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Statistical convergence on probabilistic modular
spaces
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Abstract. In this work, we introduce the concepts of statistical convergence and
statistical Cauchy sequence on probabilistic modular spaces. After giving some
useful characterizations for statistically convergent sequences, we display an ex-
ample such that our method of convergence works but its classical case does not
work. Also we define statistical limit points, statistical cluster points on proba-
bilistic modular spaces. Finally, we give the relations between these notions and
limit points of sequences on probabilistic modular spaces.
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1. Introduction

The theory of modular spaces was firstly presented by Nakano [13] and subse-
quently generalized by Musielak and Orlicz [10]. Later many researchers have investi-
gated these spaces in [7, 8]. Also, Menger [9] has introduced the concept of probabilistic
metric space which is an interesting and important generalization of the notion of a
metric space. The probabilistic generalization of metric space appears when there is
an uncertainty about the distance between the points and we know only the prob-
abilities of possible values this distance can take. According to this work instead of
associating a number−the distance d (x, y)−to every pair (x, y), one should associate
a distribution function Nx,y and for any positive real number t, interpret Nx,y (t) as
the probability that the distance from x to y is less than t. An important family
of probabilistic metric spaces are probabilistic normed spaces. For more details, the
reader is referred to [1, 15]. After Menger’s work, Fallahi and Nourouzi [3] have intro-
duced probabilistic modular spaces in the probabilistic sense which are more general
than probabilistic normed spaces and they investigated some basic properties of these
spaces.
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The concept of statistical convergence for sequences of real numbers was intro-
duced by Fast [6]. Later on some generalizations and applications of this notion have
been investigated by many authors [2, 4, 5, 11, 12]. Karakuş studied the concept of
statistical convergence in probabilistic normed spaces [14]. In this paper we study
the properties of the sequences which are statistically convergent in a probabilistic
modular space. Also we define statistical limit points and statistical cluster points in
a probabilistic modular space and prove some interesting results.

We recall some notations and basic definitions used in this paper:
A functional ρ : X → [0,+∞] is said to be a modular on a real linear space X

provided that the following conditions hold:

(i) ρ (x) = 0 iff x is the null vector θ,
(ii) ρ (x) = ρ (−x),

(iii) ρ (αx+ βy) ≤ ρ (x)+ρ (y) for every x, y ∈ X and for any α, β ≥ 0 with α+β = 1.

Then the vector subspace Xρ = {x ∈ X : ρ (ax)→ 0 as a→ 0} of X is called a
modular space.

If A is a subset of N, the set of natural numbers, then the natural density of A
denoted by δ (A) , is defined by

δ (A) := lim
n

1

n
|{k ≤ n : k ∈ A}|

whenever the limit exists, where |A| denotes the cardinality of the set A. The natural
density may not exist for each set A. But the upper density δ̄ always exists for each
set A identified as follows:

δ̄ (A) := lim sup
n

1

n
|{k ≤ n : k ∈ A}| .

A sequence x = {xk} of numbers is statistically convergent to L if

δ ({k ∈ N : |xk − L| ≥ ε}) = 0

for every ε > 0. In this case we write st− limx = L.
Note that every convergent sequence is statistically convergent to the same value.

If x is statistically convergent, then x needs not to be convergent. It is also not
necessarily bounded. For example, let x = {xk} be defined as

xk :=

{ √
k, if k is a square
1, otherwise.

It is easy to see that st− limx = 1. But x is neither convergent nor bounded.

Definition 1.1. A function f : R → R+
0 is called a distribution function if it is non-

decreasing and left-continuous with inft∈R f (t) = 0, and supt∈R f (t) = 1.

We will denote the set of all distribution functions by D.

Definition 1.2. A triangular norm, briefly called t-norm, is a binary operation on [0, 1]
which is continuous, commutative, associative, non-decreasing and has 1 as a neutral
element, i.e., it is a continuous mapping ∧ : [0, 1]× [0, 1] → [0, 1] such that for all
a, b, c ∈ [0, 1] :

1. a ∧ 1 = a,
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2. a ∧ b = b ∧ a,
3. c ∧ d ≥ a ∧ b if c ≥ a and d ≥ b,
4. (a ∧ b) ∧ c = a ∧ (b ∧ c) .

