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Asymptotic behavior of intermediate points
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termediate points in certain mean value theorems of integral and differential
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1. Introduction

Let a, b ∈ R such that a < b, let f : [a, b]→ R be a continuous function, and let
g ∈ L1[a, b] such that g does not change its sign in [a, b]. Then, according to the first
mean value theorem of integral calculus (see, for instance, [11, Theorem 85.6], or [6]),
for every x ∈ (a, b] there exists ξx ∈ (a, x) such that∫ x

a

f(t)g(t)dt = f(ξx)

∫ x

a

g(t)dt.

It was proved in [15, Theorem 2.2] that

lim
x→a+

ξx − a
x− a

= n

√
k + 1

n+ k + 1
(1.1)

if, in addition, the functions f and g satisfy the following conditions:

(i) there exists a positive integer n such that f is n times differentiable at a, with
f (j)(a) = 0 for 1 ≤ j ≤ n− 1 and f (n)(a) 6= 0;

(ii) g ∈ C[a, b] and there exists a nonnegative integer k such that g is k times
differentiable at a with g(j)(a) = 0 for 0 ≤ j ≤ k − 1 and g(k)(a) 6= 0.

Regarding (ii) we notice that the continuity of g is automatically assured if k ≥ 2, at
least on a small interval [a, a+ h] ⊆ [a, b] (this clearly suffices when dealing with the
limit (1.1)).
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Further, let n be a positive integer, and let f : [a, b] → R be a function whose
derivative f (n) exists on [a, b]. Then, according to the Lagrange-Taylor mean value
theorem, for every x ∈ (a, b] there exists some ξx ∈ (a, x) such that

f(x)− Tn−1(f ; a)(x) =
f (n)(ξx)

n!
(x− a)n,

where Tm(h; a) denotes the mth Taylor polynomial associated with h and a

Tm(h; a)(x) := h(a) + h′(a)(x− a) + · · ·+ h(m)(a)

m!
(x− a)m,

provided that h is m times differentiable at a. It was proved by A. G. Azpeitia [4]
that

lim
x→a+

ξx − a
x− a

=

(
n+ p

p

)−1/p
(1.2)

if, in addition, f satisfies the following conditions:

(i) there exists a positive integer p such that f ∈ Cn+p[a, b];
(ii) f (n+j)(a) = 0 for 1 ≤ j < p ;
(iii) f (n+p)(a) 6= 0.

This result was generalized by U. Abel [1], who derived for ξx a complete asymptotic
expansion of the form

ξx = a+

∞∑
k=1

ck
k!

(x− a)k (x→ a).

Azpeitia’s result was generalized also by T. Trif [14], who obtained the asymptotic
behavior of the intermediate point in the Cauchy-Taylor mean value theorem. For
other results concerning the asymptotic behavior of the intermediate points in certain
mean value theorems the reader is referred to [2, 7, 8, 9, 19].

The purpose of our paper is to establish asymptotic formulas, that are similar
to (1.1) and (1.2), but in the framework of fractional calculus.

2. Fractional mean value theorems of integral calculus

K. Diethelm [6, Theorem 2.1] generalized the first mean value theorem of integral
calculus to the framework of fractional calculus. Recall that given α > 0, the Riemann-
Liouville fractional primitive of order α of a function f : [a, b]→ R is defined by (see
[12] or [5])

Jαa f(x) :=
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt,

provided the right side is pointwise defined on [a, b].

Theorem 2.1. ([6, Theorem 2.1]) Let α > 0, let f : [a, b]→ R be a continuous function,
and let g ∈ L1[a, b] be a function which does not change its sign on [a, b]. Then for
almost every x ∈ (a, b] there exists some ξx ∈ (a, x) such that

Jαa (fg)(x) = f(ξx)Jαa g(x). (2.1)
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Moreover, if α ≥ 1 or g ∈ C[a, b], then the existence of ξx is assured for every
x ∈ (a, b].

In the special case when g(x) ≡ 1, the above mean value theorem takes the
following form.

