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1. Introduction

In the last two decades there has been an increasing interest in studying PDEs
on fractals, also motivated and stimulated by the considerable amount of literature
devoted to the definition of a Laplace-type operator for functions on fractals. A par-
ticular concern has been devoted to PDEs on the Sierpinski gasket. The framework
for the study of elliptic equations on the Sierpinski gasket goes back to J. Kigami’s
pioneering paper [4]. This paper has considerably influenced subsequent papers de-
voted to PDEs on the Sierpinski gasket. A list of them, including also several recent
contributions, may be found in the introduction of [2].

The present paper is devoted to the nonlinear elliptic equation

∆u(x) + γ(x)u(x) = g(x)f(u(x)),

defined on the Sierpinski gasket and with zero Dirichlet boundary condition. By im-
posing that the nonlinearity f : R→ R has an oscillating behavior at∞, the results of
the paper complete those obtained in our previous article [1], where we have studied
the same problem, but under the assumption that f oscillates at 0+. We use, as in
[1], a method that goes back to J. Saint Raymond in order to prove that this prob-
lem has infinitely many weak solutions. This method has also been used to prove, in
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the context of certain Sobolev spaces, the existence of infinitely many solutions for
Dirichlet problems on bounded domains [6], for one-dimensional scalar field equations
and systems [3], and for homogeneous Neumann problems [5]. The aim of the present
paper is to show that the methods used in [3] can be successfully adapted to the
fractal case.

Notations. We denote by N the set of natural numbers {0, 1, 2, . . . }, by N∗ := N\{0}
the set of positive naturals, and by | · | the Euclidean norm on the spaces Rn, n ∈ N∗.
The spaces Rn are endowed, throughout the paper, with the Euclidean topology
induced by | · |.

2. Preliminaries

We briefly recall some notations which will be used in the sequel, and refer to
sections 2–4 in [1] for a more detailed presentation of these aspects. Throughout the
paper, the letter V stands for the the Sierpinski gasket (SG for short) in RN−1, where
N ≥ 2 is a fixed natural number. There are two different approaches that lead to V ,
starting from given points p1, . . . , pN ∈ RN−1 with |pi − pj | = 1 for i 6= j, and from
the similarities Si : RN−1 → RN−1, defined by

Si(x) =
1

2
x+

1

2
pi,

for i ∈ {1, . . . , N}. While in the first approach the set V appears as the unique
nonempty compact subset of RN−1 satisfying the equality

V =

N⋃
i=1

Si(V ),

in the second one V is obtained as the closure of the set V∗ :=
⋃
m∈N Vm, where

V0 := {p1, . . . , pN} and Vm :=

N⋃
i=1

Si(Vm−1), for m ∈ N∗.

In what follows V is considered to be endowed with the relative topology induced
from the topology on RN−1. The set V0 is called the intrinsic boundary of the SG.
The natural measure µ associated with V is the normalized restriction of the lnN

ln 2 -

dimensional Hausdorff measure on RN−1 to the subsets of V . Thus µ(V ) = 1. The
Lebesgue spaces Lp(V, µ), with p ≥ 1, are equipped with the usual || · ||p norm.

The analog, in the case of the SG, of the Sobolev spaces is the real Hilbert space
H1

0 (V ), equipped with the inner product W : H1
0 (V ) × H1

0 (V ) → R which induces
the norm || · || (see Section 3 in [1]). The space H1

0 (V ) can be compactly embedded
in a space of continuous functions. More exactly, if one denotes by C(V ) the space
of real-valued continuous functions on V , by C0(V ) := {u ∈ C(V ) : u|V0 = 0}, and
consider both spaces being endowed with the usual supremum norm || · ||sup, then the
following Sobolev-type inequality holds for H1

0 (V )

||u||sup ≤ c||u||, for every u ∈ H1
0 (V ), (2.1)
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where c is a positive constant depending on N . Moreover, the embedding

(H1
0 (V ), || · ||) ↪→ (C0(V ), || · ||sup) (2.2)

is compact.
As in [1], ∆: D → L2(V, µ) denotes the weak Laplacian on V , whereD is a certain

linear subset of H1
0 (V ) which is dense in L2(V, µ) (and dense also in (H1

0 (V ), || · ||)).
Thus ∆ is bijective, linear, self-adjoint, and satisfies

−W(u, v) =

∫
V

∆u · vdµ, for every (u, v) ∈ D ×H1
0 (V ).

