Some fixed point theorems on cartesian product in terms of vectorial measures of noncompactness

Ioan A. Rus and Marcel-Adrian Şerban

Abstract. In this paper we study a system of operatorial equations in terms of some vectorial measures of noncompactness. The basic tools are the cartesian hull of a subset of a cartesian product and some classical fixed point principle.

Mathematics Subject Classification (2010): 47H10, 54H25.

Keywords: Matrix convergent to zero, cartesian hull, vectorial measure of noncompactness, operator on cartesian product, fixed point principle.

1. Introduction

Let X_i , $i = \overline{1, m}$, be some nonempty sets, $X := \prod_{i=1}^m X_i$ and $f : X \to X$ be an operator. In this case the fixed point equation

$$x = f(x),$$

where $x = (x_1, \ldots, x_m)$ and $f = (f_1, \ldots, f_m)$ takes the following form

$$\begin{cases} x_1 = f_1(x_1, \dots, x_m) \\ \vdots \\ x_m = f_m(x_1, \dots, x_m) \end{cases}$$

In this paper we shall study the above system of operatorial equation in the case when X_i , $i = \overline{1, m}$, are metric spaces. In order to do this, we introduce the cartesian hull and vectorial measure of noncompactness.

2. Preliminaries

Let (X, d) be a metric space. In this paper we shall use the following notations: $\mathcal{P}(X) = \{Y \mid Y \subset X\}$ $P(X) = \{Y \subset X \mid Y \text{ is nonempty}\}, P_b(X) := \{Y \in P(X) \mid Y \text{ is bounded}\},$ $P_{cl}(X) := \{Y \in P(X) \mid Y \text{ is closed}\}, P_{b,cl}(X) := P_b(X) \cap P_{cl}(X),$ $P_{cp}(X) := \{Y \in P(X) | Y \text{ is compact}\}.$ If X is a Banach space then $P_{cv}(X) := \{Y \in P(X) | Y \text{ is convex}\}$ Let $f : X \to X$ is an operator. Then, we denote by $F_f := \{x \in X | x = f(x)\}$ the fixed point set of the operator f.

Definition 2.1. A matrix $S \in \mathbb{R}^{m \times m}_+$ is called a matrix convergent to zero iff $S^k \to 0$ as $k \to +\infty$.

Theorem 2.2. (see [2], [16], [18], [20], [23]) Let $S \in \mathbb{R}^{m \times m}_+$. The following statements are equivalent:

- (i) S is a matrix convergent to zero;
- (ii) $S^k x \to 0$ as $k \to +\infty$, $\forall x \in \mathbb{R}^m$;
- (iii) $I_m S$ is non-singular and

$$(I_m - S)^{-1} = I_m + S + S^2 + \dots$$

- (iv) $I_m S$ is non-singular and $(I_m S)^{-1}$ has nonnegative elements;
- (v) $\lambda \in \mathbb{C}$, det $(S \lambda I_m) = 0$ imply $|\lambda| < 1$;
- (vi) there exists at least one subordinate matrix norm such that ||S|| < 1.

The matrices convergent to zero were used by A. I. Perov [15] to generalize the contraction principle in the case of generalized metric spaces with the metric taking values in the positive cone of \mathbb{R}^m . For fixed point principle in such spaces see [16], [20], [22], [23].

3. Closure operators. Cartesian hull of a subset of a cartesian product

Let X be a nonempty set. By definition an operator $\eta : \mathcal{P}(X) \to \mathcal{P}(X)$ is a closure operator if:

- (i) $Y \subset \eta(Y), \forall Y \in \mathcal{P}(X);$
- (ii) $Y, Z \in \mathcal{P}(X), Y \subset Z \Longrightarrow \eta(Y) \subset \eta(Z);$
- (iii) $\eta \circ \eta = \eta$.

In a real linear space X, the following operators are closure operators:

- $\eta : \mathcal{P}(X) \to \mathcal{P}(X), \ \eta(Y) := \text{linear hull of } Y;$
- $\eta : \mathcal{P}(X) \to \mathcal{P}(X), \ \eta(Y) := \text{affine hull of } Y;$
- $\eta : \mathcal{P}(X) \to \mathcal{P}(X), \ \eta(Y) := coY := convex hull of Y;$

In a topological space X, the operator $\eta : \mathcal{P}(X) \to \mathcal{P}(X)$ defined by $\eta(Y) := \overline{Y}$ is a closure operator. In a linear topological space X, the operator $\eta : \mathcal{P}(X) \to \mathcal{P}(X)$ defined by $\eta(Y) := \overline{co}Y := \overline{coY}$ is a closure operator.

