Bilateral inequalities for harmonic, geometric and Hölder means

Mira-Cristiana Anisiu and Valeriu Anisiu

Abstract

For $0<a<b$, the harmonic, geometric and Hölder means satisfy $H<$ $G<Q$. They are special cases $(p=-1,0,2)$ of power means M_{p}. We consider the following problem: find all $\alpha, \beta \in \mathbb{R}$ for which the bilateral inequalities $$
\alpha H(a, b)+(1-\alpha) Q(a, b)<G(a, b)<\beta H(a, b)+(1-\beta) Q(a, b)
$$ hold $\forall 0<a<b$. Then we replace in the bilateral inequalities the mean Q by $M_{p}, p>0$ and address the same problem.

Mathematics Subject Classification (2010): 26E60.
Keywords: Means, power means, bilateral inequalities.

1. Introduction

We consider bivariate means $m: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ which are symmetric $(m(b, a)=$ $m(a, b)$ for all $a, b>0)$ and homogeneous $(m(\lambda a, \lambda b)=\lambda m(a, b)$ for all $a, b, \lambda>0)$.

For two means m_{1} and m_{2} we write $m_{1} \leq m_{2}$ if and only if $m_{1}(a, b) \leq m_{2}(a, b)$ for every $a, b>0$, and $m_{1}<m_{2}$ if and only if $m_{1}(a, b)<m_{2}(a, b)$ for all $a, b>0$ with $a \neq b$.

Since we are dealing with strict inequalities, we may and shall assume in the following that $0<a<b$.

We consider the bivariate means

$$
\begin{gather*}
A(a, b)=\frac{a+b}{2} ; \quad G(a, b)=\sqrt{a b} ; \quad H(a, b)=\frac{2 a b}{a+b} ; Q(a, b)=\left(\frac{a^{2}+b^{2}}{2}\right)^{1 / 2} ; \tag{1.1}\\
M_{p}(a, b)=\left\{\begin{array}{l}
\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}, \text { for } p \neq 0 \\
\sqrt{a b}, \text { for } p=0
\end{array}\right. \tag{1.2}
\end{gather*}
$$

[^0]which are known as the arithmetic, geometric, harmonic, Hölder and power means, respectively. Properties and comparison of standard means can be found in [3].

The means from (1.1) are comparable:

$$
\min <H<G<A<Q<\max
$$

where min and max are the trivial means given by $(a, b) \mapsto \min (a, b)$ and $(a, b) \mapsto \max$ (a, b). The power means are monotonic in p, and $M_{-1}=H, M_{0}=G, M_{1}=A$, and $M_{2}=Q$.

Recently, many bilateral inequalities between means have been proved ([1], [2], [4], [5], [6]). We mention one of them, which was the starting point for this paper, and refers to the means G, A and Q.

Theorem 1.1. [2] The double inequality

$$
\alpha G(a, b)+(1-\alpha) Q(a, b)<A(a, b)<\beta G(a, b)+(1-\beta) Q(a, b), \forall 0<a<b
$$

holds if and only if $\alpha \geq 1 / 2$ and $\beta \leq 1-\sqrt{2} / 2$.
In what follows we shall prove a similar result for the means H, G and Q. Afterwards we consider the more general case of the means H, G and $M_{p}, p>0$. We show that for $p=5 / 2$ the auxiliary function f is still monotone and we formulate an open problem.

2. Main result

For $0<a<b$, the geometric, harmonic and Hölder means satisfy $H<G<Q$. We shall find all the values of α and β in order that the geometric mean to be strictly between the combination of H and Q with parameters α, respectively β. Due to the homogeneity of all the means considered here, we may denote $t=b / a, t>1$, and write in the following $m(t)$ instead of $m(1, t)=(1 / a) m(a, b)$. For any three means $m_{1}<m_{2}<m_{3}$, the double inequality

$$
\begin{equation*}
\alpha m_{1}(t)+(1-\alpha) m_{3}(t)<m_{2}(t)<\beta m_{1}(t)+(1-\beta) m_{3}(t) \tag{2.1}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\beta<f(t)<\alpha \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
f(t)=\frac{m_{3}(t)-m_{2}(t)}{m_{3}(t)-m_{1}(t)} \tag{2.3}
\end{equation*}
$$