We recall the following useful property of the space H1
0 (V ), stated in Lemma

3.1 of [1].

Lemma 2.1. Let h : R → R be a Lipschitz mapping with Lipschitz constant L ≥ 0
and such that h(0) = 0. Then, for every u ∈ H1

0 (V ), we have h ◦ u ∈ H1
0 (V ) and

||h ◦ u|| ≤ L · ||u||.

3. The main results

Let γ, g ∈ L1(V, µ) and let f : R→ R be continuous. We are concerned with the
following nonlinear elliptic problem, with zero Dirichlet boundary condition, on the
SG

(P )

 ∆u(x) + γ(x)u(x) = g(x)f(u(x)), ∀ x ∈ V \ V0,

u|V0
= 0.

We recall from [1] that a function u ∈ H1
0 (V ) is called a weak solution of (P ) if

W(u, v)−
∫
V

γ(x)u(x)v(x)dµ+

∫
V

g(x)f(u(x))v(x)dµ = 0, ∀ v ∈ H1
0 (V ).

Define F : R→ R by

F (t) =

∫ t

0

f(ξ)dξ. (3.1)

We know from Proposition 5.3 in [1] that the functional T : H1
0 (V ) → R, given, for

every u ∈ H1
0 (V ), by

T (u) =
1

2
||u||2 − 1

2

∫
V

γ(x)u2(x)dµ+

∫
V

g(x)F (u(x))dµ, (3.2)

is Fréchet differentiable on H1
0 (V ), and that it is an energy functional of problem (P ),

i.e., u ∈ H1
0 (V ) is a weak solution of (P ) if and only if u is a critical point of T .

Remark 3.1. Assume that γ ≤ 0 and g ≤ 0 a.e. in V . Consider u ∈ H1
0 (V ) and

d, b ∈ R such that d ≤ u(x) ≤ b for every x ∈ V . According to the fact that g ≤ 0 a.e.
in V , we then have ∫

V

g(x)F (u(x))dµ ≥ max
s∈[d,b]

F (s) ·
∫
V

g(x)dµ. (3.3)
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We state, for later use, the following relations about the functional T : H1
0 (V ) → R

defined by (3.2): The inequalities (3.3) and γ ≤ 0 a.e. in V imply that

T (u) ≥ max
s∈[d,b]

F (s) ·
∫
V

g(x)dµ (3.4)

and
1

2
||u||2 ≤ T (u)− max

s∈[d,b]
F (s) ·

∫
V

g(x)dµ. (3.5)

We recall the definition of the coercivity of a functional, respectively, the sub-
sequent standard result concerning the existence of minimum points of sequentially
weakly lower semicontinuous functionals.

Definition 3.2. Let X be a real normed space and let M be a nonempty subset of X.
A functional L : M → R is said to be coercive if, for every sequence (xn) in M such
that lim

n→∞
||xn|| =∞, it follows that lim

n→∞
L(xn) =∞.

Proposition 3.3. Let X be a reflexive real Banach space, M a nonempty sequentially
weakly closed subset of X, and L : M → R a sequentially weakly lower semicontinuous
and coercive functional. Then L possesses at least one minimum point.

We derive now from Proposition 3.3 the following key result for our approach.

