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Greediness of higher rank Haar wavelet bases in
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Abstract. We prove that higher rank Haar wavelet systems are greedy in
Lp

w(R), 1 < p <∞ if and only if w ∈ AN
p .
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1. Introduction

Let X = {xn : n ∈ N} be a semi-normalized basis in a Banach space X. This
means that {xn}n∈N is a Schauder basis and is semi-normalized i.e. 0 < infn∈N ‖xn‖ ≤
supn∈N ‖xn‖ < ∞. For an element x ∈ X we define the error of the best m−term
approximation as follows

σm(x,X ) = inf{‖x−
∑
n∈A

αnxn‖},

where the inf is taken over all subset A ⊂ N of cardinality at most m and all possible
scalars αn. The main question in approximation theory concerns the construction of
efficient algorithms for m-term approximation. A computationally efficient method to
produce m-term approximations, which has been widely investigated in recent years,
is the so called greedy algorithm. For x ∈ X with x =

∑∞
n=1 anxn and m ∈ N,

consider a subset G(m,x) ⊂ N of cardinality m such that

min
n∈G(m,x)

|an| ≥ max
n∈N\G(m,x)

|an|.

There is some ambiguity in the choice of the set G(m,x), but our considerations do
not depend on the particular choice. Then the m-th greedy approximation of x with
respect to the basis X is defined as

Gm(x,X ) =
∑

n∈G(m,x)

anxn.
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Clearly, σm(x,X ) ≤ ‖x−Gm(x,X )‖. The basis X is called greedy if there is a constant
C > 0, independent of m, such that for each m ∈ N and x ∈ X,

‖x− Gm(x,X )‖ ≤ Cσm(x,X ).

Wavelet systems are well known examples of greedy bases for many function and
distribution spaces. Indeed, V. N. Temlyakov showed in [13] that the classical dyadic
Haar system (and any wavelet system Lp−equivalent to it) is greedy in the Lebesgye
spaces Lp(Rn) for 1 < p <∞.

When wavelets have sufficient smoothness and decay, they are also greedy bases
for the more general Sobolev and Tribel-Lizorkin classes (see [3],[5]). Some example
of greedy bases are given in [13], [14]. In most cases these bases are greedy simply
because they are symmetric (e.g. Riesz bases for a Hilbert space), or because they are
equivalent to the dyadic Haar basis or to a subsequence of the Haar basis (see [7]). S.
V. Konyagin and V. N. Temlyakov [8] gave a very useful abstract characterization of
greedy bases in a Banach spaces X as those which are unconditional and democratic,
the last meaning that for some constant C > 0∥∥∥∥∥∑

n∈A

xn
‖xn‖

∥∥∥∥∥ ≤ C
∥∥∥∥∥∑
n∈A′

xn
‖xn‖

∥∥∥∥∥
holds for all finite sets of indices A, A′ ⊂ N with the same cardinality.

The purpose of this paper is to study the efficiency of greedy algorithms with
respect higher rank Haar wavelet system in the spaces Lpw(R). We recall that, as M.
Izuki proved in [6], that the dyadic Haar wavelet system (N = 2) is greedy in Lp(Rn)
for 1 < p < ∞ if and only if w ∈ A2

p. Characterization of almost greedy uniformly
bounded orthonormal bases in rearrangement invariant Banach function spaces are
given [2].

By an N -adic (N ∈ N, N ≥ 2) lattice D we mean the collection of all N -adic
intervals, i. e. the collection of all intervals of the form [jN−k, (j + 1)N−k), j, k ∈ Z.
If I is an interval, we denote by |I| its length, and by χI its characteristic function.
If I is an N -adic interval [jN−k, (j + 1)N−k) then we denote by I(l) the ”children”
intervals of I : [jN−k + lN−(k+1), jN−k + (l + 1)N−(k+1)), l = 0, 1, · · ·, N − 1.

We denote by L2(R) the Hilbert space of square integrable (with respect to the
Lebesgue measure) complex-valued functions on R. We consider also Lpw(R) (1 ≤ p <
∞) spaces, where w ∈ L1

loc(R) is a positive function called a weight. The norm of a
function f : R→ C from the space Lpw(R) is

‖f‖Lp
w

=

(∫
R
|f(x)|pw(x)dx

)1/p

.

Given a function f, we denote by 〈f〉I its average over the interval I,

〈f〉I =
1

|I|

∫
I

f(x)dx.

We are concerned with a special class of weights, called ANp . We say that w ∈ ANp ,
1 < p <∞ if

Aw = sup
I∈D
〈w〉I〈w−1/(p−1)〉p−1

I <∞.
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We say that an N × N matrix is a Haar wavelet matrix of rank N if it is
unitary and the elements of the first row are all equal to 1/

√
N. Many classical

examples of matrices used in mathematics and signal processing are Haar matrices
of specific types. These include the discrete Fourier transform matrices, the discrete
cosine transform matrices, Hadamard and Walsh matrices, Radmacher matrices, and
Chebyshev matrices (see [12]).