Definition 1.3. A pair (X,µ) is called a probabilistic modular space (P−modular space)
if X is a real vector space, µ is a mapping from X into D (for x ∈ X, the function
µ (x) is denoted by µx, and µx (t) is the value µx at t ∈ R) satisfying the following
conditions:

1. µx (0) = 0,
2. µx (t) = 1 for all t > 0 iff x = 0,
3. µ−x (t) = µx (t) ,
4. µαx+βy (s+ t) ≥ µx (s) ∧ µy (t) for all x, y ∈ X, and α, β, s, t ∈ R+

0 , α+ β = 1.

We say (X,µ) is β−homogeneous, where β ∈ (0, 1] if,

µαx (t) = µx

(
t

|α|β

)
,

for every x ∈ X, t > 0, and α ∈ R \ {0} .

Example 1.4. Suppose that X is a real vector space and ρ is a modular on X. Define

µx (t) =

{
0, t ≤ 0,

t
t+ρ(x) , t > 0,

for all x ∈ X. Then (X,µ) is a P−modular space.

We recall that the concept of convergence and Cauchy sequence in a probabilistic
modular space are studied in [3].

Definition 1.5. Let (X,µ) be a P−modular space.

• A sequence {xk} in X is said to be µ−convergent to a point L ∈ X and denoted

by xk
µ→ L or µ − limx = L, if for every ε > 0 and λ ∈ (0, 1) , there exists a

positive integer k0 such that µxk−L (ε) > 1− λ, for all k ≥ k0.
• A sequence {xk} in X is called a µ−Cauchy sequence if for every ε > 0 and
λ ∈ (0, 1) , there exists a positive integer k0 such that µxk−xl (ε) > 1− λ, for all
k, l ≥ k0.
• A subset F of X is said to be µ−bounded if for every λ ∈ (0, 1) , there exists
t > 0 such that µx (t) > 1− λ for all x ∈ F.
• For x ∈ X, ε > 0 and 0 < λ < 1, the ball centered at x with radius λ is defined

by

B (x, λ, ε) = {y ∈ X : µx−y (ε) > 1− λ} .

Remark 1.6. Let (X,µ) be a P−modular space, and µx (t) = t
t+ρ(x) , where x ∈ X

and t ≥ 0. Then it can be easily seen that xn
ρ→ x if and only if xn

µ→ x.
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2. Statistical convergence on P−modular spaces

In this work we deal with the statistical convergence on probabilistic modular
spaces. Now, we may obtain our main results.

Definition 2.1. Let (X,µ) be a P−modular space.

• We say that a sequence x = {xk} is statistically convergent to L ∈ X with
respect to the probabilistic modular µ (or briefly stµ−convergent) provided that
for every ε > 0 and λ ∈ (0, 1)

δ ({k ∈ N : µxk−L (ε) ≤ 1− λ}) = 0, (2.1)

or equivalently,

lim
n

1

n
|{k ≤ n : µxk−L (ε) ≤ 1− λ}| = 0

and denoted by stµ − limx = L.
• We say that a sequence x = {xk} is a statistical Cauchy sequence with respect

to the probabilistic modular µ (or briefly stµ−Cauchy) provided that for every
ε > 0 and λ ∈ (0, 1) , there is a positive integer N = N(ε) such that

δ ({k ∈ N : µxk−xN (ε) ≤ 1− λ}) = 0,

or equivalently,

lim
n

1

n
|{k ≤ n : µxk−xN (ε) ≤ 1− λ}| = 0.

By using (2.1) and well-known density properties, we have the following lemma.

Lemma 2.2. Let (X,µ) be a P−modular space.Then, for every ε > 0 and λ ∈ (0, 1) ,
the following statements are equivalent:

(i) stµ − limx = L,
(ii) δ ({k ∈ N : µxk−L (ε) ≤ 1− λ}) = 0,

(iii) δ ({k ∈ N : µxk−L (ε) > 1− λ}) = 1,
(iv) st− limµxk−L (ε) = 1.

Theorem 2.3. Let (X,µ) be a P−modular space. If a sequence x = {xk} is
stµ−convergent, then the stµ−limit is unique.

Proof. Assume that stµ − limx = L1, stµ − limx = L2 and λ ∈ (0, 1) . Choose
η ∈ (0, 1) such that (1− η)∧ (1− η) > 1−λ. Then, for any ε > 0, define the following
sets:

Tµ,1 (η, ε) : = {k ∈ N : µxk−L1
(ε) ≤ 1− η} ,

Tµ,2 (η, ε) : = {k ∈ N : µxk−L2
(ε) ≤ 1− η} .