Proposition 3.4. Let γ, g ∈ L1(V, µ) be so that γ ≤ 0 and g ≤ 0 a.e. in V , let
f : R → R be continuous, and let a, b, c, d ∈ R be so that d < c < 0 < a < b.
Furthermore, assume that the map F , defined by (3.1), satisfies the conditions

F (s) ≤ F (c),∀ s ∈ [d, c], (3.6)

and

F (s) ≤ F (a),∀ s ∈ [a, b]. (3.7)

Denoting by

M := {u ∈ H1
0 (V ) | d ≤ u(x) ≤ b, ∀x ∈ V },

there exists an element u ∈ H1
0 (V ) with the properties:

(i) T (u) = inf T (M),
(ii) c ≤ u(x) ≤ a, for every x ∈ V ,

where the functional T : H1
0 (V )→ R is defined by (3.2).

Proof. Obviously the set M is non-empty (it contains the constant 0 function) and
convex. Since the inclusion (2.2) is continuous, M is closed in the norm topology on
H1

0 (V ). It follows that M is also closed in the weak topology on H1
0 (V ), thus M

is sequentially weakly closed. It follows from (3.5) that the restriction of T to M
is coercive. Proposition 3.3 implies now that there exists ũ ∈ M such that T (ũ) =
inf T (M). Define h : R→ R by

h(t) =

 c, t < c
t, t ∈ [c, a]
a, t > a.
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Note that h(0) = 0 and that h is a Lipschitz map with Lipschitz constant L = 1.
According to Lemma 2.1, the map u := h ◦ ũ belongs to H1

0 (V ) and

||u|| ≤ ||ũ||. (3.8)

Moreover, u belongs to M and obviously satisfies condition (ii) to be proved. We next
show that (i) also holds true. For this set

V1 := {x ∈ V | ũ(x) < c}, V2 := {x ∈ V | ũ(x) > a}.
Then

u(x) =

 c, x ∈ V1
ũ(x), x ∈ V \ (V1 ∪ V2)
a, x ∈ V2.

It follows that

u2(x) ≤ ũ2(x), for every x ∈ V. (3.9)

Furthermore, if x ∈ V1, then ũ(x) ∈ [d, c[, hence, by (3.6), F (ũ(x)) ≤ F (c) = F (u(x)).
Analogously, if x ∈ V2, then (3.7) yields F (ũ(x)) ≤ F (a) = F (u(x)). Thus

F (ũ(x)) ≤ F (u(x)), for every x ∈ V. (3.10)

The inequalities (3.8), (3.9) and (3.10) imply, together with the fact that γ ≤ 0 and
g ≤ 0 a.e. in V , that

T (ũ)− T (u) =
1

2
||ũ||2 − 1

2
||u||2 − 1

2

∫
V

γ(x)(ũ2(x)− u2(x))dµ

+

∫
V

g(x)(F (ũ(x))− F (u(x)))dµ ≥ 0.

Thus T (ũ) ≥ T (u). Since T (ũ) = inf T (M) and since u ∈ M , we conclude that
T (u) = inf T (M), thus (i) is also fulfilled. �

The main result of the paper is contained in the following theorem concerning
the existence of multiple weak solutions of problem (P ).

Theorem 3.5. Assume that the following conditions hold:

(C1) γ ∈ L1(V, µ) and γ ≤ 0 a.e. in V .
(C2) f : R→ R is continuous such that

(1*) there exist two sequences (ak) and (bk) in ]0,∞[ with ak < bk < bk+1,
lim
k→∞

bk =∞ and such that f(s) ≤ 0 for every s ∈ [ak, bk],

(2*) there exist reals d < c < 0 with f(s) ≥ 0 for every s ∈ [d, c].
(C3) F : R→ R, defined by (3.1), is such that

(3*) −∞ < lim inf
s→∞

F (s)

s2
,

(4*) lim sup
s→∞

F (s)

s2
=∞.

(C4) g : V → R is continuous, not identically 0, and with g ≤ 0.

