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Semilinear operator equations and systems
with potential-type nonlinearities
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Abstract. The recent results of Precup [6] on the variational characterization of
the fixed points of contraction-type operators are applied in this paper to semilin-
ear operator equations and systems with linear parts given by positively defined
operators, and nonlinearities of potential-type. Mihlin’s variational theory is also
involved. Applications are given to elliptic semilinear equations and systems.
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1. Introduction

In this paper, firstly we are concerning with semilinear operator equation of the
type:

Au = J ′(u), (1.1)

where A is a positively defined linear operator and the nonlinear term is the Fréchet
derivative of a functional J . Secondly we discuss the semilinear operator system{

A1u = J11(u, v)

A2v = J22(u, v),
(1.2)

associated to two positively defined linear operators A1, A2 and to two functionals
J1, J2 where by J11(u, v), J22(u, v) we mean the Fréchet derivatives of J1(., v), J2(u, .),
respectively. Our special interest in such kind of equations and systems is represented
by semilinear elliptic equations of the type

−∆u = f(x, u), (1.3)

and correspondingly, by the following elliptic system{
−∆u = f(x, u, v)

−∆v = g(x, u, v).
(1.4)
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Recently in Precup [6], it was shown that the unique fixed point of a contraction T
on a Hilbert space, in case that T has the variational form

Tu = u− E′(u),

minimizes the functional E. Also, the unique fixed point (u∗, v∗) of a Perov contraction
(T1(u, v), T2(u, v)) with {

T1(u, v) = u− E11(u, v)

T2(u, v) = u− E22(u, v),

under some conditions, is a Nash-type equilibrium of the pair of functionals (E1, E2),
that is:

E1(u∗, v∗) = min
u
E1(u, v∗)

E2(u∗, v∗) = min
v
E2(u∗, v).

The goal of this paper is to apply the above results to the semilinear equa-
tion (1.1) and to the system (1.2). To this aim, we fully exploit Mihlin’s theory [4],
on linear operator equations. In particular we shall derive variational characteriza-
tions of the weak solutions of the Dirichlet problem for the equation (1.3) and the
system (1.4).

The paper is organized as follows: Section 2 is devoted to preliminaires, and
Section 3 contains the main results. More exactly, in Section 3.1 we discuss the case
of the equation (1.1), while in Section 3.2 we obtain theoretical results for the sys-
tem (1.2). Furthermore, in Section 3.3 we apply our first result to an elliptic equation
of the type (1.3) and in Section 3.4 we apply our second result to the system (1.4).

2. Preliminaries

2.1. Variational theory of linear operator equations

In this section we sketch Mihlin’s variational theory [4] (see also [5]) for linear
equations associated to positively defined operators. Let H be a Hilbert space with
the inner product denoted by (., .)H and the norm ‖.‖H . Let A : D(A) → H be a
symmetric, linear and densely defined operator. The operator A is said to be positively
defined, if for some γ > 0,

(Au, u)H ≥ γ2‖u‖2H , (2.1)

for every u ∈ D(A). For such a linear operator, we endow the linear subspace D(A)
of H with the bilinear functional:

(u, v)HA
= (Au, v)H ,

for every u, v ∈ D(A). One can verify that (., .)HA
is an inner product. Consequently,

D(A) endowed with the inner product (., .)HA
is a pre-hilbertian space. This space

may not be complete. The completion HA of (D(A), (., .)HA
) is called the energetic

space of A. By the construction, D(A) ⊂ HA ⊂ H with dense inclusions. We use the
same symbol (., .)HA

to denote the inner product of HA. The corresponding norm

‖u‖HA
=
√

(u, u)HA
,
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is called the energetic norm associated to A.
If u ∈ D(A), then ‖u‖HA

=
√

(Au, u)H and in view of (2.1) one has the Poincaré
inequality

‖u‖H ≤
1

γ
‖u‖HA

, (2.2)

for every u ∈ D(A). By density the above inequality extends to HA. We use this
inequality in order to identify the elements of HA with elements from H.