Since stµ − limx = L1, δ (Tµ,1 (η, ε)) = 0 for all ε > 0. Also because of stµ − limx =
L2, we get δ (Tµ,2 (η, ε)) = 0 for all ε > 0. Let Tµ (η, ε) = Tµ,1 (η, ε) ∩ Tµ,2 (η, ε) .
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Then it can be easily seen that δ (Tµ (η, ε)) = 0 which implies δ (N/Tµ (η, ε)) = 1. If
k ∈ N/Tµ (η, ε) , then we get

µ 1
2 (L1−L2) (ε) = µ 1

2 (xk−L1)+
1
2 (L2−xk) (ε)

≥ µxk−L1

(ε
2

)
∧ µxk−L2

(ε
2

)
> (1− η) ∧ (1− η) .

Because of (1− η) ∧ (1− η) > 1− λ, it follows that

µL1−L2
(ε) > 1− λ. (2.2)

Since λ > 0 is arbitrary, by (2.2) we have µL1−L2
(ε) = 1 for all ε > 0. This implies

that L1 = L2. �

Theorem 2.4. Let (X,µ) be a β−homogeneous P−modular space. If {xk} is a
stµ−Cauchy sequence, possessing a subsequence which is stµ−convergent, then {xk}
is stµ−convergent to the same limit.

Proof. For a given λ > 0 choose η ∈ (0, 1) such that (1− η) ∧ (1− η) > 1 − λ.
Because of {xk} is a stµ−Cauchy sequence , there exists t1 ∈ N , a positive integer
N = N(ε) and subset A1 of density 1 such that µxk−xN

(
ε

2β+1

)
> 1 − η holds

for all ε > 0, k ∈ A1and k ≥ t1. Let {xki} be a subsequence of {xk} which is
stµ−convergent to L ∈ X, then there exists t2 ∈ N and subset A2 of density 1
such that µxki−L

(
ε

2β+1

)
> 1 − η holds for all ε > 0, ki ∈ A2 and ki ≥ t2. Take

t0 = max {t1, t2} and A = A1∩ A2 , then δ (A) = 1 and for all ε > 0, k ∈ A and
k ≥ t0 we have

µxk−L (ε) ≥ µ2(xk−xki)

(ε
2

)
∧ µ2(xki−L)

(ε
2

)
= µxk−xki

( ε

2β+1

)
∧ µxki−L

( ε

2β+1

)
> (1− η) ∧ (1− η) > 1− λ.

That is stµ − limx = L. �

Theorem 2.5. Let (X,µ) be a β−homogeneous P−modular space. Then every
stµ−convergent sequence is also a stµ−Cauchy sequence.

Proof. Suppose that {xk} is a stµ−convergent to L ∈ X. Let λ ∈ (0, 1) and choose
η ∈ (0, 1) such that (1− η) ∧ (1− η) > 1 − λ. There exists k0 ∈ N and subset A of
density 1 such that µxk−L

(
ε

2β+1

)
> 1 − η holds for all ε > 0, k ∈ A and k ≥ k0. If

N = N(ε) is a positive integer,

µxk−xN (ε) ≥ µ2(xN−L)

(ε
2

)
∧ µ2(xk−L)

(ε
2

)
= µxN−L

( ε

2β+1

)
∧ µxk−L

( ε

2β+1

)
> (1− η) ∧ (1− η) > 1− λ,

for every ε > 0, k ∈ A and k ≥ k0. That is {xk} is a stµ−Cauchy sequence. �
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Theorem 2.6. Let (X,µ) be a P−modular space. If x = {xk} is a µ−convergent
sequence, then x is also a stµ−convergent sequence.

Proof. Since x is µ−convergent, for every ε > 0 and λ ∈ (0, 1), there is a number
k0 ∈ N such that µxk−L > 1−λ for all k ≥ k0. So the set {k ∈ N : µxk−L (ε) ≤ 1− λ}
has at most finitely many terms. Because every finite subset of the natural numbers
has density zero, we can easily see that δ ({k ∈ N : µxk−L (ε) ≤ 1− λ}) = 0, which
completes the proof. �

Example 2.7. Define ρ : R→ R by

ρ (x) =

{
0, x = 0
1, x 6= 0

for all x ∈ R. Then (R, ρ) is a modular space. Let a ∧ b = ab and µx (t) = t
t+ρ(x) ,

where x ∈ X and t ≥ 0. Observe that (R, µ) is a β−homogeneous P−modular space.
Now we define the sequence x = {xk} whose terms are given by

xk :=

{
1, if k = m2 (m ∈ N) ,
0, otherwise.