Then there exists a sequence (uk) of pairwise distinct weak solutions of problem (P )
such that lim

k→∞
‖uk‖ =∞.
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Remark 3.6. According to Example 4 in [3], the function f : R → R, defined by
f(s) = s2 sin2 s− 1, satisfies the conditions (C2) and (C3) of Theorem 3.5.

In what follows we assume that the conditions (C1)–(C4) in the hypotheses of
Theorem 3.5 are satisfied. For every k ∈ N set now

Mk := {u ∈ H1
0 (V ) | d ≤ u(x) ≤ bk, ∀ x ∈ V }. (3.11)

The proof of Theorem 3.5 includes the following main steps contained in the next
results:

1. we show that the functional T : H1
0 (V ) → R, defined by (3.2), has at least one

critical point in each of the sets Mk,
2. since T is an energy functional of Problem (P ), each of these critical points is a

weak solution of Problem (P ),
3. we show that there are infinitely many pairwise distinct such weak solutions.

Lemma 3.7. For every k ∈ N, there is an element uk ∈ Mk such that the following
conditions hold:

(i) T (uk) = inf T (Mk),
(ii) c ≤ uk(x) ≤ ak, for every x ∈ V .

Proof. Note that, while condition (1∗) in the hypotheses of Theorem 3.5 yields

F (s) ≤ F (ak),∀ s ∈ [ak, bk],

condition (2∗) implies (3.6). Applying Proposition 3.4, we finish the proof. �

Lemma 3.8. For every k ∈ N, let uk ∈ Mk be a function satisfying the conditions (i)
and (ii) of Lemma 3.7. The functional T has then in uk a local minimum (with respect
to the norm topology on H1

0 (V )), for every k ∈ N. In particular, (uk) is a sequence of
weak solutions of problem (P ).

Proof. Fix k ∈ N. Suppose to the contrary that uk is not a local minimum of T .
This implies the existence of a sequence (wn) in H1

0 (V ) converging to uk in the norm
topology such that

T (wn) < T (uk), for every n ∈ N.
In particular, wn /∈Mk, for all n ∈ N. Choose a real number ε such that

0 < ε ≤ 1

2
min{bk − ak, c− d}.

In view of (2.1) the sequence (wn) converges to uk in the supremum norm topology
on C(V ). Hence there is an index m ∈ N such that

||wm − uk||sup ≤ ε.
For every x ∈ V we then have, according to condition (ii) of Lemma 3.7,

wm(x) = wm(x)− uk(x) + uk(x) ≤ ε+ uk(x) ≤ bk − ak
2

+ ak < bk

and

wm(x) = wm(x)− uk(x) + uk(x) ≥ −ε+ uk(x) ≥ d− c
2

+ c > d.
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Thus wm ∈ Mk, a contradiction. We conclude that T has in uk a local minimum, so
uk is a critical point of T . The last assertion of the lemma follows now from the fact
that T is an energy functional of problem (P ). �

Lemma 3.9. For every k ∈ N, put γk := inf T (Mk). Then lim
k→∞

γk = −∞.

Proof. Observe first that the inclusions Mk ⊆ Mk+1, for all k ∈ N, imply that the
sequence (γk) is decreasing.

Condition (C4) in Theorem 3.5 yields the existence of a nonempty open subset
U of V \ V0 such that g|U < 0. By the same arguments as those used in the proof of
statement (2.1) in [1] we may conclude that there exists a compact set K ⊆ U with
µ(K) > 0. Hence we get that ∫

K

g(x)dµ < 0. (3.12)

We show next that we can find a function v ∈ H1
0 (V ) such that

0 ≤ v ≤ 1 and v|K = 1. (3.13)

Indeed, by Urysohn’s Lemma, there exists a continuous function φ : V → [0, 1] such
that φ(x) = 0, for x ∈ V0, and φ(x) = 1, for x ∈ K. According to Theorem 1.4.4 in
[7], there exists a function u ∈ H1

0 (V ) with ||φ − u||sup < 1. In particular, u(x) 6= 0
for all x ∈ K. Hence |u(x)| > 0 for every x ∈ K. Note that |u| ∈ H1

0 (V ), by Lemma
2.1. Let

ξ := min
x∈K
|u(x)|.