Let H ′A be the dual space of HA. If we identify H with its dual, then from
HA ⊂ H we have H ⊂ H ′A.

We attach to the operator A the following problem:

Au = f, u ∈ HA, (2.3)

where f ∈ H ′A. By a weak solution of (2.3) we mean an element u ∈ HA with:

(u, v)HA
= (f, v) (2.4)

for every v ∈ HA, where the notation (f, v) stands for the value of the functional f
on the element v. In case that f ∈ H, then (f, v) = (f, v)H . Notice that if u ∈ D(A),
then (2.4) becomes (Au, v)H = (f, v).

Theorem 2.1. For every f ∈ H ′A there exists a unique weak solution u ∈ HA of the
problem (2.3).

Proof. Consider the functional F : HA → R given by F (v) = (f, v), for v ∈ HA.
Obviously, F is linear. Also

|F (v)| = |(f, v)| ≤ ‖f‖H′
A
‖v‖HA

.

Hence, F is a linear and continuous functional. By Riesz’s theorem, there exists a
unique u ∈ HA such that F (v) = (u, v)HA

for all v ∈ HA. Clearly, u is the unique
weak solution of (2.3). �

This result allows us to define the solution operator A−1 associated to operator
A. Thus

A−1 : H ′A → HA ,

A−1f = u, (2.5)

where u is the unique weak solution of problem (2.3). The operator A−1 is well defined
by the above theorem and one has

(A−1f, v)HA
= (f, v) (2.6)

for all v ∈ HA and f ∈ H ′A.
The operator A−1 is an isometry between H ′A and HA, i.e:

‖A−1f‖HA
= ‖f‖H′

A
(2.7)

for all f ∈ H ′A. Indeed, in order to show that the inequality ‖A−1f‖HA
≤ ‖f‖H′

A
holds,

we replace v with A−1f in (2.6), to obtain (A−1f,A−1f)HA
= (f,A−1f). Therefore

‖A−1f‖2HA
= (f,A−1f) ≤ ‖f‖H′

A
‖A−1f‖HA

.
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Hence, ‖A−1f‖HA
≤ ‖f‖H′

A
. On the other hand, we have that

‖f‖H′
A

= sup
v∈HA

v 6=0

|(f, v)|
‖v‖HA

= sup
v∈HA

v 6=0

|(A−1f, v)HA
|

‖v‖HA

≤ sup
v∈HA

v 6=0

‖A−1f‖HA
‖v‖HA

‖v‖HA

= ‖A−1f‖HA
.

From the above inequalities, (2.7) follows.

We also mention Poincaré’s inequality for the inclusion H ⊂ H ′A,

‖u‖H′
A
≤ 1

γ
‖u‖H , u ∈ H. (2.8)

This can be proved as follows:

‖u‖H′
A

= sup
v∈HA

v 6=0

|(u, v)H |
‖v‖HA

≤ sup
v∈HA

v 6=0

‖u‖H‖v‖H
‖v‖HA

.

Now, using (2.2) we have:

sup
v∈HA

v 6=0

‖u‖H‖v‖H
‖v‖HA

≤ 1

γ
‖u‖H .

Therefore (2.8) holds.

Using (2.7) and (2.8) we see that if f ∈ H, then

‖A−1f‖HA
= ‖f‖H′

A
≤ 1

γ
‖f‖H . (2.9)

For a fixed f ∈ H ′A, one considers the functional:

E : HA → R,

E(u) =
1

2
‖u‖2HA

− (f, u).

The functional E is Fréchet differentiable and for any u, v ∈ HA, we have:

(E′(u), v) = lim
t→0

E(u+ tv)− E(u)

t
= (u, v)HA

− (f, v) = (u−A−1f, v)HA
. (2.10)

Now (2.10) shows that u ∈ HA is a weak solution of (2.3) if and only if u is a critical
point of E, i.e E′(u) = 0.