(2.3)

Then for any ε > 0 and for every λ ∈ (0, 1) , let

Tµ (λ, ε) := {k ≤ n : µxk (ε) ≤ 1− λ} .

Since

Tµ (λ, ε) =

{
k ≤ n :

ε

ε+ ρ (xk)
≤ 1− λ

}
=

{
k ≤ n : ρ (xk) ≥ λε

1− λ
> 0

}
= {k ≤ n : xk = 1}
=

{
k ≤ n : k = m2 and m ∈ N

}
,

we get

1

n
|Tµ (λ, ε)| ≤ 1

n

∣∣{k ≤ n : k = m2 and m ∈ N
}∣∣ ≤ √n

n

that is

lim
n

1

n
|Tµ (λ, ε)| = 0.

So, we have stµ − limx = 0. But, because x = {xk} given by (2.3) is not convergent
in the space (R, ρ) , by Remark 1.6, we also see that x is not convergent with respect
to the probabilistic modular µ.

Theorem 2.8. Let (X,µ) be a P−modular space. Let stµ − limx = L if and only if
there exists an increasing index sequence T = {kn}n∈N of natural numbers such that
δ (T ) = 1 and µ− lim

n∈T
xn = L, i.e., µ− lim

n
xkn = L.
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Proof. Necessity: First suppose that stµ− limx = L. Then, for every ε > 0 and j ∈ N,
let

T (j, ε) :=

{
n ∈ N : µxn−L (ε) > 1− 1

j

}
Observe that, for ε > 0 and j ∈ N,

T (j + 1, ε) ⊂ T (j, ε) . (2.4)

Because stµ − limx = L, we can write

δ (T (j, ε)) = 1, (ε > 0 and j ∈ N) . (2.5)

Let r1 be an arbitrary number of T (1, ε) . Then, by (2.5), there is a number r2 ∈
T (2, ε) , (r2 > r1) , such that, for all n ≥ r2,

1

n

∣∣∣∣{k ≤ n : µxk−L (ε) > 1− 1

2

}∣∣∣∣ > 1

2
.

Further, by (2.5), there is a number r3 ∈ T (3, ε) , (r3 > r2) , such that, for all n ≥ r3,
1

n

∣∣∣∣{k ≤ n : µxk−L (ε) > 1− 1

3

}∣∣∣∣ > 2

3
,

and so on. Hence, by induction we can construct an increasing index sequence {rj}j∈N
of natural numbers such that rj ∈ T (j, ε) and such that the following statement holds
for all n ≥ rj (j ∈ N) :

1

n

∣∣∣∣{k ≤ n : µxk−L (ε) > 1− 1

j

}∣∣∣∣ > j − 1

j
. (2.6)

Now we set the increasing index sequence T as follows:

T := {n ∈ N : 1 < n < r1} ∪

⋃
j∈N
{n ∈ T (j, ε) : rj ≤ n < rj+1}

 . (2.7)

Then by (2.4), (2.6) and (2.7) we conclude, for all n, (rj ≤ n < rj+1) , that

1

n
|{k ≤ n : k ∈ T}| ≥ 1

n

∣∣∣∣{k ≤ n : µxk−L (ε) > 1− 1

j

}∣∣∣∣ > 1− 1

j
.

Therefore it follows that δ (T ) = 1. Now choose a number j ∈ N and let ε > 0 such
that 1

j < ε. Suppose that n ≥ vj and n ∈ T. Then, from the definition of T, there

exists a number m ≥ j such that vm ≤ n < vm+1 and n ∈ T (j, ε) . Hence, we get, for
every ε > 0,

µxn−L (ε) > 1− 1

j
> 1− ε

for all n ≥ vj and n ∈ T, which implies

µ− lim
n∈T

xn = L.

