
Stud. Univ. Babeş-Bolyai Math. 59(2014), No. 4, 457–462

The largest known Cunningham chain of length 3
of the first kind

Gábor Farkas, Gábor E. Gévay, Antal Járai and Emil Vatai

Abstract. Cunningham chains of length n of the first kind are n long sequences
of prime numbers p1, p2, . . . , pn so that pi+1 = 2pi + 1 (for 1 ≤ i < n). In [3] we
have devised a plan to find large Cunningham chains of the first kind of length
3 where the primes are of the form pi+1 = (h0 + cx) · 2e+i − 1 for some integer
x with h0 = 5 775, c = 30 030 and e = 34 944. The project was executed on the
non-uniform memory access (NUMA) supercomputer of NIIF in Pécs, Hungary.
In this paper we report on the obtained results and discuss the implementation
details. The search consisted of two stages: sieving and the Fermat test. The
sieving stage was implemented in a concurrent manner using lockfree queues,
while the Fermat test was trivially parallel. On the 27th of April, 2014 we have
found the largest known Cunningham chain of length 3 of the first kind which
consists of the numbers 5110664609396115 · 234944+j − 1 for j = 0, 1, 2.

Mathematics Subject Classification (2010): 11Y11.

Keywords: Cunningham chains, primality, computational number theory.

1. Cunningham chain search project

Cunningham chains of length n of the first kind are n long sequences of prime
numbers p1, p2, . . . , pn so that pi+1 = 2pi+1 (for 1 ≤ i < n). In 2013 we set out to find
the largest primes which form a Cunningham chain of the first kind of length 3. The
first stage of the plan was to take a large number of candidates, each representing one
chain, i.e. three primes, and eliminate most of them using a sieve similar to the sieve of
Eratosthenes. In the second stage the Fermat test was used to check if the remaining
candidates are probable primes. Finally, that the numbers were actually primes was
proven using the OpenPFGW open source implementation of the Brillhart-Lehmer-
Selfridge test.

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.

458 Gábor Farkas, Gábor E. Gévay, Antal Járai and Emil Vatai

The program was looking for primes of the form

pi+1 = pi+1(x) = (h0 + cx) · 2e+i − 1 for i = 0, 1, 2, (1.1)

therefore the parameters of the program were e which determined the magnitude of
the primes and h0 and c which were required to ensure the deterministic Riesel test
would prove primality fast enough.

1.1. The sieve

The candidates were different values of x, and these candidates were represented
by bits in a large sieve table H which was sieved with a set of primes. The size of
the sieve table, denoted by h, and the upper bound of primes P were also parameters
specific to the sieve program, so the values of 0 ≤ x < h were sieved with primes
p < P .

Sieving with a prime p < P means finding the first 0 ≤ xi < h for which p|pi(xi)
and eliminating xi (for i = 1, 2, 3). Then the candidates xi + kp (for any k ∈ Z) can
also be eliminated since

pi(xi + kp) = (h0 + c(xi + kp)) · 2e+i − 1

= (h0 + cxi) · 2e+i − 1 + ckp · 2e+i

= pi(xi) + ckp · 2e+i

that is, p|pi(xi) implies p|pi(xi + kp), therefore pi(xi + kp) is composite (for k ∈ Z
and i = 1, 2, 3). More details can be found in [3].

1.2. Probabilistic and deterministic primality tests

For the probabilistic primality test the Fermat test was used with base 3. For
each candidate x, not eliminated by the sieve, the program checked if

3pi−1 ≡ 1 (mod pi) where pi = pi(x) for i = 1, 2, 3. (1.2)

The probability of a false positive result of the Fermat test for all three pi’s is close
to none, so practically, after finding a candidate x for which (1.2) is true, the search
would be over.

However this would not prove that these numbers were prime, but this was not
a problem, because the Riesel test provides a very fast and efficient way to verify the
primality of the numbers of the form k · 2e − 1 so it can be used for (1.1).