2.2. Variational properties for contraction-type operators

In this section and in the next one, we summarize the abstract results from the
paper Precup [6], concerning the variational characterization of the fixed points of
contraction-type operators. The first result refers to usual contractions on a Hilbert
space.
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Theorem 2.2. ( [6]) Let X be a Hilbert space and T : X → X be a contraction with
the unique fixed point u∗ (guaranteed by Banach contraction theorem). If there exists
a C1 functional E bounded from below such that

E′(u) = u− T (u) (2.11)

for all u ∈ X, then u∗ minimizes the functional E, i.e

E(u∗) = inf
X
E.

2.3. Nash-type equilibrium for Perov contractions

The next result from [6] is about systems of the type{
u = T1(u, v)

v = T2(u, v),
(2.12)

where u ∈ X1, v ∈ X2. In this case, instead of Lipschitz constants in the definition of
contractions, we use matrices.

A square matrix M ∈Mn×n(Rn) with nonnegative entries is said to be conver-
gent to zero if

Mk → 0, as k →∞.

There are known the following characterizations of the convergent to zero ma-
trices (see, e.g [7], [2]).

The following statements are equivalents:
(i) M is a matrix that is convergent to zero;
(ii) I −M is nonsingular and (I −M)−1 = I +M +M2 + . . . (where I stands for the
unit matrix of the same order as M);
(iii) the eigenvalues of M are located inside the unit disc of the complex plane;
(iv) I −M is nonsingular and (I −M)−1 has nonnegative entries.

Refering to the system (2.12), we assume that (Xi, |.|i) , i = 1, 2, are Hilbert
spaces identified to their duals and we denote by X = X1 × X2. Also, assume that
each equation of the system has a variational form, i.e. that there exist the continuous
functionals E1, E2 : X → R such that E1(., v) is Fréchet differentiable for every
v ∈ X2, E2(u, .) is Fréchet differentiable for every u ∈ X1, and{

E11(u, v) = u− T1(u, v)

E22(u, v) = v − T2(u, v).
(2.13)

Here E11(., v), E22(u, .) are the Fréchet derivatives of E1(., v) and E2(u, .), respec-
tively.

We say that the operator T : X → X, T (u, v) = (T1(u, v), T2(u, v)) is a Perov
contraction if there exists a matrix M = [mij ] ∈ M2,2 (R+) which is convergent to
zero such that the following matricial Lipschitz condition is satisfied[

|T1(u, v)− T1(u, v)|1
|T2(u, v)− T2(u, v)|2

]
≤M

[
|u− u|1
|v − v|2

]
(2.14)

for every u, u ∈ X1 and v, v ∈ X2.
The next theorem gives us a variational characterization of the unique fixed

point of a Perov contraction.
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Theorem 2.3. ( [6]) Assume that the above conditions are satisfied. In addition
assume that E1(., v) and E2(u, .) are bounded from below for every u ∈ X1, v ∈ X2,
and that there are R, c > 0 such that one of the following conditions holds:

E1(u, v) ≥ inf
X1

E1(., v) + c for |u|1 ≥ R and v ∈ X2, (2.15)

E2(u, v) ≥ inf
X2

E2(u, .) + c for |v|2 ≥ R and u ∈ X1.

Then the unique fixed point (u∗, v∗) of T (guaranteed by Perov’s fixed point theorem)
is a Nash-type equilibrium of the pair of functionals (E1, E2), i.e.

E1(u∗, v∗) = inf
X1

E1(., v∗)

E2(u∗, v∗) = inf
X2

E2(u∗, .).

3. Main results

The main results of the paper are concerning with variational properties of the
solutions of semilinear equations having the form

Au = J ′(u),

with a positively defined linear operator A, and of semilinear systems of the type:{
A1u = J11(u, v)

A2v = J22(u, v).

We shall benefit of Mihlin’s variational theory for linear operator equations and we
shall apply the general results presented in Sections 2.2 and 2.3.

3.1. Semilinear operator equations with potential-type nonlinearities

First we consider the case of semilinear equations.