We shall prove the following result.
Theorem 2.1. The double inequality

$$
\alpha H(t)+(1-\alpha) Q(t)<G(t)<\beta H(t)+(1-\beta) Q(t), \forall t>1
$$

holds if and only if $\alpha \geq 1$ and $\beta \leq 2 / 3$. The function

$$
f_{1}(t)=\frac{Q(t)-G(t)}{Q(t)-H(t)}
$$

is strictly increasing on $(1, \infty)$.

Proof. The function f_{1} is given by

$$
\begin{equation*}
f_{1}(t)=\frac{\left(\left(2 t^{2}+2\right)^{1 / 2}-2 t^{1 / 2}\right)(t+1)}{\left(2 t^{2}+2\right)^{1 / 2} t+\left(2 t^{2}+2\right)^{1 / 2}-4 t} \tag{2.4}
\end{equation*}
$$

We substitute $t=s^{2}, s>1$ and get

$$
f_{1}\left(s^{2}\right)=\frac{\left(\left(2 s^{4}+2\right)^{1 / 2}-2 s\right)\left(s^{2}+1\right)}{\left(2 s^{4}+2\right)^{1 / 2} s^{2}+\left(2 s^{4}+2\right)^{1 / 2}-4 s^{2}} .
$$

The numerator of the derivative of this expression is

$$
\begin{aligned}
& 4\left(s^{8}-4 s^{7}+2 s^{6}+2\left(2 s^{4}+2\right)^{1 / 2} s^{4}-2\left(2 s^{4}+2\right)^{1 / 2} s^{2}-2 s^{2}+4 s-1\right) \\
& =4\left(s^{2}-1\right)\left(s^{6}-4 s^{5}+3 s^{4}-4 s^{3}+3 s^{2}-4 s+1+2\left(2 s^{4}+2\right)^{1 / 2} s^{2}\right)
\end{aligned}
$$

and the denominator is obviously positive. We shall prove that

$$
g_{1}(s)=s^{6}-4 s^{5}+3 s^{4}-4 s^{3}+3 s^{2}-4 s+1+2\left(2 s^{4}+2\right)^{1 / 2} s^{2}
$$

is positive for $s>1$, hence f_{1} is strictly increasing. We write $g_{1}(s)=0$ as

$$
\begin{equation*}
s^{6}-4 s^{5}+3 s^{4}-4 s^{3}+3 s^{2}-4 s+1=-2\left(2 s^{4}+2\right)^{1 / 2} s^{2} \tag{2.5}
\end{equation*}
$$

square both sides and get

$$
\left(s^{8}-4 s^{7}-4 s^{5}+6 s^{4}-4 s^{3}-4 s+1\right)(s-1)^{4}=0
$$

Denoting by $h_{1}(s)=s^{8}-4 s^{7}-4 s^{5}+6 s^{4}-4 s^{3}-4 s+1$ we get
$h_{1}(s+4)=s^{8}+28 s^{7}+336 s^{6}+2236 s^{5}+8886 s^{4}+20956 s^{3}+26640 s^{2}+12604 s-2831$, which has only one change of sign. We apply Descartes' rule of signs for $h_{1}(s+4)$ and we obtain that the polynomial $h_{1}(s)$ has a single root greater than 4 . We denote by $k_{1}(s)$ the 6th degree polynomial in the left hand side of (2.5) and get

$$
\begin{equation*}
k_{1}(s+4)=s^{6}+20 s^{5}+163 s^{4}+684 s^{3}+1523 s^{2}+1620 s+545 \tag{2.6}
\end{equation*}
$$

Then the polynomial (2.6) is positive on $s>4$, hence $g_{1}(s)=0$ has no solutions on $s>1$. It follows that f_{1} is strictly increasing on $(1, \infty)$. Since $\lim _{t \rightarrow 1} f_{1}(t)=2 / 3$ and $\lim _{t \rightarrow \infty} f_{1}(t)=1$, the theorem is proved.