This completes the proof of necessity.
Sufficiency: Assume that there exists an increasing index sequence T = {kn}n∈N

such that δ (T ) = 1 and µ − lim
n∈T

xn = L. Now, for any ε > 0 and λ ∈ (0, 1) , there is
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a number n0 such that for each n ≥ n0 the inequality µxn−L (ε) > 1− λ holds. Now
define S (λ, ε) := {n ∈ N : µxn−L (ε) ≤ 1− λ} . Then we have

S (λ, ε) ⊂ N− {kn0
, kn0+1, kn0+2, ...} .

Since δ (T ) = 1, we get δ (N− {kn0 , kn0+1, kn0+2, ...}) = 0, which yields that
δ (S (λ, ε)) = 0.

Hence, we get stµ − limx = L. �

By a similar technique as in the above theorem one can get the following result
at once.

Theorem 2.9. Let (X,µ) be a P−modular space and x = {xk} is a sequence in X.
The following statements are equivalent:

(a) x is a stµ−Cauchy sequence.
(b) There exists an increasing index sequence T = {kn} of natural numbers such

that δ (T ) = 1 and the subsequence {xkn}n∈N is a µ−Cauchy sequence.

Remark 2.10. If stµ − lim
n
xn = L, then there exists a sequence y = {yn} such that

µ− lim
n
yn = L and δ ({n ∈ N : xn = yn}) = 1.

Now, we show that statistical convergence on a P−modular space has some
properties similar to the properties of the usual convergence on R.

Lemma 2.11. Let (X,µ) be a β−homogeneous P−modular space.

1. If stµ − limx = L1 and stµ − lim y = L2,
then stµ − lim (x+ y) = L1 + L2.

2. If stµ − limx = L and α ∈ R, then stµ − limαx = αL.
3. If stµ − limx = L1 and stµ − lim y = L2,

then stµ − lim (x− y) = L1 − L2.

Proof. (1) Let stµ−limx = L1 , stµ−lim y = L2 and λ ∈ (0, 1) . There exists η ∈ (0, 1)
such that (1− η) ∧ (1− η) > 1 − λ. There exists k1 ∈ N and subset A1 of density 1
such that µxk−L

(
ε

2β+1

)
> 1 − η holds for all ε > 0, k ∈ A1 and k ≥ k1. Also, there

exists k2 ∈ N and subset A2 of density 1 such that µyk−L2

(
ε

2β+1

)
> 1−η holds for all

ε > 0, k ∈ A2 and k ≥ k2. Take k0 = max {k1, k2} and A = A1∩ A2 , then δ (A) = 1
and for every ε > 0, k ∈ A and k ≥ k0 we have

µ(xk−L1)+(yk−L2) (ε) ≥ µ2(xk−L1)

(ε
2

)
∧ µ2(yk−L2)

(ε
2

)
= µxk−L1

( ε

2β+1

)
∧ µyk−L2

( ε

2β+1

)
> (1− η) ∧ (1− η) > 1− λ,

That is stµ − lim (x+ y) = L1 + L2.
(2) Let stµ − limx = L, ε > 0, λ > 0. We may assume that α = 0. In this case

µ0xk−0L (ε) = µ0 (ε) = 1 > 1− λ.

So we get µ− limxk = 0. Then from Theorem 2.5 we have stµ − limxk = 0.
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Now we consider the case of α ∈ R (α 6= 0) . Since stµ − limx = L, if we define
the set

Tµ (λ, ε) := {k ∈ N : µxk−L (ε) ≤ 1− λ}

then we can say δ (Tµ (λ, ε)) = 0 for all ε > 0 which implies δ (N/Tµ (λ, ε)) = 1. If
k ∈ N/Tµ (λ, ε) , then we get

µαxk−αL (ε) = µxk−L

(
ε

|α|

)
≥ µxk−L (ε) ∧ µ0

(
ε

|α|
− ε
)

= µxk−L (ε) ∧ 1

= µxk−L (ε) > 1− λ

for α ∈ R (α 6= 0) . That is

δ ({k ∈ N : µαxk−αL (ε) ≤ 1− λ}) = 0.

So stµ − limαx = αL.

(3) The proof is clear from (1) and (2). �

Theorem 2.12. Let (X,µ) be a P−modular space and Sµb (X) the space of bounded
statistically convergent sequences on the P−modular space. Then the set Sµb (X) is a
closed linear subspace of the set lµ∞ (X) .

