
Stud. Univ. Babeş-Bolyai Math. 59(2014), No. 1, 103–111

Some fixed point theorems on cartesian product
in terms of vectorial measures of noncompactness
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Abstract. In this paper we study a system of operatorial equations in terms of
some vectorial measures of noncompactness. The basic tools are the cartesian
hull of a subset of a cartesian product and some classical fixed point principle.
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1. Introduction

Let Xi, i = 1,m, be some nonempty sets, X :=
m∏
i=1

Xi and f : X → X be an

operator. In this case the fixed point equation

x = f (x) ,

where x = (x1, . . . , xm) and f = (f1, . . . , fm) takes the following form
x1 = f1 (x1, . . . , xm)
...
xm = fm (x1, . . . , xm)

In this paper we shall study the above system of operatorial equation in the case
when Xi, i = 1,m, are metric spaces. In order to do this, we introduce the cartesian
hull and vectorial measure of noncompactness.

2. Preliminaries

Let (X, d) be a metric space. In this paper we shall use the following notations:
P (X) = {Y | Y ⊂ X}
P (X) = {Y ⊂ X| Y is nonempty}, Pb(X) := {Y ∈ P (X)| Y is bounded},
Pcl(X) := {Y ∈ P (X)| Y is closed}, Pb,cl(X) := Pb(X) ∩ Pcl(X),
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Pcp(X) := {Y ∈ P (X)| Y is compact}.
If X is a Banach space then Pcv(X) := {Y ∈ P (X)| Y is convex}
Let f : X → X is an operator. Then, we denote by Ff := {x ∈ X| x = f (x)} the
fixed point set of the operator f .

Definition 2.1. A matrix S ∈ Rm×m
+ is called a matrix convergent to zero iff Sk → 0

as k → +∞.

Theorem 2.2. (see [2], [16], [18], [20], [23]) Let S ∈ Rm×m
+ . The following statements

are equivalent:

(i) S is a matrix convergent to zero;
(ii) Skx→ 0 as k → +∞, ∀x ∈ Rm;
(iii) Im − S is non-singular and

(Im − S)
−1

= Im + S + S2 + . . .

(iv) Im − S is non-singular and (Im − S)
−1

has nonnegative elements;
(v) λ ∈ C, det (S − λIm) = 0 imply |λ| < 1;
(vi) there exists at least one subordinate matrix norm such that ‖S‖ < 1.

The matrices convergent to zero were used by A. I. Perov [15] to generalize the
contraction principle in the case of generalized metric spaces with the metric taking
values in the positive cone of Rm. For fixed point principle in such spaces see [16],
[20], [22], [23].

3. Closure operators. Cartesian hull of a subset of a cartesian product

Let X be a nonempty set. By definition an operator η : P (X) → P (X) is a
closure operator if:

(i) Y ⊂ η (Y ), ∀Y ∈ P (X);
(ii) Y,Z ∈ P (X), Y ⊂ Z =⇒ η (Y ) ⊂ η (Z);
(iii) η ◦ η = η.

In a real linear space X, the following operators are closure operators:

η : P (X)→ P (X) , η (Y ) := linear hull of Y ;

η : P (X)→ P (X) , η (Y ) := affine hull of Y ;

η : P (X)→ P (X) , η (Y ) := coY := convex hull of Y ;

In a topological space X, the operator η : P (X)→ P (X) defined by η (Y ) := Y
is a closure operator. In a linear topological space X, the operator η : P (X)→ P (X)
defined by η (Y ) := coY := coY is a closure operator.

The main property of a closure operator is given by:

Lemma 3.1. Let X be a nonempty set and η : P (X)→ P (X) a closure operator. Let
(Yi)i∈I be a family of subsets of X such that η (Yi) = Yi for all i ∈ I. Then

η

(⋂
i∈I

Yi

)
=
⋂
i∈I

Yi.
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In our considerations, in this paper, we need the following example of closure
operator.