Let A be a symmetric, linear and densely defined operator as in Section 2.1 and
let J : H → R be a C1(H) functional. We look for weak solutions u ∈ HA for the
semilinear equation

Au = J ′(u). (3.1)

This equation is equivalent to

u = A−1J ′(u), (3.2)

this is, to the fixed point equation:

u = T (u), (3.3)

where T := A−1J ′. We associate to the equation (3.1) the functional

E : HA → R, E(u) =
1

2
‖u‖2HA

− J(u). (3.4)

The main result of this section is the following theorem.
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Theorem 3.1. Under the above conditions on A and J , if in addition
J ′ : H → H satisfies the following conditions:

‖J ′(u)− J ′(v)‖H ≤ α‖u− v‖H (3.5)

for all u, v ∈ H, and

J(u) ≤ a‖u‖2HA
+ b, (3.6)

for all u ∈ HA, some α < γ2, a ≤ 1

2
and b ≥ 0, then there is a unique weak solution

u∗ ∈ HA of equation (3.1) such that

E(u∗) = inf
HA

E.

Proof. We apply Theorem 2.2 to X = HA, to the operator T : HA → HA, T := A−1J ′

and to the functional given by (3.4). Since J is of class C1 on H, it follows that E is
of class C1 on HA. Indeed,

(E′(u), v) = lim
t→0

E(u+ tv)− E(u)

t
= (u, v)HA

− (J ′(u), v)

= (u−A−1J ′(u), v)HA
.

Therefore, if we identify H ′A to HA, we have

E′(u) = u− T (u).

Hence the assumption (2.11) holds. Using (3.6) and a ≤ 1

2
, we obtain

E(u) =
1

2
‖u‖2HA

− J(u) ≥
(

1

2
− a
)
‖u‖2HA

− b ≥ −b > −∞,

for all u ∈ HA. Thus, E is bounded from below. It remains to show that T is a
contraction on HA. Using the hypothesis (3.5) and the Poincaré’s inequality (2.2),
for every u, v ∈ HA, we have

‖J ′(u)− J ′(v)‖H ≤ α‖u− v‖H

≤ α

γ
‖u− v‖HA

.

Since A−1 is an isometry between H ′A and HA, we then deduce that

‖T (u)− T (v)‖HA
= ‖A−1(J ′(u)− J ′(v))‖HA

= ‖J ′(u)− J ′(v)‖H′
A

≤ 1

γ
‖J ′(u)− J ′(v)‖H

≤ α

γ2
‖u− v‖HA

.

This shows that T is a contraction on HA, since α was assumed less than γ2.
Thus Theorem 2.2 applies and the result follows. �
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3.2. Semilinear operator systems with potential-type nonlinearities

This subsection is devoted to the study of systems of the type:{
A1u = J11(u, v)

A2v = J22(u, v),
(3.7)

where A1, A2 are symmetric, linear and densely defined operators on two Hilbert
spaces H1, H2. Denote H = H1×H2. Also, J1, J2 : H → R are two C1(H) functionals
and by J11(u, v) we mean the partial derivative of J1 with respect to u and by J22(u, v)
the partial derivative of J2 with respect to v. We express the above system as a fixed
point equation of the type

w = T (w) (3.8)

for the nonlinear operator T = (T1, T2), where w = (u, v), T1 : HA1
× HA2

→ HA1
,

T1(u, v) = A−1
1 J11 and T2 : HA1

×HA2
→ HA2

, T2(u, v) = A−1
2 J22. Hence (3.8) can

be rewritten explicitly as follows{
u = T1(u, v)

v = T2(u, v).
(3.9)

This vectorial structure of (3.8) allows the two terms T1 and T2 to behave differently
one from another and also with respect to the two variables. Also, this requires the
use of matrices instead of constants, when Lipschitz conditions are imposed to T1 and
T2. Each component equation of (3.9) has a variational form. We associate to the
equations of (3.9) the functionals E1, E2 : HA1 ×HA2 → R defined by

E1(u, v) =
1

2
‖u‖2HA1

− J1(u, v) (3.10)

E2(u, v) =
1

2
‖v‖2HA2

− J2(u, v).

One has

E11(u, v) = u− T1(u, v) (3.11)

E22(u, v) = v − T2(u, v),

where E11(., v), E22(u, .) are the Fréchet derivatives of E1(., v) and E2(u, .), respec-
tively.