The main property of a closure operator is given by:

Lemma 3.1. Let X be a nonempty set and $\eta : \mathcal{P}(X) \to \mathcal{P}(X)$ a closure operator. Let $(Y_i)_{i \in I}$ be a family of subsets of X such that $\eta(Y_i) = Y_i$ for all $i \in I$. Then

$$\eta\left(\bigcap_{i\in I}Y_i\right)=\bigcap_{i\in I}Y_i.$$

In our considerations, in this paper, we need the following example of closure operator.

Let X_i , $i = \overline{1, m}$, be some nonempty sets and $X := \prod_{i=1}^m X_i$ their cartesian product. Let us denote by π_i , $i = \overline{1, m}$, the canonical projection on X_i , i.e.,

$$\pi_i: X \to X_i, \ (x_1, \dots, x_m) \mapsto x_i, \ i = \overline{1, m}.$$

Definition 3.2. Let $Y \subset X$ be a subset of X. By the cartesian hull of Y we understand the subset

$$caY := \pi_1(Y) \times \ldots \times \pi_m(Y).$$

Remark 3.3. In the paper [11] the set caY is denoted by [Y].

Lemma 3.4. The operator

$$ca: \mathcal{P}(X) \to \mathcal{P}(X), Y \mapsto caY$$

is a closure operator.

Proof. We remark that:

- 1) $Y \subset caY$, for all $Y \in \mathcal{P}(X)$;
- 2) $Y, Z \in \mathcal{P}(X), Y \subset Z$ then $caY \subset caZ$;
- 3) ca(caY) = caY, for all $Y \in \mathcal{P}(X)$.

So, $ca: \mathcal{P}(X) \to \mathcal{P}(X)$ is a closure operator.

Remark 3.5. caY = Y if and only if Y is a cartesian product, i.e., there exists $Y_i \subset X_i$, $i = \overline{1, m}$, such that $Y = \prod_{i=1}^{m} Y_i$.

We denote by $P_{ca}(X) := \{Y \in P(X) | Y \text{ is cartesian set } \}.$

Remark 3.6. From Lemma 3.1 and 3.4 it follows that the intersection of an arbitrary family of cartesian sets is a cartesian set.

Lemma 3.7. Let $Y \subset X$ be a nonempty cartesian product subset of X and $f : Y \to Y$ an operator. Then $f(caf(Y)) \subset caf(Y)$.

Proof. We remark that $f(Y) \subset ca f(Y) \subset Y$.

The above lemmas will be basic for our proofs.

4. Measures of noncompactness. Examples

Let (X, d) be a complete metric space and $\delta : P_b(X) \to \mathbb{R}_+$

$$\delta(Y) := \sup\{d(a,b) \mid a, b \in Y\}.$$

be the diameter functional on X. The Kuratowski measure of noncompactness on X is defined by $\alpha_K : P_b(X) \to \mathbb{R}_+$

$$\alpha_K(Y) := \inf \left\{ \varepsilon > 0 | Y = \bigcup_{i=1}^m Y_i, \ \delta(Y_i) \le \varepsilon, \ m \in \mathbb{N}^* \right\}$$

The Hausdorff measure of noncompactness on X is defined by $\alpha_H: P_b(X) \to \mathbb{R}_+$

 $\alpha_H(Y) := \inf \{ \varepsilon > 0 | Y \text{ can be covered by a finitely many balls of radius} \le \varepsilon \}.$

If we denote by α one of the functionals α_K and α_H then we have (see [1], [3], [5], [8], [19], [22], [4], ...):

Theorem 4.1. The functional α has the following properties:

- (i) $\alpha(A) = 0 \Longrightarrow \overline{A}$ is compact;
- (ii) $\alpha(A) = \alpha(\overline{A}), \forall A \in P_b(X);$
- (iii) $A \subset B, A, B \in P_b(X) \Longrightarrow \alpha(A) \le \alpha(B);$
- (iv) If $A_n \in P_{b,cl}(X)$, $A_{n+1} \subset A_n$ and $\alpha(A_n) \to 0$ as $n \to +\infty$ then $A_{\infty} := \bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$ and $\alpha(A_{\infty}) = 0$. In the case of a Banach space we have that

(v) $\alpha(coA) = \alpha(A), \forall A \in P_h(X).$

Let (X, d) be a complete metric space. By definition (see [19]), a functional

$$\alpha: P_b\left(X\right) \to \mathbb{R}_+$$

is called an abstract measure of noncompactness on X iff:

- (i) $\alpha(A) = 0 \Longrightarrow \overline{A}$ is compact;
- (ii) $\alpha(A) = \alpha(\bar{A})$, for all $A \in P_b(X)$;
- (iii) $A \subset B, A, B \in P_b(X) \Longrightarrow \alpha(A) \le \alpha(B);$
- (iv) If $A_n \in P_{b,cl}(X)$, $A_{n+1} \subset A_n$ and $\alpha(A_n) \to 0$ as $n \to +\infty$ then $A_{\infty} := \bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$ and $\alpha(A_{\infty}) = 0$.

In the case of a Banach space we add to these axioms the following:

(v) $\alpha(coA) = \alpha(A)$, for all $A \in P_b(X)$.

We remark that the Kuratowski's measure of noncompactness, α_K , the Hausdorff's measure of noncompactness, α_H and the diameter functional, δ , are examples of measure of noncompactness in the sense of the above definition (see [3], [7], [8], [9], [12], [19], ...). For other notions of abstract measures of noncompactness see [5], [14], [19] ...

5. Vectorial measures of noncompactness on a cartesian product of some metric spaces

Let (X_i, d_i) , $i = \overline{1, m}$, be some complete metric spaces and let $X := \prod_{i=1}^m X_i$ their cartesian product. We consider on X the cartesian product topology. By definition a subset Y of X is a bounded subset if $\pi_i(Y) \in P_b(X_i)$, $i = \overline{1, m}$. Let α^i be a measure of noncompactness on X_i , $i = \overline{1, m}$. We consider on $P_b(X)$ the following vectorial functional

$$\alpha: P_b(X) \to \mathbb{R}^m_+, \ \alpha(Y) := \left(\alpha^1(\pi_1(Y)), \dots, \alpha^m(\pi_m(Y))\right)^T$$

We have:

Lemma 5.1. The functional α has the following properties:

(i) $Y \in P_b(X), \alpha(Y) = 0 \Longrightarrow \overline{caY}$ is compact; (i') $\alpha(caY) = \alpha(Y)$, for all $Y \in P_b(X)$; (ii) $\alpha(\overline{Y}) = \alpha(Y)$, for all $Y \in P_b(X)$; (iii) $Y \subset Z, Y, Z \in P_b(X) \Longrightarrow \alpha(Y) \le \alpha(Z)$; (iv) $Y_n \in P_{b,cl,ca}(X), Y_{n+1} \subset Y_n, \alpha(Y_n) \to 0$ as $n \to +\infty$ then $Y_{\infty} := \bigcap_{n \in \mathbb{N}} Y_n \neq \emptyset$, $Y_{\infty} \in P_{b,cl,ca}(X)$ and $\alpha(Y_{\infty}) = 0$. If $(X_i, |\cdot|_i), i = \overline{1, m}$, are Banach spaces then we have

(v)
$$\alpha(coY) = \alpha(Y)$$
, for all $Y \in P_b(X)$.

Proof. The proof follows from the definition of α and from the definition of α^i . \Box

If we take $\alpha^i := \alpha_K^i$, $i = \overline{1, m}$, we have, by definition, the Kuratowski vectorial measure of noncompactness and if we take $\alpha^i := \alpha_H^i$, $i = \overline{1, m}$, we have the Hausdorff vectorial measure of noncompactness.