Corollary 2.2. ([6, Corollary 2.2]) If α > 0 and f : [a, b]→ R is a continuous function,
then for every x ∈ (a, b] there exists some ξx ∈ (a, x) such that

Jαa f(x) = f(ξx)
(x− a)α

Γ(α+ 1)
. (2.2)

We point out that there is a misprint in the statement of [6, Corollary 2.2], where
Γ(α) appears instead of Γ(α+ 1).

In what follows we intend to prove a fractional version of the second mean value
theorem of integral calculus. For reader’s convenience we recall first the second mean
value theorem for Lebesgue integrals, which is usually stated for Riemann integrals
(see, for instance, [3, Theorem 10.2.5] or [18, Theorem 1]).

Theorem 2.3. Let f : [a, b]→ [0,∞) be a nondecreasing function, and let g ∈ L1[a, b].
Then for every x ∈ (a, b] there exists some ξx ∈ [a, x] such that∫ x

a

f(t)g(t)dt = f(x− 0)

∫ x

ξx

g(t)dt.

The fractional version of Theorem 2.3 can be formulated as follows.

Theorem 2.4. Let α > 0, let f : [a, b] → [0,∞) be a nondecreasing function, and let
g ∈ L1[a, b]. Then for almost every x ∈ (a, b] there exists some ξx ∈ [a, x] such that

Jαa (fg)(x) = f(x− 0)Jαξxg(x). (2.3)

Moreover, if α ≥ 1 or g ∈ C[a, b], then the existence of ξx is assured for every
x ∈ (a, b].

Proof. Let x ∈ (a, b]. Under the assumptions of the theorem we have

Jαa (fg)(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)g(t)dt =

∫ x

a

f(t)h(t)dt,

where h : (a, x)→ R is the function defined by h(t) := (x− t)α−1g(t)/Γ(α).

If α ≥ 1 or g ∈ C[a, b], then h ∈ L1[a, x]. By Theorem 2.3 it follows that there
exists ξx ∈ [a, x] such that

Jαa (fg)(x) =

∫ x

a

f(t)h(t)dt = f(x− 0)

∫ x

ξx

h(t)dt = f(x− 0)Jαξxg(x).

If 0 < α < 1 and g is supposed only Lebesgue integrable, then the above argument
still works, but the integrability of h holds only for almost all x ∈ (a, b] (see [17,
Theorem 4.2 (d)]). �
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3. Asymptotic behavior of intermediate points in fractional mean
value theorems of integral calculus

The purpose of this section is to investigate the asymptotic behavior of the point
ξx in (2.1) and (2.2) as the interval [a, x] shrinks to zero. More precisely, we prove that

under certain additional assumptions on f and g, the limit lim
x→a+

ξx − a
x− a

exists and

we find its value. In the proof of the main result of this section we need the following

Lemma 3.1. Let α > 0, let p be a nonnegative integer, and let ω : [a, b] → R be a
continuous function such that ω(x)→ 0 as x→ a+. Then∫ x

a

(x− t)α−1(t− a)pω(t)dt = o
(
(x− a)p+α

)
(x→ a+).

Proof. Indeed, for every x ∈ (a, b] we have∫ x

a

(x− t)α−1(t− a)pω(t)dt = Γ(α)Jαa (ωg)(x),

where g : [a, b]→ [0,∞) is defined by g(t) := (t−a)p. According to Theorem 2.1 there
exists ξx ∈ (a, x) such that

Jαa (ωg)(x) = ω(ξx)Jαa g(x) =
ω(ξx)

Γ(α)

∫ x

a

(x− t)α−1(t− a)pdt

= ω(ξx)
B(p+ 1, α)

Γ(α)
(x− a)p+α,

whence ∫ x

a

(x− t)α−1(t− a)pω(t)dt = ω(ξx)B(p+ 1, α)(x− a)p+α.