Let H = (gki)
N−1
k,i=0 be a N ×N Haar matrix and ϕ = χ[0,1). Define the functions

ψ(k)(x) =
√
N

N−1∑
l=0

gklϕ(Nx− l) k = 1, · · ·, N − 1. (1.1)

The collection of functions

ψ
(k)
j,n = N j/2ψ(k)(N jx− n), j, n ∈ Z, k = 1, · · ·, N − 1

form an orthonormal basis of L2(R) (see [15]. Bellow we adopt the shorter notation

ψ
(k)
j,n = ψ

(k)
I , where I = [nN−j , (n + 1)N−j). The system X = {ψ(k)

I , I ∈ D, k =

1, · · ·, N − 1}, where the functions ψ(k), k = 1, · · ·, N − 1 are defined by (1.1), is
called the Haar wavelet system of rank N (corresponding to Haar matrix H). An
important example of a higher rank Haar wavelet system is the system obtained by
wavelet functions

ψ(k)(x) =
√
N

N−1∑
l=0

e2πikl/Nϕ(Nx− l), k = 1, · · ·, N − 1, (1.2)

where ϕ is characteristic function of the interval [0, 1).

Note that the wavelet system constructed by functions (1.2) became of interest
in connection with some problems of p-adic (non-Archimedean) mathematical physics
(see [10-11]).

For a Haar wavelet system X and f ∈ L1
loc(R), we define the Littlewood-Paley

operator by

Pf(x) =

(
N−1∑
k=1

∑
I∈D
| < f,ψ

(k)
I > |2||I|−1χI(x)

)1/2

,

where

< f,ψ
(k)
I >=

∫
R
f(x)ψ

(k)
I (x)dx.

The characterization of the spaces Lpw(R) (w ∈ Ap, 1 < p < ∞) using higher
rank Haar wavelet system X was given in [9].

Theorem 1.1. ([9]) Let X be a Haar wavelet system of rank N and 1 < p < ∞. The
following conditions are equivalent: 1) The system X is unconditional basis of space
Lpw(R); 2) There exist positive constants c and C such that c ‖f‖Lp

w
≤ ‖P (f)‖Lp

w
≤

C ‖f‖Lp
w
for all f ∈ Lpw(R); 3) w ∈ ANp .

The purpose of this paper is to prove following theorem.
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Theorem 1.2. Let X = {ψ(k)
I ; I ∈ D, k = 1, · · ·, N − 1} be a Haar wavelet system of

rank N. Suppose w ∈ ANp (1 < p < ∞). Then the system {ψ(k)
I /‖ψ(k)

I ‖p; I ∈ D, k =
1, · · ·, N − 1} forms a greedy basis in the space Lpw(R).

2. Proof of Theorem 1.2

For simplicity we shall denote the normalized characteristic function of a set of
indices Γ ⊂ {1, 2, · · ·, N − 1} × D by

1Γ =
∑

(k,I)∈Γ

ψkI
‖ψkI ‖p

.

Observe that X is democratic in Lpw(R) if and only if there exists a function
h : N→ R+ for which

1

C
h(Card(Γ)) ≤ ‖1Γ‖Lp

w
≤ C h(Card(Γ)), ∀Γ ⊂ {1, 2, · · ·, N − 1} × D (2.1)

for some C ≥ 1.
Observe that from Theorem 1.1 for a single element ψkI

‖ψkI ‖Lp
w
� w(I)1/p

|I|1/2
,

where w(I) =
∫
I
w(x)dx and the constants involved in � are independent of ψkI . Thus,

using again the expression of the norm ‖ · ‖Lp
w

it follows that

‖1Γ‖Lp
w
�

∥∥∥∥∥∥∥
 ∑

(k,I)∈Γ

χI
w(I)2/p

1/2
∥∥∥∥∥∥∥
Lp

w

�

∥∥∥∥∥∥∥
∑
I∈Γ̃

χI
w(I)2/p

1/2
∥∥∥∥∥∥∥
Lp

w

, (2.2)

where Γ̃ = {I : (k, I) ∈ Γ}. Note that Card(Γ̃) � Card(Γ).
Given a finite set of intervals Γ ⊂ D, we shall denote

SΓ(x) =

(∑
I∈Γ

χI(x)

w(I)2/p

)1/2

.

We ”linearize” the square function SΓ(x). Note that this lineralization procedure has
been used by other authors in the context of m−term approximation (see e.g. [3-5]).