6. Fixed point theorems in terms of vectorial measures of noncompactness

Definition 6.1. Let $S \in \mathbb{R}^{m \times m}_+$ be a matrix convergent to zero and (X_i, d_i) , $i = \overline{1, m}$, complete metric spaces. Let α^i be a measure of noncompactness on X_i , $i = \overline{1, m}$, and α the corresponding vectorial measure of noncompactness on $X := \prod_{i=1}^m X_i$. An

operator $f: X \to X$ is by definition an (α, S) -contraction iff:

(i) $A \in P_b(X) \Longrightarrow f(A) \in P_b(X);$

(ii) $\alpha(f(A)) \leq S\alpha(A)$, for all $A \in P_{b,ca}(X)$ such that $f(A) \subset A$.

If the condition (*ii*) is satisfied for all $A \in P_{b,ca}(X)$ then f is called a strict (α, S) contraction.

Lemma 6.2. Let $Y \in P_{b,cl,ca}(X)$. Let $f: Y \to Y$ be an operator such that:

- (i) f is continuous;
- (ii) f is an (α, S) -contraction.

Then, there exists $A^* \in P_{b,cl,ca}(Y)$ such that $f(A^*) \subset A^*$ and $\alpha(A^*) = 0$.

Proof. Let $Y_1 := \overline{caf(Y)}$, $Y_2 := \overline{caf(Y_1)}$, ..., $Y_{n+1} := \overline{caf(Y_n)}$, It is clear that $Y_n \in P_{b,cl,ca}(Y)$, $Y_{n+1} \subset Y_n$ and $f(Y_n) \subset Y_n$. Moreover, from Lemma 5.1 and (*ii*) we have

$$\alpha(Y_n) = \alpha\left(\overline{caf(Y_{n-1})}\right) = \alpha(f(Y_{n-1})) \le S\alpha(Y_{n-1}) \le \ldots \le S^n\alpha(Y),$$

therefore, $\alpha(Y_n) \to 0$ as $n \to +\infty$. From these we have that

$$Y_{\infty} := \bigcap_{n \in \mathbb{N}} Y_n \neq \emptyset, \ Y_{\infty} \in P_{b,cl,ca}(Y), \ f(Y_{\infty}) \subset Y_{\infty} \text{ and } \alpha(Y_{\infty}) = 0.$$

So, $A^* := Y_{\infty}$.

In the case of Banach spaces, if $Y \in P_{b,cl,ca,co}(Y)$ then we have in addition that $coY_{\infty} = Y_{\infty}$. In the construction of the sequence set $(Y_n)_{n \in \mathbb{N}^*}$ we take $Y_{n+1} := \overline{co(caf(Y_n))}$.

From Lemma 6.2 we have the following basic fixed point principle in the case of metric spaces:

Theorem 6.3. Let (X_i, d_i) , $i = \overline{1, m}$, be some complete metric spaces and let $X := \prod_{i=1}^{m} X_i$ their cartesian product. Let $Y \in P_{b,cl,ca}(X)$ and $f: Y \to Y$ such that:

- (i) f is continuous;
- (ii) f is an (α, S) -contraction;
- (iii) $A \in P_{b,cl,ca}(Y), \alpha(A) = 0$ and $f(A) \subset A$ implies that $F_f \cap A \neq \emptyset$. Then
- (a) $F_f \neq \emptyset$;
- (b) $\alpha(F_f) = 0.$

Proof. (a) From Lemma 6.2, there exists $A^* \in P_{b,cl,ca}(Y)$ such that $f(A^*) \subset A^*$ and $\alpha(A^*) = 0$ and from condition (*iii*) it follows that $F_f \cap A^* \neq \emptyset$, i.e., $F_f \neq \emptyset$.

(b) We remark that $F_f \subset A^* = Y_\infty$ (see the proof of Lemma 6.2) and

$$0 \le \alpha \left(F_f \right) \le \alpha \left(Y_\infty \right) = 0.$$

If we take $\alpha := \delta$, the vectorial diameter functional, then from Theorem 6.3 we have:

Theorem 6.4. Let (X_i, d_i) , $i = \overline{1, m}$, be some complete metric spaces and $X := \prod_{i=1}^{m} X_i$. Let $Y \in P_{b,cl,ca}(X)$ and $f: Y \to Y$ such that:

- (i) f is continuous;
- (ii) f is an (δ, S) -contraction. Then $F_f = \{x^*\}.$

Proof. From Lemma 6.2, there exists $A^* \in P_{b,cl,ca}(Y)$ such that $f(A^*) \subset A^*$ and $\delta(A^*) = 0$. From $\delta(A^*) = 0$ we have that $A^* = \{x^*\}$ and $f(A^*) \subset A^*$ implies that $x^* \in F_f$. Also, from Theorem 6.3 we have that $\delta(F_f) = 0$, so $F_f = \{x^*\}$.