Then ξ > 0. Define h : R → R by h(t) = min{t, ξ}. Since h is a Lipschitz map with
h(0) = 0, Lemma 2.1 yields that h ◦ |u| ∈ H1

0 (V ). We have that (h ◦ |u|)(x) = ξ for
every x ∈ K. Thus v := 1

ξ (h ◦ |u|) satisfies (3.13).

By condition (3∗) in the requirements of Theorem 3.5, there exist m ∈ R and
δ > 0 such that

m ≤ F (s)

s2
, for all s > δ.

Denote by m̃ := min{F (s)−ms2 | s ∈ [0, δ]}. In particular, m̃ ≤ 0. So we obtain that

m̃+ms2 ≤ F (s), for all s ≥ 0. (3.14)

Condition (4∗) in the hypotheses of Theorem 3.5 implies the existence of a sequence
(rn) of positive reals with

lim
n→∞

rn =∞ and lim
n→∞

F (rn)

r2n
=∞. (3.15)

Using (3.2) and (3.13), we compute, for every n ∈ N,

T (rnv) =
1

2
r2n||v||2 −

r2n
2

∫
V

γ(x)v2(x)dµ+ F (rn)

∫
K

g(x)dµ

+

∫
V \K

g(x)F (rnv(x))dµ.
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On the other hand, by (3.14) and the fact that g ≤ 0, we get∫
V \K

g(x)F (rnv(x))dµ ≤ m̃
∫
V \K

g(x)dµ+mr2n

∫
V \K

g(x)v2(x)dµ.

Thus

T (rnv)

r2n
≤||v||

2

2
− 1

2

∫
V

γ(x)v2(x)dµ+
F (rn)

r2n

∫
K

g(x)dµ

+
m̃

r2n

∫
V \K

g(x)dµ+m

∫
V \K

g(x)v2(x)dµ.

(3.16)

Involving (3.12) and (3.15), we obtain from (3.16) that lim
n→∞

T (rnv)

r2n
= −∞, so

lim
n→∞

T (rnv) = −∞. (3.17)

Recall from condition (1∗) in the statement of Theorem 3.5 that lim
k→∞

bk = ∞.

Thus we may find a subsequence (bkn) of the sequence (bk) such that rn ≤ bkn , for
every n ∈ N. Since 0 ≤ v ≤ 1, we get that

0 ≤ rnv ≤ bkn , for all n ∈ N.
By (3.11), we hence conclude that rnv ∈Mkn , for every n ∈ N, so

γkn ≤ T (rnv), for all n ∈ N.
In view of (3.17) we thus obtain that lim

n→∞
γkn = −∞. Since (γk) is decreasing we

finally conclude that lim
k→∞

γk = −∞. �

Proof of Theorem 3.5 concluded. From Lemma 3.8 we know that there is a sequence
(uk) of weak solutions of problem (P ) such that uk ∈ Mk and γk = T (uk), where
γk = inf T (Mk), for every natural k. Assume, by contradiction, that lim

k→∞
||uk|| 6=∞.

Then there exists a bounded subsequence (ukn) of the sequence (uk). According to
(2.1) and to the fact that lim

k→∞
bk = ∞, we may find p ∈ N such that ukn ∈ Mp, for

every n ∈ N. This yields that γp ≤ γkn , for every n ∈ N, contradicting the statement
of Lemma 3.9. Thus lim

k→∞
||uk|| = ∞. Hence we can find a subsequence (ukj ) of the

sequence (uk) consisting of pairwise distinct elements. �
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