The main result of this subsection is the following theorem.

Theorem 3.2. Let the above conditions on A1, A2 and J1, J2 hold. In addition assume
that J11 : H1 ×H2 → H1 and J22 : H1 ×H2 → H2 satisfy the following conditions:
(i) there exist mij ∈ R+ (i, j = 1, 2) such that

‖J11(u, v)− J11(ū, v̄)‖H1
≤ m11‖u− ū‖H1

+m12‖v − v̄‖H2
(3.12)

‖J22(u, v)− J22(ū, v̄)‖H2
≤ m21‖u− ū‖H1

+m22‖v − v̄‖H2
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for all u, ū ∈ H1 and v, v̄ ∈ H2, and the matrix

M =


m11

γ2
1

m12

γ2
1m21

γ2
2

m22

γ2
2

 (3.13)

is convergent to zero;
(ii)

J1(u, v) ≤ a1‖u‖2HA1
+ b1 (3.14)

J2(u, v) ≤ a2‖v‖2HA2
+ b2

for all u ∈ HA1
, v ∈ HA2

and some a1, a2 ≤
1

2
and b1, b2 ≥ 0;

(iii) there are R, c > 0 such that one of the following conditions holds:

E1(u, v) ≥ inf
HA1

E1(., v) + c for ‖u‖HA1
≥ R and v ∈ HA2

, (3.15)

E2(u, v) ≥ inf
HA2

E2(u, .) + c for ‖v‖HA2
≥ R and u ∈ HA1 .

Then there is a unique solution (u∗, v∗) ∈ HA1
×HA2

of the system (3.7) which is a
Nash-type equilibrium of the pair of functionals (E1, E2), i.e:

E1(u∗, v∗) = inf
HA1

E1(., v∗) (3.16)

E2(u∗, v∗) = inf
HA2

E2(u∗, .).

Proof. We apply the Theorem 2.3 to X1 = HA1 , and X2 = HA2 . Using (3.12) we
show that T is a Perov contraction. Indeed, for (u, v) ∈ X we have

‖T1(u, v)− T1(ū, v̄)‖HA1
= ‖A−1

1 (J11(u, v)− J11(ū, v̄))‖HA1

= ‖J11(u, v)− J11(ū, v̄)‖H′
A1

≤ 1

γ1
‖J11(u, v)− J11(ū, v̄)‖H1

≤ m11

γ1
‖u− ū‖H1

+
m12

γ1
‖v − v̄‖H2

≤ m11

γ2
1

‖u− ū‖HA1
+
m12

γ2
1

‖v − v̄‖HA2
.

A similar inequality holds for T2. Using (3.14) and a1, a2 ≤
1

2
we deduce that

E1(u, v) =
1

2
‖u‖2HA1

− J1(u, v) ≥
(

1

2
− a1

)
‖u‖2HA1

− b1 ≥ −b1 > −∞.

Thus, E1 is bounded from below. Analogously, E2 is bounded from below. Thus
Theorem 2.3 is applicable and the result yields. �
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3.3. Application to elliptic equations

In this subsection we present an application of Theorem 3.1 to elliptic equations.
More exactly, we deal with the Dirichlet problem:{

−∆u = f(x, u) in Ω

u = 0 on ∂Ω .
(3.17)

Here Ω is a bounded open subset of Rn, f : Ω × R → R and ∆ is the Laplacian.
In this specific case H = L2(Ω) and A = −∆ with D(A) = H2(Ω) ∩ H1

0 (Ω). Also,
HA = H1

0 (Ω) with the inner product

(u, v)H1
0

=

∫
Ω

∇u∇vdx

and the norm

‖u‖H1
0

=

(∫
Ω

|∇u|2dx

) 1
2

.