For every x ∈ ∪I∈ΓI, we define Ix as the smallest (hence unique) interval in Γ
containing x. It is clear that

SΓ(x) ≥ χIx(x)

w(Ix)1/p
∀ x ∈ ∪I∈ΓI. (2.3)

We now show that the reverse inequality holds with some universal constant.
Note that if w ∈ ANp , then there exist C1, C2 > 0 and δ > 0 such that

C1(|A|/|I|)p ≤ w(A)/w(I) ≤ C2(|A|/|I|)δ (2.4)

for all I ∈ D and all subsets A ⊂ I (see [1]).
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If we enlarge the sum to include all N−adic intervals containing Ix we have

SΓ(x)2 =
∑
I∈Γ

χI(x)

w(I)2/p
≤

∑
I∈D, I⊃Ix

1

w(I)2/p
.

If Ix ⊂ I and |I| = N j |Ix|, then by (2.4) we have, w(I) ≥ C−1
2 w(Ix)N−jδ. Thus,

SΓ(x)2 ≤ C χIx(x)

w(Ix)2/p
.

This and (2.3) show that SΓ(x) � χIx (x)

w(Ix)1/p
.

Observe that SΓ(x) � SΓmin
(x), where Γmin denotes the family of minimal

intervals in Γ, that is, Γmin = {Ix : x ∈ ∪I∈ΓI}. Note that the intervals in Γmin are
not necessarily pairwise disjoint.

Given a fixed Γ ⊂ D, for any I ∈ Γ we define the set S(I) as the union of all
intervals from Γ strictly contained in I. We define also the set L(I) = I\S(I). It is
clear that I ∈ Γmin if and only if L(I) 6= ∅, and moreover ∪I∈ΓI = ∪I∈Γmin

L(I),

where the sets in the last union are pairwise disjoint. Therefore we can write

SΓ(x) �
∑

I∈Γmin

χL(I)(x)

w(I)1/p
(2.5)

where in the last sum there is a most one non-zero term.
Denote by ΓS the collection of all intervals I from Γ with property: |S(I)| >

(1 − 1/N)|I|. Denote by ΓL the collection of all intervals I from Γ with property:
|L(I)| ≥ |I|/N. Observe that ΓL ⊂ Γmin. We have

(1− 1/N)Card(Γ) ≤ Card(ΓL) ≤ Card(Γmin) ≤ Card(Γ), ∀Γ ⊂ D. (2.6)

Clearly Card(ΓL) ≤ Card(Γmin) ≤ Card(Γ). Thus, we need to prove only the in-

equality from the left hand side of (2.6). Given I ∈ D, we write I(k), k = 1, · · ·, N for
the N -adic intervals contained in I of size N−1|I|. For I ∈ ΓS and k = 1, · · ·, N let

I
(k)
0 be the biggest interval from Γ with I

(k)
0 ⊂ I(k). Note that the intervals I

(k)
0 exist

for every I ∈ ΓS ; otherwise, if for some k0 ∈ {1, · · ·, N} there is no interval from Γ
contained in I(k0) we have I(k0) ⊂ L(I) and then

|S(I)| ≤ |I\I(k0)| = (1− 1/N)|I|,
contradicting the definition of ΓS .

We claim that if I,R ∈ ΓS and I 6= R, then we necessarily have I
(k)
0 6= R

(l)
0 for

all 1 ≤ k, l ≤ N. This is trivially true if I ∩ R = ∅. Without loss of generality we

may assume I ⊂ R and also I ⊂ R(1). It follows that I
(k)
0 6= R

(l)
0 for all k = 1, · · ·, N

and all l = 2, · · ·, N. Moreover, as R
(1)
0 is the biggest interval in Γ contained in R(1)

and I ⊂ R1 we have that I ⊂ R
(1)
0 ⊂ R(1). Hence, for all k = 1, · · ·, N we have

I
(k)
0 ⊂ I ⊂ R

(1)
0 and thus I

(k)
0 6= R

(1)
0 . In short, to each I ∈ ΓS we have assigned N

different intervals in Γ and these are not associated to any other interval in ΓS . We
conclude that NCard(ΓS) ≤ Card(Γ). Consequently we have

Card(ΓL) = Card(ΓL)− Card(ΓS) ≥ Card(Γ)− Card(Γ)/N = (1− 1/N)Card(Γ).
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Note that |I|/N ≤ |L(I)| ≤ |I| and by (2.4) we have ‖χL(I)‖Lp
w
� ‖χI‖Lp

w
. Using

this estimate we can write

‖SΓ‖Lp
w
�

∥∥∥∥∥∥
∑

I∈Γmin

χL(I)(x)

w(I)1/p

∥∥∥∥∥∥
Lp

w

� (Card(Γmin))1/p � (Card(Γ))1/p. (2.7)

From (2.2), (2.7) one obtains the estimates (2.1), with h(n) = n1/p. �
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