Since ω(x)→ 0 as x→ a+, we obtain the conclusion. �

Theorem 3.2. Let α be a positive real number and let f, g : [a, b] → R be functions
satisfying the following conditions:

(i) f ∈ C[a, b] and there is a positive integer n such that f is n times differentiable
at a with f (j)(a) = 0 for 1 ≤ j ≤ n− 1 and f (n)(a) 6= 0;

(ii) g ∈ C[a, b], g does not change its sign in some interval [a, a+ h] ⊆ [a, b], and
there is a nonnegative integer k such that g is k times differentiable at a with
g(j)(a) = 0 for 0 ≤ j ≤ k − 1 and g(k)(a) 6= 0.

Then the point ξx in (2.1) satisfies

lim
x→a+

ξx − a
x− a

= n

√
(k + 1)(k + 2) · · · (k + n)

(α+ k + 1)(α+ k + 2) · · · (α+ k + n)
.

Proof. Without loosing the generality we may assume that f(a) = 0. Indeed, other-
wise we replace f by the function t ∈ [a, b] 7→ f(t) − f(a). Note that if ξx satisfies
(2.1), then ξx satisfies also

Jαa

((
f − f(a)

)
g
)

(x) =
(
f(ξx)− f(a)

)
Jαa g(x).
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We notice also that (2.1) is equivalent to∫ x

a

(x− t)α−1f(t)g(t)dt = f(ξx)

∫ x

a

(x− t)α−1g(t)dt. (3.1)

By the Taylor expansions of f and g we have

f(t) =
f (n)(a)

n!
(t− a)n + ω(t)(t− a)n,

g(t) =
g(k)(a)

k!
(t− a)k + ε(t)(t− a)k,

where ω and ε are continuous functions on [a, b] satisfying ω(t)→ 0 and ε(t)→ 0 as
t→ a+. Therefore we have

(x− t)α−1f(t)g(t) =
f (n)(a)g(k)(a)

n! k!
(x− t)α−1(t− a)n+k

+(x− t)α−1(t− a)n+kγ(t),

where γ is continuous on [a, b] and γ(t) → 0 as t → a+. By applying Lemma 3.1 we
deduce that∫ x

a

(x− t)α−1f(t)g(t)dt (3.2)

=
f (n)(a)g(k)(a)

n! k!
B(α, n+ k + 1) (x− a)n+k+α + o

(
(x− a)n+k+α

)
as x→ a+. On the other hand, since

(x− t)α−1g(t) =
g(k)(a)

k!
(x− t)α−1(t− a)k + (x− t)α−1(t− a)kε(t),

by Lemma 3.1 we get∫ x

a

(x− t)α−1g(t)dt =
g(k)(a)

k!
B(α, k + 1)(x− a)k+α + o

(
(x− a)k+α

)
as x→ a+. Taking into account that

f(ξx) =
f (n)(a)

n!
(ξx − a)n + ω(ξx)(ξx − a)n

and that 0 < ξx − a < x− a, we obtain

f(ξx)

∫ x

a

(x− t)α−1g(t)dt (3.3)

=
f (n)(a)g(k)(a)

n! k!
B(α, k + 1)(ξx − a)n(x− a)k+α

+o
(
(x− a)n+k+α

)
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as x→ a+. By (3.1), (3.2) and (3.3) we conclude that

f (n)(a)g(k)(a)

n! k!
B(α, k + 1)(ξx − a)n(x− a)k+α

=
f (n)(a)g(k)(a)

n! k!
B(α, n+ k + 1) (x− a)n+k+α + o

(
(x− a)n+k+α

)
as x→ a+. Multiplying both sides by n! k!(x− a)−n−k−α/

(
f (n)(a)g(k)(a)

)
we get(

ξx − a
x− a

)n
=

B(α, n+ k + 1)

B(α, k + 1)
+ o(1)

=
(k + 1)(k + 2) · · · (k + n)

(α+ k + 1)(α+ k + 2) · · · (α+ k + n)
+ o(1)

as x→ a+, whence the conclusion. �

Corollary 3.3. Let α > 0, and let f : [a, b]→ R be a function satisfying the condition
(i) in Theorem 3.2. Then the point ξx in (2.2) satisfies

lim
x→a+

ξx − a
x− a

= n

√
n!