The functional J : L2(Ω)→ R is given by

J(u) =

∫
Ω

F (x, u(x))dx,

where F (x, t) =

∫ t

0

f(x, s)ds. Also γ =
√
λ1, where λ1 is the first eigenvalue of the

Dirichlet problem for −∆ (see, e.g [8], [1], [3]). Hence the energy functional associated
to (3.17) is the following one:

E : H1
0 (Ω)→ R,

E(u) =

∫
Ω

(
1

2
|∇u|2 − F (x, u(x))

)
dx,

Problem (3.17) is equivalent to the fixed point equation:

u = (−∆)−1Nf (u), (3.18)

where Nf is the Nemytskii superposition operator assumed to act from L2(Ω) to itself,
Nf (u)(x) = f(x, u(x)) ( see, e.g [8], [9]). Notice that the functional J is C1 on L2(Ω),
J ′ = Nf and

E′(u) = u− (−∆)−1Nf (u).

Theorem 3.3. Assume that the folllowing conditions are satisfied:
(i) f satisfies the Carathéodory conditions, i.e
f(., y) : Ω→ R is measurable for each y ∈ R and f(x, .) : R→ R is
continuous for a.e x ∈ Ω;
(ii) f(., 0) = 0 on Ω;
(iii) exists α ∈ [0, λ1) such that

|f(x, u)− f(x, ū)| ≤ α|u− ū|
for all u, ū ∈ R and a.e x ∈ Ω.
Then (3.17) has a unique weak solution u∗ ∈ H1

0 (Ω) and

E(u∗) = inf
H1

0 (Ω)
E.
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Proof. We shall apply Theorem 3.1. From (iii) we deduce that

‖Nf (u)−Nf (v)‖L2 ≤ α‖u− v‖L2

for u, v ∈ L2(Ω). Hence (3.5) holds. Also, since

|f(x, t)| = |f(x, t)− f(x, 0)| ≤ α|t|,

for u ∈ H1
0 (Ω), one has

|J(u)| ≤
∫

Ω

|F (x, u(x))|dx ≤
∫

Ω

∣∣∣∣∣∣∣
u(x)∫
0

f(x, s)ds

∣∣∣∣∣∣∣dx
≤
∫

Ω

∣∣∣∣∣∣∣
u(x)∫
0

|f(x, s)|ds

∣∣∣∣∣∣∣dx ≤
∫

Ω

∣∣∣∣∣∣∣
u(x)∫
0

α|s|ds

∣∣∣∣∣∣∣ dx
=
α

2

∫
Ω

u(x)2dx =
α

2
‖u‖2L2 ≤

α

2λ1
‖u‖2H1

0
.

Therefore (3.6) holds with a =
α

2λ1
≤ 1

2
and b = 0. Thus Theorem 3.1 can be applied

and the result follows. �

3.4. Application to elliptic systems

Let Ω be a bounded open subset of Rn and f, g : Ω× R2 → R. We consider the
following system: 

−∆u = f(x, u, v) in Ω

−∆v = g(x, u, v) in Ω

u = 0 on ∂Ω

v = 0 on ∂Ω .

(3.19)

This problem is equivalent to the system:{
u = (−∆)−1f(., u, v)

v = (−∆)−1g(., u, v).

Also a pair (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) is a solution of (3.19) if and only if{
E11(u, v) = 0

E22(u, v) = 0,
(3.20)

where E1, E2 : H1
0 (Ω)×H1

0 (Ω)→ R are defined by

E1(u, v) =
1

2
‖u‖2

H1
0
−
∫
Ω

F (x, u(x), v(x))dx (3.21)

E2(u, v) =
1

2
‖v‖2

H1
0
−
∫
Ω

G(x, u(x), v(x))dx,
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and

F (x, t, s) =

t∫
0

f(x, τ, s)dτ, G(x, t, s) =

s∫
0

g(x, t, τ)dτ. (3.22)

The functionals E1(., v) and E2(u, .) are C1 for any fixed u and v,
respectively, and

E11(u, v) = u− (−∆)−1f(., u, v) (3.23)

E22(u, v) = v − (−∆)−1g(., u, v).

Here again E11 (., v) , E22 (u, .) are the Fréchet derivatives of E1 (., v) and E2 (u, .) ,
respectively.