LetXi, i = 1,m, be some nonempty sets andX :=
m∏
i=1

Xi their cartesian product.

Let us denote by πi, i = 1,m, the canonical projection on Xi, i.e.,

πi : X → Xi, (x1, . . . , xm) 7→ xi, i = 1,m.

Definition 3.2. Let Y ⊂ X be a subset of X. By the cartesian hull of Y we understand
the subset

caY := π1 (Y )× . . .× πm (Y ) .

Remark 3.3. In the paper [11] the set caY is denoted by [Y ].

Lemma 3.4. The operator

ca : P (X)→ P (X) , Y 7→ caY

is a closure operator.

Proof. We remark that:

1) Y ⊂ caY , for all Y ∈ P (X);
2) Y,Z ∈ P (X), Y ⊂ Z then caY ⊂ caZ;
3) ca (caY ) = caY , for all Y ∈ P (X).

So, ca : P (X)→ P (X) is a closure operator. �

Remark 3.5. caY = Y if and only if Y is a cartesian product, i.e., there exists Yi ⊂ Xi,

i = 1,m, such that Y =
m∏
i=1

Yi.

We denote by Pca(X) := {Y ∈ P (X)| Y is cartesian set }.

Remark 3.6. From Lemma 3.1 and 3.4 it follows that the intersection of an arbitrary
family of cartesian sets is a cartesian set.

Lemma 3.7. Let Y ⊂ X be a nonempty cartesian product subset of X and f : Y → Y
an operator. Then f (caf (Y )) ⊂ caf (Y ).

Proof. We remark that f (Y ) ⊂ ca f (Y ) ⊂ Y . �

The above lemmas will be basic for our proofs.

4. Measures of noncompactness. Examples

Let (X, d) be a complete metric space and δ : Pb (X)→ R+

δ(Y ) := sup{d(a, b)| a, b ∈ Y }.
be the diameter functional on X. The Kuratowski measure of noncompactness on X
is defined by αK : Pb (X)→ R+

αK (Y ) := inf

{
ε > 0| Y =

m⋃
i=1

Yi, δ(Yi) ≤ ε, m ∈ N∗
}
.
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The Hausdorff measure of noncompactness on X is defined by αH : Pb (X)→ R+

αH (Y ) := inf {ε > 0| Y can be covered by a finitely many balls of radius ≤ ε} .
If we denote by α one of the functionals αK and αH then we have (see [1], [3], [5], [8],
[19], [22], [4], ...):

Theorem 4.1. The functional α has the following properties:

(i) α (A) = 0 =⇒ A is compact;
(ii) α (A) = α

(
A
)
, ∀A ∈ Pb (X);

(iii) A ⊂ B, A,B ∈ Pb (X) =⇒ α (A) ≤ α (B);
(iv) If An ∈ Pb,cl (X), An+1 ⊂ An and α (An) → 0 as n → +∞ then A∞ :=⋂

n∈N
An 6= ∅ and α (A∞) = 0.

In the case of a Banach space we have that

(v) α (coA) = α (A), ∀A ∈ Pb (X).

Let (X, d) be a complete metric space. By definition (see [19]), a functional

α : Pb (X)→ R+

is called an abstract measure of noncompactness on X iff:

(i) α (A) = 0 =⇒ Ā is compact;
(ii) α (A) = α

(
Ā
)
, for all A ∈ Pb (X);

(iii) A ⊂ B, A,B ∈ Pb (X) =⇒ α (A) ≤ α (B);
(iv) If An ∈ Pb,cl (X), An+1 ⊂ An and α (An)→ 0 as n→ +∞ then

A∞ :=
⋂

n∈N
An 6= ∅ and α (A∞) = 0.

In the case of a Banach space we add to these axioms the following:

(v) α (coA) = α (A), for all A ∈ Pb (X).