Proof. It is clear that Sµb (X) ⊂ Sµb (X). Now we show that Sµb (X) ⊂ Sµb (X) . Let y ∈
Sµb (X), then because of B (y, λ, ε)∩Sµb (X) 6= ∅, there is an x ∈ B (y, λ, ε)∩Sµb (X) .

Let ε > 0 and for a given η > 0 choose λ ∈ (0, 1) such that (1− λ) ∧ (1− λ) >
1− η. Since x ∈ B (y, λ, ε) ∩ Sµb (X) , there is a set T ⊆ N with δ (T ) = 1 such that

µyn−xn

(ε
2

)
> 1− λ and µxn

(ε
2

)
> 1− λ

for all n ∈ T. Then we have

µyn (ε) = µyn−xn+xn (ε)

≥ µyn−xn

(ε
2

)
∧ µxn

(ε
2

)
> 1− η,

for all n ∈ T. Therefore

δ ({n ∈ T : µyn (ε) > 1− η}) = 1

and so y ∈ Sµb (X) . �
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3. Statistical limit points and statistical cluster points on P−modular
spaces

The concepts of statistical limit points and statistical cluster points of real num-
ber sequences were given by Fridy in 1993 [5]. Also, he gives relations between them
and the set of ordinary limit points. In this section we study the analogues of these
notions on probabilistic modular spaces.

Definition 3.1. Let (X,µ) be a P−modular space. Then l ∈ X is called a limit point of
the sequence x = {xk} with respect to the probabilistic modular µ (or µ−limit point) if
there is a subsequence of x that converges to l with respect to the probabilistic modular
µ. The set of all limit points of the sequence x is denoted by Lµ (x) .

Definition 3.2. Let (X,µ) be a P−modular space. If
{
xk(j)

}
is a subsequence of

x = {xk} and K := {k (j) ∈ N : j ∈ N} then we abbreviate
{
xk(j)

}
by {x}K in this

case δ (K) = 0. {x}K is called a thin subsequence or subsequence of density zero.
Additionally, {x}K is a nonthin subsequence of x if K does not have density zero.

Definition 3.3. Let (X,µ) be a P−modular space. L ∈ X is called a statistical limit
point of the sequence x = {xk} with respect to the probabilistic modular µ (or stµ−limit
point) if there is a nonthin subsequence of x that converges to L with respect to the
probabilistic modular µ and we say L is a stµ−limit point of the sequence x = {xk}.
The set of all stµ−limit points of the sequence x is denoted by Λµ (x) .

Definition 3.4. Let (X,µ) be a P−modular space. Then γ ∈ X is called a statistical
cluster point of the sequence x = {xk} with respect to the probabilistic modular µ (or
stµ−cluster point) if for all ε > 0 and λ ∈ (0, 1)

δ ({k ∈ N : µxk−γ (ε) > 1− λ}) > 0.

In this case we say that γ is a stµ−cluster point of the sequence x = {xk} . The set
of all stµ−cluster points of the sequence x is denoted by Γµ (x) .

Theorem 3.5. Let (X,µ) be a P−modular space. For any sequence x ∈ X it holds
Λµ (x) ⊂ Γµ (x) .

Proof. Assume L ∈ Λµ (x) , then there is a nonthin subsequence
{
xk(j)

}
of x = {xk}

that is stµ−convergent to L, i.e. for all ε > 0 and λ ∈ (0, 1)

δ
({
k (j) ∈ N : µxk(j)−L (ε) > 1− λ

})
= d > 0.

So

{k ∈ N : µxk−L (ε) > 1− λ} ⊃
{
k (j) ∈ N : µxk(j)−L (ε) > 1− λ

}
,

we have

{k ∈ N : µxk−L (ε) > 1− λ} ⊃ {k (j) ∈ N : j ∈ N}
\
{
k (j) ∈ N : µxk(j)−L (ε) ≤ 1− λ

}
.

Since
{
xk(j)

}
is stµ−convergent to L, the set{

k (j) ∈ N : µxk(j)−L (ε) ≤ 1− λ
}



Probabilistic modular spaces 327

is finite for every ε > 0. Hence,

δ ({k ∈ N : µxk−L (ε) > 1− λ}) ≥ δ ({k (j) ∈ N : j ∈ N})
−δ
({
k (j) ∈ N : µxk(j)−L (ε) ≤ 1− λ

})
.