We try to see if a similar result can be obtained by taking instead of $M_{2}=Q$ another power mean. For $p=5 / 2$ we can prove

Theorem 2.2. The double inequality

$$
\alpha H(t)+(1-\alpha) M_{5 / 2}(t)<G(t)<\beta H(t)+(1-\beta) M_{5 / 2}(t), \forall t>1
$$

holds if and only if $\alpha \geq 1$ and $\beta \leq 5 / 7$. The function

$$
f_{2}(t)=\frac{M_{5 / 2}(t)-G(t)}{M_{5 / 2}(t)-H(t)}
$$

is strictly increasing on $(1, \infty)$.

Proof. We have

$$
\begin{equation*}
f_{2}(t)=\frac{\left(\frac{1}{2} t^{5 / 2}+\frac{1}{2}\right)^{2 / 5}-t^{1 / 2}}{\left(\frac{1}{2} t^{5 / 2}+\frac{1}{2}\right)^{2 / 5}-\frac{2 t}{t+1}} \tag{2.7}
\end{equation*}
$$

By substituting $t=s^{2}, s>1$ we get

$$
f_{2}\left(s^{2}\right)=\frac{\left(\left(16 s^{5}+16\right)^{2 / 5}-4 s\right)\left(s^{2}+1\right)}{\left(s^{2}+1\right)\left(16 s^{5}+16\right)^{2 / 5}-8 s^{2}}
$$

We differentiate the above function and obtain its numerator

$$
32(s-1)\left(2 s^{8}-6 s^{7}-2 s^{6}-2 s^{5}-2 s^{3}-2 s^{2}-6 s+2+s^{2}(s+1)\left(16 s^{5}+16\right)^{2 / 5}\right),
$$

the denominator being positive. We denote

$$
g_{2}(s)=2 s^{8}-6 s^{7}-2 s^{6}-2 s^{5}-2 s^{3}-2 s^{2}-6 s+2+s^{2}(s+1)\left(16 s^{5}+16\right)^{2 / 5}
$$

and we write $g_{2}(s)=0$ as

$$
\begin{equation*}
\frac{2\left(s^{8}-3 s^{7}-s^{6}-s^{5}-s^{3}-s^{2}-3 s+1\right)}{s^{2}(s+1)}=-\left(16 s^{5}+16\right)^{2 / 5} \tag{2.8}
\end{equation*}
$$

We apply the 5 th power to both sides of (2.8) and get $h_{2}(s)=0$, where

$$
\begin{aligned}
& h_{2}(s)=s^{30}-10 s^{29}+25 s^{28}+20 s^{27}-50 s^{26}-196 s^{25}-150 s^{24}+320 s^{23} \\
& +1305 s^{22}+2090 s^{21}+2439 s^{20}+2320 s^{19}+2550 s^{18}+3460 s^{17}+4760 s^{16} \\
& +5240 s^{15}+4760 s^{14}+3460 s^{13}+2550 s^{12}+2320 s^{11}+2439 s^{10}+2090 s^{9} \\
& +1305 s^{8}+320 s^{7}-150 s^{6}-196 s^{5}-50 s^{4}+20 s^{3}+25 s^{2}-10 s+1
\end{aligned}
$$

Using the Sturm sequence, we obtain that $h_{2}(s)$ has no roots in $(1, \infty)$. It follows that $h_{2}(s)>0$ on $(1, \infty)$, and the derivative of $f_{2}(t)$ is positive on this interval, hence $f_{2}(t)$ is strictly increasing. Since $\lim _{t \rightarrow 1} f_{2}(t)=5 / 7, \lim _{t \rightarrow \infty} f_{2}(t)=1$, the theorem is proved.

Remark 2.3. We can consider the function

$$
f_{3}(t)=\frac{M_{p}(t)-G(t)}{M_{p}(t)-H(t)}
$$

for arbitrary $p>0$. It is easy to check that $\lim _{t \rightarrow 1} f_{3}(t)=p /(p+1)$ and $\lim _{t \rightarrow \infty} f_{3}(t)=$ 1. It remains to study the monotonicity of f_{3}. In the following theorem we prove that, for $p>5 / 2$, the function f_{3} is not monotone on $(1, \infty)$.