In the case of Banach spaces we have:

Theorem 6.5. Let $(X_i, |\cdot|_i)$, $i = \overline{1, m}$, be Banach spaces, $X := \prod_{i=1}^m X_i$ and $Y \in P_{b,cl,cv,ca}(X)$. Let $f: Y \to Y$ be such that:

- (i) f is continuous;
- (ii) f is an (α, S) -contraction. Then
- (a) $F_f \neq \emptyset$;

(b)
$$\alpha(F_f) = 0.$$

Proof. Let $Y_1 := \overline{co(caf(Y))}, Y_2 := \overline{co(caf(Y_1))}, ..., Y_{n+1} := \overline{co(caf(Y_n))}, n \in \mathbb{N}^*$. We remark that $Y_n \in P_{b,cl,cv,ca}(Y), f(Y_n) \subset Y_n, Y_{n+1} \subset Y_n$ and

$$\alpha(Y_n) = \alpha\left(\overline{co(caf(Y_{n-1}))}\right) = \alpha(f(Y_{n-1})) \le S\alpha(Y_{n-1}) \le \ldots \le S^n\alpha(Y),$$

therefore, $\alpha(Y_n) \to 0$ as $n \to +\infty$. These imply that

$$Y_{\infty} := \bigcap_{n \in \mathbb{N}} Y_n \neq \emptyset, \ Y_{\infty} \in P_{b,cl,cv,ca}\left(Y\right), \ f\left(Y_{\infty}\right) \subset Y_{\infty} \text{ and } \alpha\left(Y_{\infty}\right) = 0$$

Since Y_{∞} is a compact convex subset in the Banach space $X = \prod_{i=1}^{m} X_i$ (we take, for example, on X the norm $|x|_{\infty} = \max\{|x_1|, \dots, |x_m|\}$, which generates the cartesian product topology on X), from Schauder's fixed point theorem we have that $F_f \neq \emptyset$. But $F_f \subset Y_{\infty}$ is a closed subset of the compact subset Y_{∞} , so, F_f is a nonempty compact subset.

For the operator $f: \prod_{i=1}^{m} X_i \to \prod_{i=1}^{m} X_i$, in the terms of vectorial norm, we have:

Theorem 6.6. Let $(X_i, |\cdot|_i)$, $i = \overline{1, m}$, be Banach spaces, $X := \prod_{i=1}^m X_i$, $||x|| := (|x_1|_1, \ldots, |x_m|_m)^T$, and $f: X \to X$ such that:

- (i) f is continuous;
- (ii) f is an (α, S) -contraction;
- (iii) there exists T ∈ ℝ^{m×m}₊ and a vector M ∈ ℝ^m₊ such that:
 (1) T is a matrix convergent to zero;
 - (2) $||f(x)|| \le T ||x|| + M$, for all $x \in X$. Then
- (a) $F_f \neq \emptyset$;
- (b) $\alpha(F_f) = 0.$

Proof. Let $R = (R_1, \ldots, R_m)^T \in \mathbb{R}^m_+$, with $R_i > 0, i = \overline{1, m}$. We denote by $D_R := \{x \in X \mid ||x|| \le R\}$.

It is clear that $D_R \in P_{b,cl,ca,co}(X)$.

First we shall prove that there exists $R^0 \in \mathbb{R}^m_+$ such that

 $f(D_R) \subset D_R, \ \forall R \in \mathbb{R}^m_+, \ R \ge R^0.$

Let $R \in \mathbb{R}^m_+$ and $x \in D_R$, from $(iii)_{(2)}$ we have

$$\|f(x)\| \le TR + M.$$

To prove that $f(D_R) \subset D_R$ it is sufficient to have an R such that

$$TR + M \le R \Leftrightarrow M \le (I_m - T) R \Leftrightarrow (I_m - T)^{-1} M \le R.$$

So, we can take $R^0 := (I_m - T)^{-1} M$. We remark that

 $f|_{D_R}: D_R \to D_R, \ \forall R \ge R^0,$

satisfies the conditions from the Theorem 6.5 with $Y = D_R$.