We shall say that a function H : Ω×R→ R is of coercive type if the functional
Φ : H1

0 (Ω)→ R,

Φ(v) =
1

2
‖v‖2H1

0
−
∫

Ω

H(x, v(x))dx (3.24)

is coercive, i.e Φ(v)→ +∞ as ‖v‖H1
0
→∞.

The main result of this subsection is the following theorem.

Theorem 3.4. Let f, g : Ω × R2 → R, f = f(x, y, z), g = g(x, y, z) satisfy the
Carathédory conditions, i.e f(., y, z), g(., y, z) are measurable for each (y, z) ∈ R2 and
f(x, .), g(x, .) are continuous for a.e x ∈ Ω. Assume that f(., 0, 0), g(., 0, 0) ∈ L2(Ω)
and that the following conditions hold:
(i) there exist mij ∈ R+ (i, j = 1, 2) with:{

|f(x, u, v)− f(x, ū, v̄)| ≤ m11|u− ū|+m12|v − v̄|
|g(x, u, v)− g(x, ū, v̄)| ≤ m21|u− ū|+m22|v − v̄|,

(3.25)

for all u, ū, v, v̄ ∈ R and a.e x ∈ Ω;
(ii) there exist H,H1 : Ω× R→ R with

H1(x, v) ≤ G(x, u, v) ≤ H(x, v), (3.26)

for all u, v ∈ R and a.e. x ∈ Ω, where H and H1 are of coercive type.
If the matrix

M =
1

λ1

[
m11 m12

m21 m22

]
(3.27)

is convergent to zero, then (3.19) has a unique solution (u∗, v∗) ∈ H1
0 (Ω) × H1

0 (Ω)
which is a Nash-type equilibrium of the pair of energy functionals (E1, E2) associated
to the problem (3.19).

Proof. We shall apply Theorem 3.2. Here H1 = H2 = L2(Ω), A1 = A2 = −∆ and
J1, J2 : H → R are given by

J1(u, v) =

∫
Ω

F (x, u(x), v(x))dx, J2(u, v) =

∫
Ω

G(x, u(x), v(x))dx.
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Also γ1 = γ2 =
√
λ1. Using (3.25), in the same way as for a single equation, we have

that E1(., v) and E2(u, .) are bounded from below for any fixed u and v. In addition,
we use the second inequality from (3.26) to obtain:

E2(u, v) =
1

2
‖v‖2H1

0
−
∫
Ω

G(x, u(x), v(x))dx

≥ 1

2
‖v‖2H1

0
−
∫

Ω

H(x, v(x))dx =: Φ(v).

Since H is of coercive type, Φ is bounded from below. Hence

E2(u, v) ≥ Φ(v) ≥ c > −∞,

for all u, v ∈ H1
0 (Ω), that is E2(., v) is bounded from below uniformly with respect to

v. Denote

Φ1(v) =
1

2
‖v‖2

H1
0
−
∫

Ω

H1(x, v(x))dx.

Since Φ is coercive, for each λ > 0, there is Rλ such that Φ(v) ≥ λ for ‖v‖H1
0
≥ Rλ.

Take c > 0 and λ = inf Φ1 + c. Then for ‖v‖H1
0
≥ Rλ and any u ∈ H1

0 (Ω) we have

E2(u, v) ≥ Φ(v) ≥ inf Φ1 + c.

From the first inequality of (3.26), we have Φ1(v) ≥ E2(u, v). It follows that

E2(u, v) ≥ inf E2(u, .) + c

for ‖v‖H1
0
≥ Rλ and all u ∈ H1

0 (Ω). This shows that E2 satisfies the condition (3.15).
Furthermore,

‖J11(u, v)− J11(ū, v̄)‖L2 = ‖f(., u, v)− f(., ū, v̄)‖L2

≤ m11‖u− ū‖L2
+m12‖v − v̄‖L2

,

and similarly

‖J22(u, v)− J22(ū, v̄)‖L2 = ‖g(., u, v)− g(., ū, v̄)‖L2

≤ m21‖u− ū‖L2
+m22‖v − v̄‖L2

.

Therefore the hypothesis of Theorem 3.2 are fulfilled and the result follows. �
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