hungarian National Foundation for Scientific Research under grant OTKA K 81403.

References

[1] Adams, R.A., Sobolev spaces, Academic Press, New York - San Francisco - London, 1975.
[2] Berkovits, J., Mustonen, V., Topological degreee for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems, Rend. Mat. Ser. VII, 12(1992), 597-621.
[3] Boukhatem, Y., Benabderrahmane, B., Blow up of solutions for a semilinear Hyperbolic equation, EJQTDE 2012, 40, 1-12.
[4] Boulite, S., Maniar, L., N'Guérékata, G.M., Almost automorphic solutions for hyperbolic semilinear evolution equations, Semigroup Forum, 71(2005), 231-240.
[5] Czernous, W., Global solutions of semilinear first order partial functional differential equations with mixed conditions, Functional Differential Equations, 182011, 135-154.
[6] Giorgi, C., Munoz Rivera, J.E., Pata, V., Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Analysis and Appl., 260(2001), 83-99.
[7] Guezane-Lakoud, A., Chaoui, A., Roethe Method applied to semilinear hyperbolic integrodifferential equation with integral conditions, Int. J. Open Problems Compt. Math., 4(2011), no. 1.
[8] Hale, J.K., Theory of Functional Differential Equations, Springer,1977.
[9] Lions, J.L., Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969.
[10] Nowakowski, A., Nonhomogeneous boundary value problemfor semilinear hyperbolic equation. Stability, J. Dynamical and Control Systems, 14(2008), 537-558.
[11] Simon, L., On nonlinear hyperbolic functional differential equations, Math. Nachr., 217(2000), 175-186.
[12] Simon, L., Semilinear hyperbolic functional equations, Banach Center Publications, 101(2014), 205-222.
[13] Simon, L., Application of monotone type operators to parabolic and functional parabolic $P D E$'s, Handbook of Differential Equations. Evolutionary Equations, Vol. 4, Elsevier, 2008, 267-321.
[14] Tataru, D., Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation, Trans. Amer. Math. Soc., 353(2001), 795-807.
[15] Wu, J., Theory and Applications of Partial Functional Differential Equations, Springer, 1996.
[16] Zeidler, E., Nonlinear functional analysis and its applications II A and II B, Springer, 1990.

László Simon

Institute of Mathematics
L. Eötvös University of Budapest
e-mail: simonl@cs.elte.hu

[^0]: This paper was presented at the 10th Joint Conference on Mathematics and Computer Science (MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.