Remark 6.7. The above results generalize some results given in [7], [16], [17], [21], [24].

Remark 6.8. For the vector-valued norm versus scalar norms see [16], [17], [20].

Remark 6.9. For the condition (*iii*) in the scalar case see [3], [8], [9], [10], [12], [13].

Acknowledgment. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

References

- Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadowskii, B.N., Measures of Noncompactness and Condensing Operators, Birkhäuser, 1992.
- [2] Allaire, G., Kaber, S.M., Numerical Linear Algebra, Springer, 2008.
- [3] Appell, J., De Pascale, E., Vignoli, A., Nonlinear Spectral Theory, Walter de Gruyter, 2004.
- [4] Ayerbe Toledano, J.M., Dominguez Benavides, T., López Acedo, G., Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser, 1997.
- [5] Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, M. Dekker, 1980.
- [6] Brown, R.F., Retraction mapping principle in Nielsen fixed point theory, Pacific J. Math, 115(1984), 227-297.
- [7] Czerwik, S., Fixed point theorems and special solutions of functional equations, Uniwersytet Slaski, Katowice, 1980.
- [8] Deimling, K., Nonlinear Functional Analysis, Springer, 1985.
- [9] Furi, M., Martelli, M., Vignoli, A., Contributions to the spectral theory for nonlinear operators in Banach spaces, Ann. Mat. Pura Appl., 118(1978), 229-294.
- [10] Isac, G., New results about some nonlinear operators, Fixed Point Theory, 9(2008), 139-157.
- [11] Jaulin, L., Reliable minimax parameter estimation, Reliab. Comput., 7(2001), No. 3, 231-246.
- [12] Kim, I.S., Fixed points, eigenvalues and surjectivity, J. Korean Math. Soc., 45(2008), No. 1, 151-161.
- [13] Mawhin, J., The solvability of some operators equations with a quasibounded nonlinearity in normed spaces, J. Math. Anal. Appl., 45(1974), 455-467.
- [14] Pasicki, L., On the measure of noncompactness, Comment. Math., 21(1979), 203-205.
- [15] Perov, A.I., On the Cauchy problem for a system of ordinary differential equations, Priblijen. Metod Res. Dif. Urav., Kiev, 1964, (in Russian).
- [16] Precup, R., The role of convergent to zero matrices in the study of semiliniar operator systems, Math. Comput. Modelling, 49(2009), No. 3-4, 703–708.
- [17] Precup, R., Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications. Mathematical models in engineering, biology and medicine, 284–293, AIP Conf. Proc., 1124, Amer. Inst. Phys., Melville, NY, 2009.

- [18] Robert, F., Matrices nonnégatives et normes vectorielles, Univ. Sc. et Médicale de Grenoble, 1973/1974.
- [19] Rus, I.A., Fixed Point Structure Theory, Cluj University Press, Cluj-Napoca, 2006.
- [20] Rus, I.A., Principles and Applications of the Fixed Point Theory, (Romanian), Dacia, Cluj-Napoca, 1979.
- [21] Rus, I.A., On the fixed points of the mappings defined on a cartesian product (III), (in Romanian), Studia Univ. Babeş-Bolyai Math., 24(1979), 55-56.
- [22] Rus, I.A., Petruşel, A., Petruşel, G., Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.
- [23] Şerban, M.A., Fixed point theorems on cartesian product, Fixed Point Theory, 9(2008), No. 1, 331-350.
- [24] Şerban, M.A., Fixed Point Theory for Operators on Cartesian Product, (in Romanian), Cluj University Press, Cluj-Napoca, 2002.

Ioan A. Rus

Babeş-Bolyai University

Faculty of Mathematics and Computer Sciences

1, Kogălniceanu Street,

400084 Cluj-Napoca, Romania

e-mail: iarus@math.ubbcluj.ro

Marcel-Adrian Şerban Babeş-Bolyai University Faculty of Mathematics and Computer Sciences 1, Kogălniceanu Street, 400084 Cluj-Napoca, Romania e-mail: mserban@math.ubbcluj.ro