Therefore

δ ({k ∈ N : µxk−L (ε) > 1− λ}) > 0

that is L ∈ Γµ (x) . �

Theorem 3.6. Let (X,µ) be a P−modular space. For any sequence x ∈ X it holds
Γµ (x) ⊆ Lµ (x) .

Proof. Suppose γ ∈ Γµ (x) , then

δ ({k ∈ N : µxk−γ (ε) > 1− λ}) > 0

for any ε > 0 and λ ∈ (0, 1) . Set {x}K a nonthin subsequence of x such that

K :=
{
k (j) ∈ N : µxk(j)−γ (ε) > 1− λ

}
for every ε > 0 and δ (K) 6= 0. Since there are infinitely many elements in K, γ ∈
Lµ (x) . �

Theorem 3.7. Let (X,µ) be a P−modular space. For a sequence x = {xk} with stµ −
limx = L it follows that Λµ (x) = Γµ (x) = {L} .

Proof. First we show that Λµ (x) = {L} . Assume that Λµ (x) = {L,N} (L 6= N) .
Then we can write that there exist nonthin subsequences

{
xk(j)

}
and

{
xl(i)

}
of

x = {xk} that are stµ−convergent to L and N , respectively. Because of
{
xl(j)

}
is stµ−convergent to N for every ε > 0 and λ ∈ (0, 1)

K :=
{
l (i) ∈ N : µxl(i)−N (ε) ≤ 1− λ

}
is a finite set, so δ (K) = 0. Then we observe that

{l (i) ∈ N : i ∈ N} =
{
l (i) ∈ N : µxl(i)−N (ε) > 1− λ

}
∪
{
l (i) ∈ N : µxl(i)−N (ε) ≤ 1− λ

}
which implies that

δ
({
l (i) ∈ N : µxl(i)−N (ε) > 1− λ

})
6= 0. (3.1)

Since stµ − limx = L,

δ ({k ∈ N : µxk−L (ε) ≤ 1− λ}) = 0 (3.2)

for every ε > 0. Hence, we get

δ ({k ∈ N : µxk−L (ε) > 1− λ}) 6= 0.

For every L 6= N{
l (i) ∈ N : µxl(i)−N (ε) > 1− λ

}
∩ {k ∈ N : µxk−L (ε) > 1− λ} = ∅.

So {
l (i) ∈ N : µxl(i)−N (ε) > 1− λ

}
⊆ {k ∈ N : µxk−L (ε) ≤ 1− λ} .
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Therefore

δ
({
l (i) ∈ N : µxl(i)−N (ε) > 1− λ

})
≤ δ ({k ∈ N : µxk−L (ε) ≤ 1− λ}) = 0.

This contradicts (3.1). Hence Λµ (x) = {L} .
Now suppose that Γµ (x) = {L,M} (L 6= M) . Then

δ ({k ∈ N : µxk−M (ε) > 1− λ}) 6= 0. (3.3)

Since
{k ∈ N : µxk−L (ε) > 1− λ} ∩ {k ∈ N : µxk−M (ε) > 1− λ} = ∅

for every L 6= M, so

{k ∈ N : µxk−L (ε) ≤ 1− λ} ⊇ {k ∈ N : µxk−M (ε) > 1− λ} .
Hence

δ ({k ∈ N : µxk−L (ε) ≤ 1− λ}) ≥ δ ({k ∈ N : µxk−M (ε) > 1− λ}) . (3.4)

From (3.3), the right hand-side of (3.4) is greater than zero and from (3.2), the left
hand-side of (3.4) equals to zero. This is a contradiction. So Γµ (x) = {L} . �

Theorem 3.8. Let (X,µ) be a P−modular space. Then the set Γµ is closed in X for
each sequence x = {xk} of elements of X.

Proof. Let y ∈ Γµ (x). Take ε > 0 and 0 < λ < 1. There exists γ ∈ Γµ (x)∩B (y, λ, ε)
such that

B (y, λ, ε) = {x ∈ X : µy−x (ε) > 1− λ} .
Choose ζ > 0 such that B (γ, ζ, ε) ⊂ B (y, λ, ε) . We get

{k ∈ N : µy−xk (ε) > 1− λ} ⊃ {k ∈ N : µγ−xk (ε) > 1− ζ}
so

δ ({k ∈ N : µy−xk (ε) > 1− λ}) 6= 0

and y ∈ Γµ. �
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