Theorem 2.4. For $p>5 / 2$, the infimum of the function f_{3} on $(1, \infty)$ satisfies the inequality

$$
\inf _{t>1} f_{3}(t)<\frac{p}{p+1}
$$

Proof. Let $p>5 / 2$. The function f_{3} is given by

$$
f_{3}(t)=\frac{\left(\frac{1}{2} t^{p}+\frac{1}{2}\right)^{1 / p}-t^{1 / 2}}{\left(\frac{1}{2} t^{p}+\frac{1}{2}\right)^{1 / p}-\frac{2 t}{t+1}},
$$

and after the substitution $t=s^{2}, s>1$ we get

$$
f_{3}\left(s^{2}\right)=\frac{\left(\left(\frac{1}{2} s^{2 p}+\frac{1}{2}\right)^{1 / p}-s\right)\left(s^{2}+1\right)}{\left(s^{2}+1\right)\left(\frac{1}{2} s^{2 p}+\frac{1}{2}\right)^{1 / p}-2 s^{2}} .
$$

The Taylor series for $s_{0}=1$ reads

$$
\frac{p}{p+1}-\frac{p(2 p-5)}{12(p+1)}(s-1)^{2}+\frac{p(2 p-5)}{12(p+1)}(s-1)^{3}+O\left((s-1)^{4}\right), \text { for } s \rightarrow 1
$$

and its derivative will be

$$
-\frac{p(2 p-5)}{6(p+1)}(s-1)+O\left((s-1)^{2}\right) .
$$

It follows that the derivative is negative at least for $s>1$ close to 1 , hence f_{3} decreases and $\inf _{t>1} f_{3}(t)<p /(p+1)$.

Based on the results in theorems 2.1 and 2.2, we formulate the following
Open problem. Prove that the function f_{3} is strictly increasing on $(1, \infty)$ for each $p \in(0,5 / 2]$. Then, for each $p \in(0,5 / 2]$, the double inequality

$$
\alpha H(t)+(1-\alpha) M_{p}(t)<G(t)<\beta H(t)+(1-\beta) M_{p}(t), \forall t>1
$$

will be true if and only if $\alpha \geq 1$ and $\beta \leq p /(p+1)$.

References

[1] Alzer, H., Qiu, S.-L., Inequalities for means in two variables, Arch. Math. (Basel), 80(2003), 201-215.
[2] Anisiu, M.-C., Anisiu, V., Bilateral inequalities for means, Revue d'Analyse Numérique et de Théorie de l'Approximation, 42(2)(2013), 85-93.
[3] Bullen, P.S., Handbook of Means and Their Inequalities, 2nd edn., Mathematics and Its Applications, Springer, Berlin, 1987.
[4] Chu, Y.-M., Wang, M.-K., Gong, W.-M., Two sharp double inequalities for Seiffert mean, J. Inequal. Appl. 2010, 2010: Article ID 44.
[5] Neuman, E., Sándor, J., Companion inequalities for certain bivariate means, Appl. Anal. Discr. Math., 3(2009), 46-51.
[6] Xia, W.-F., Chu, Y.-M., Optimal inequalities related to the logarithmic, identric, arithmetic and harmonic means, Revue d'Analyse Numérique et de Théorie de l'Approximation, 39(2)(2010), 176-183.

Mira-Cristiana Anisiu
"Tiberiu Popoviciu" Institute of Numerical Analysis
Romanian Academy
P.O. Box 68, 400110 Cluj-Napoca, Romania
e-mail: mira@math.ubbcluj.ro

Valeriu Anisiu
"Babeş-Bolyai" University
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street, 400084 Cluj-Napoca, Romania
e-mail: anisiu@math.ubbcluj.ro

[^0]: This paper was presented at the 10th Joint Conference on Mathematics and Computer Science (MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.