2. Implementation

As described in [3], the above mentioned parameters were chosen as follows:

• the number of initial candidates, i.e. the size of the sieve table H = 237;
• the upper bound of the sieving primes P = 248;
• the parameters for the pi(x) polynomials were h0 = 5 775, c = 30 030 and e =

34 944.

The largest known Cunningham chain of length 3 of the first kind 459

2.1. The implementation of the sieve

The sieve implementation was written by Gábor E. Gévay in C++ and compiled
with GCC version 4.8.1. To implement concurrent execution of the sieve program,
OpenMP and lock-free queues from the Boost [1] library were used.

The primes up to
√
P = 224 were generated as the initial step, then each CPU

core generated a “chunk” of the remaining sieving primes up to P = 248. The size of
one chunk was 231 bits, without representing the even numbers, so the effective chunk
size was actually 232. Ergo for each chunk a sieve of Eratosthenes was executed on an
interval of 232 numbers and because all the primes up to P = 248 were to be sieved
with, the number of chunks was 216 = 65 536.

After generating the primes for the given chunk, each CPU core proceeded
with sieving the main sieve table H representing the candidates with the primes
found. Thus, several hundred cpu cores were doing bit operations on a shared 16
GB bitset at the same time, which required some synchronization. There were 32
special threads that were actually writing to the bitset. Each of these was respon-
sible for doing operations on a 1/32th chunk of the bitset, and each had a queue
(boost::lockfree::queue) to which the computing threads pushed the bit opera-
tions. Furthermore, each computing thread had a thread-local proxy object of the
bitset, and used a method of this proxy object to request the bit operations. These
objects were responsible for calculating the index of the writer thread to which the
operation is to be forwarded, and also for buffering the operations to prevent the syn-
chronization of the queue from incurring too much overhead. (Note that sequential
consistency of the bit operations was not required.) The supercomputer used has a
NUMA architecture. The above scheme requires remote memory accesses only for the
queue operations, while both writing to the buffers in the proxy objects and executing
the bit operations on the sieve table involves only local memory access. Each prime
sieved three times into H, once for each polynomial pi(xi).

Finally the sieve program converted the sieve table into a vector of 64bit long
long ints and wrote them into a (binary) file.

2.2. The Fermat test

The Fermat test was written as a function with two parameters: x the candidate
and i the index of the polynomial. It calculated the value of p = pi(x), and then
checked if 3p−1 ≡ 1 (mod p). So when 3p−1 mod p = 1 the function returned true,
indicating that p was a probable prime, otherwise it returned false which meant p
was certainly composite.

The output of the sieve program, containing the x candidates as long long

ints, was the input for the Fermat test, which was implemented using the GNU
Multiple Precision (GMP) library. Concurrent execution was not a problem: each
thread read a different candidate x, calculated p = p1(x) and checked if 3p−1 ≡ 1
(mod p), and if the test returned true, the test is executed for p2(x) and if it was
still true then for p3(x) also.

460 Gábor Farkas, Gábor E. Gévay, Antal Járai and Emil Vatai

2.3. Execution

The programs were written for and executed on the supercomputers of NIIF
institute [2] in Pécs. The NIIF institute provided us with access to other super-
computers, including the ones in Budapest, Debrecen and Szeged, but the super-
computer of the University in Pécs was targeted, because of it’s shared memory which
could hold the sieve table of H = 237 bits i.e. 16GiB in size.

To provide us with the advantages of C++11, we used GCC version 4.8.1. Per-
formance of the available GMP library was suboptimal, so we compiled a newer, 5.1.2
version, which provided better performance. We also tried to use the tuneup utility
of GMP to optimize it, but it did not improve performance.

3. Results

3.1. The first run

The sieve was executed on the 8th October 2013 and ran for about 41 hours
with 352 threads. After sieving, 88 573 926 candidates were left. In [3] the number of
remaining candidates after sieving was estimated using the Bateman-Horn conjecture
and was to be approximately 88 570 684. The number of the actual candidates not
eliminated during sieving came very close to this value, the error was only about
0.003%.