(α+ 1)(α+ 2) · · · (α+ n)
.

In the special case when α = 1, then Theorem 3.2 and Corollary 3.3 coincide
with earlier results obtained by T. Trif [15, Theorem 2.2] and B. Zhang [20, Theorem
4], respectively.

Unfortunately, we were not able to prove a result similar to those stated in
Theorem 3.2 and Corollary 3.3, but concerning the asymptotic behavior of the point
ξx in formula (2.3).

4. Fractional mean value theorems of differential calculus

K. Diethelm [6] and P. Guo, C. P. Li, and G. R. Chen [10] extended recently also
the classical Lagrange and Lagrange-Taylor mean value theorems to the framework of
fractional calculus. Let α > 0, and let f : [a, b]→ R be a given function. The Caputo
fractional derivative of order α of f is defined by

Dα
∗af := Dα

a

(
f − Tdαe−1(f ; a)

)
,

where d·e denotes the ceiling function that rounds up to the nearest integer, while Dα
a

is the Riemann-Liouville differential operator, defined by

Dα
a f := DdαeJdαe−αa f.

In the above formula Dm denotes the classical differential operator of order m, and
J0
af := f .
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Theorem 4.1. ([6, Theorem 2.3], [10, Theorem 3]) Let α > 0, and let f ∈ Cdαe−1[a, b]
be a function such that Dα

∗af ∈ C[a, b]. Then for every x ∈ (a, b] there exists some
ξx ∈ (a, x) such that

f(x)− Tdαe−1(f ; a)(x)

(x− a)α
=

1

Γ(α+ 1)
Dα
∗af(ξx). (4.1)

In the special case when 0 < α ≤ 1, then Tdαe−1(f ; a)(x) = f(a), and Theorem
4.1 takes the following form.

Corollary 4.2. ([6, Corollary 2.4]) Let 0 < α ≤ 1, and let f ∈ C[a, b] be a function
such that Dα

∗af ∈ C[a, b]. Then for every x ∈ (a, b] there exists some ξx ∈ (a, x) such
that

f(x)− f(a)

(x− a)α
=

1

Γ(α+ 1)
Dα
∗af(ξx). (4.2)

Theorem 4.3. ([10, Theorem 4]) Let α > 0, and let f, g ∈ Cdαe−1[a, b] be functions
such that Dα

∗af,D
α
∗ag ∈ C[a, b]. Then for every x ∈ (a, b] there exists some ξx ∈ (a, x)

such that

Dα
∗af(ξx)

(
g(x)− Tdαe−1(g; a)(x)

)
= Dα

∗ag(ξx)
(
f(x)− Tdαe−1(f ; a)(x)

)
. (4.3)

Corollary 4.4. ([10, Corollary 3.6]) Let 0 < α ≤ 1, and let f, g ∈ C[a, b] be functions
such that Dα

∗af,D
α
∗ag ∈ C[a, b]. Then for every x ∈ (a, b] there exists some ξx ∈ (a, x)

such that
Dα
∗af(ξx)

(
g(x)− g(a)

)
= Dα

∗ag(ξx)
(
f(x)− f(a)

)
. (4.4)

Remark 4.5. Let α > 0, and let f ∈ Cdαe−1[a, b] such that Dα
∗af ∈ C[a, b]. Further,

let g : [a, b] → R be the function defined by g(t) := (t − a)α. If n := dαe, then
n−1 < α ≤ n, and Tdαe−1(g; a)(x) = Tn−1(g; a)(x) = 0. On the other hand, for every
y ∈ (a, b) one has

Dα
∗ag(y) =

dn

dyn
Jn−αa

(
g − Tdαe−1(g; a)

)
(y) =

dn

dyn
Jn−αa g(y)

= Γ(α+ 1).

Therefore, in this case (4.3) reduces to (4.1), while (4.4) reduces to (4.2). In other
words, Theorem 4.3 coincides with Theorem 4.1, while Corollary 4.4 coincides with
Corollary 4.2 in the special case when g(t) := (t− a)α.

It should be mentioned that similar fractional mean value theorems, but in-
volving the Riemann-Liouville fractional derivative instead of the Caputo fractional
derivative have been obtained by other authors (see, for instance, [10], [13], [16]).

5. Asymptotic behavior of intermediate points in fractional mean
value theorems of differential calculus

Theorem 5.1. Let α > 0 be a non-integer number, let n := dαe, and let f : [a, b]→ R
be a function satisfying the following conditions:

(i) there exists a nonnegative integer p such that f ∈ Cn+p[a, b];
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(ii) f (n+j)(a) = 0 for 0 ≤ j < p ;
(iii) f (n+p)(a) 6= 0.

Then the point ξx in (4.1) satisfies

lim
x→a+

ξx − a
x− a

=
(
(n+ p− α)B(α+ 1, n+ p− α)

) 1
n+p−α .

Proof. We note first that since f ∈ Cn+p[a, b], the derivative f (n−1) must be absolutely
continuous on [a, b]. By [5, Theorem 3.1] it follows that

Dα
∗af = Jn−αa Dnf. (5.1)

Due to (ii), by the Taylor expansion of f we have

f(x)− Tn−1(f ; a)(x) =
f (n+p)(a)

(n+ p)!
(x− a)n+p + ω(x)(x− a)n+p, (5.2)

where ω is continuous on [a, b] and satisfies ω(x)→ 0 as x→ a+. On the other hand,
by the Taylor expansion of f (n) we have

f (n)(t) =
f (n+p)(a)

p!
(t− a)p + ε(t)(t− a)p, (5.3)

where ε is continuous on [a, b] and satisfies ε(t)→ 0 as t→ a+.

Taking into account (5.1), equality (4.1) can be rewritten as

f(x)− Tn−1(f ; a)(x) =
(x− a)α

Γ(α+ 1)Γ(n− α)

∫ ξx

a

(ξx − t)n−α−1f (n)(t)dt. (5.4)

By (5.3) and Lemma 3.1 we find that∫ ξx

a

(ξx − t)n−α−1f (n)(t)dt

=
f (n+p)(a)

p!

∫ ξx

a

(ξx − t)n−α−1(t− a)pdt

+

∫ ξx

a

(ξx − t)n−α−1(t− a)pε(t)dt

=
Γ(n− α)

Γ(n+ p+ 1− α)
f (n+p)(a)(ξx − a)n+p−α + o

(
(ξx − a)n+p−α

)
,

whence

(x− a)α

Γ(α+ 1)Γ(n− α)

∫ ξx

a

(ξx − t)n−α−1f (n)(t)dt (5.5)

=
f (n+p)(a)(x− a)α(ξx − a)n+p−α

Γ(α+ 1)Γ(n+ p+ 1− α)
+ o
(
(x− a)n+p

)
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as x → a+, because 0 < ξx − a < x − a. Taking now into account (5.2), (5.4), and
(5.5), we find that

f (n+p)(a)(x− a)n+p

Γ(n+ p+ 1)
=

f (n+p)(a)(x− a)α(ξx − a)n+p−α

Γ(α+ 1)Γ(n+ p+ 1− α)

+o
(
(x− a)n+p

)
as x→ a+. Multiplying both sides by

Γ(α+ 1)Γ(n+ p+ 1− α)(x− a)−n−p/f (n+p)(a)

we get(
ξx − a
x− a

)n+p−α
=

Γ(α+ 1)Γ(n+ p+ 1− α)

Γ(n+ p+ 1)
+ o(1)

= (n+ p− α)B(α+ 1, n+ p− α) + o(1) (x→ a+),

whence the conclusion. �

Corollary 5.2. Let 0 < α < 1, and let f : [a, b] → R be a function satisfying the
following conditions:

(i) there exists a positive integer p such that f ∈ Cp[a, b];
(ii) f (j)(a) = 0 for 1 ≤ j < p ;
(iii) f (p)(a) 6= 0.

Then the point ξx in (4.2) satisfies

lim
x→a+

ξx − a
x− a

=
(
(p− α)B(α+ 1, p− α)

) 1
p−α .
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