The generated output file, fermat in was about 708MB in size. This file was
divided into smaller parts using the split command to be processed by the Fermat
test. The Fermat tests running on these parts of the fermat in file were started
immediately after the sieve program finished on the 10th of October. The estimate of
the time it took to finish the Fermat tests was roughly 4 weeks, however there were
some unanticipated slowdowns in the execution, which were only later solved.

On November 16th 2013. the Fermat test finished, without finding any Cunning-
ham chains and the project came to a temporary halt.

3.2. The second run

The estimated number of Cunningham chains found (based on the above men-
tioned parameters) should have been ≈ 1.3, and it implied that we might have just
been out of luck, i.e. we needed to continue with more candidates, with an extension
of the sieve table. The project was resumed in March of 2014. The program had to
be modified, because in the first run the candidates were 0 ≤ x < 237, and now the
search was to be extended to the candidates 237 ≤ x < 3 · 237. The upper bound
for the primes P was also modified from 248 to 250 to save a little time on the Fer-
mat tests. The number of candidates not eliminated after sieving was 156 743 147.
Using calculations similar to the ones described in [3], this value was expected to be
156 722 877. Again, the actual value was very close to the expected one, the error was
only about 0.013%.

The sieve was again run on the NIIF supercomputer in Pécs, but to find the
primes more quickly, the Fermat test was executed on all available computers of the
NIIF institute, including the ones in Debrecen and Szeged.

The largest known Cunningham chain of length 3 of the first kind 461

On Friday, April 25th 2014. at 02:59:14 on the supercomputer in Pécs the
Fermat test finished with a positive result. The result was verified with a quick
reimplementation of the Fermat test in the Maple computer algebra system, and
there was no mistake, we have found three probable primes for the candidate
x = 170 185 301 678. Afterward we verified the results using the OpenPFGW pro-
gram, which is an open source implementation of the very fast and, most importantly
deterministic, BrillhartLehmerSelfridge test for primes of the form k · 2e − 1.

So the largest know Cunningham chains of the first kind of length 3, according
to “The Top Twenty: Cunningham Chains (1st kind)” [4], where we submitted our
findings, consist of the following three primes:

pi+1(x) = (5775 + 30030 · x) · 234944−i − 1 for x = 170185301678

for i = 1, 2, 3, that is:

p1(x) = 5110664609396115 · 234944 − 1 10535 digits

p2(x) = 5110664609396115 · 234945 − 1 10536 digits

p3(x) = 5110664609396115 · 234946 − 1 10536 digits

Acknowledgment. We are thankful to the operators at NIIF, who wrote some very
useful wiki pages, which were of great help to us, and we are thankful to Gábor
Kőszegi, for having the idea to use the supercomputer at the University of Pécs and
helping us obtain access to it.

References

[1] Chapter 18. Boost.Lockfree,
http://www.boost.org/doc/libs/1 55 0/doc/html/lockfree.html

[2] National Information Infrastructure development Institute (Nemzeti Információs Infras-
truktúra fejlesztési Intézet), http://www.niif.hu/

[3] Farkas, G., Vatai, E., Sieving for large Cunningham chains of length 3 of the first kind,
Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae Sectio
Computatorica, 40(2013), 215–222.

[4] The Top Twenty: Cunningham Chains (1st kind),
http://primes.utm.edu/top20/page.php?id=19

Gábor Farkas
“Eötvös Loránd” University
Faculty of Informatics
Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
e-mail: farkasg@compalg.inf.elte.hu

Gábor E. Gévay
“Eötvös Loránd” University
Faculty of Informatics
Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
e-mail: ggab90@gmail.com

462 Gábor Farkas, Gábor E. Gévay, Antal Járai and Emil Vatai

Antal Járai
“Eötvös Loránd” University
Faculty of Informatics
Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
e-mail: ajarai@moon.inf.elte.hu

Emil Vatai
“Eötvös Loránd” University
Faculty of Informatics
Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
e-mail: vatai@inf.elte.hu