We remark that the Kuratowski’s measure of noncompactness, αK , the Haus-
dorff’s measure of noncompactness, αH and the diameter functional, δ, are examples
of measure of noncompactness in the sense of the above definition (see [3], [7], [8], [9],
[12], [19], ...). For other notions of abstract measures of noncompactness see [5], [14],
[19] ...

5. Vectorial measures of noncompactness on a cartesian product of
some metric spaces

Let (Xi, di), i = 1,m, be some complete metric spaces and let X :=
m∏
i=1

Xi their

cartesian product. We consider on X the cartesian product topology. By definition a
subset Y of X is a bounded subset if πi (Y ) ∈ Pb (Xi), i = 1,m. Let αi be a measure
of noncompactness on Xi, i = 1,m. We consider on Pb (X) the following vectorial
functional

α : Pb (X)→ Rm
+ , α (Y ) :=

(
α1 (π1 (Y )) , . . . , αm (πm (Y ))

)T
.

We have:
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Lemma 5.1. The functional α has the following properties:

(i) Y ∈ Pb (X), α (Y ) = 0 =⇒ caY is compact;
(i’) α (caY ) = α (Y ), for all Y ∈ Pb (X);
(ii) α

(
Ȳ
)

= α (Y ), for all Y ∈ Pb (X);
(iii) Y ⊂ Z, Y,Z ∈ Pb (X) =⇒ α (Y ) ≤ α (Z);
(iv) Yn ∈ Pb,cl,ca (X), Yn+1 ⊂ Yn , α (Yn) → 0 as n → +∞ then Y∞ :=

⋂
n∈N

Yn 6= ∅,

Y∞ ∈ Pb,cl,ca (X) and α (Y∞) = 0.

If (Xi, |·|i), i = 1,m, are Banach spaces then we have

(v) α (coY ) = α (Y ), for all Y ∈ Pb (X).

Proof. The proof follows from the definition of α and from the definition of αi. �

If we take αi := αi
K , i = 1,m, we have, by definition, the Kuratowski vectorial

measure of noncompactness and if we take αi := αi
H , i = 1,m, we have the Hausdorff

vectorial measure of noncompactness.

6. Fixed point theorems in terms of vectorial measures of
noncompactness

Definition 6.1. Let S ∈ Rm×m
+ be a matrix convergent to zero and (Xi, di), i = 1,m,

complete metric spaces. Let αi be a measure of noncompactness on Xi, i = 1,m,

and α the corresponding vectorial measure of noncompactness on X :=
m∏
i=1

Xi. An

operator f : X → X is by definition an (α, S)-contraction iff:

(i) A ∈ Pb (X) =⇒ f (A) ∈ Pb (X);
(ii) α (f (A)) ≤ Sα (A), for all A ∈ Pb,ca (X) such that f (A) ⊂ A.

If the condition (ii) is satisfied for all A ∈ Pb,ca (X) then f is called a strict (α, S)-
contraction.

Lemma 6.2. Let Y ∈ Pb,cl,ca (X). Let f : Y → Y be an operator such that:

(i) f is continuous;
(ii) f is an (α, S)-contraction.

Then, there exists A∗ ∈ Pb,cl,ca (Y ) such that f (A∗) ⊂ A∗ and α (A∗) = 0.

Proof. Let Y1 := caf (Y ), Y2 := caf (Y1), ..., Yn+1 := caf (Yn), . . .. It is clear that
Yn ∈ Pb,cl,ca (Y ), Yn+1 ⊂ Yn and f (Yn) ⊂ Yn. Moreover, from Lemma 5.1 and (ii) we
have

α (Yn) = α
(
caf (Yn−1)

)
= α (f (Yn−1)) ≤ Sα (Yn−1) ≤ . . . ≤ Snα (Y ) ,

therefore, α (Yn)→ 0 as n→ +∞. From these we have that

Y∞ :=
⋂
n∈N

Yn 6= ∅, Y∞ ∈ Pb,cl,ca (Y ) , f (Y∞) ⊂ Y∞ and α (Y∞) = 0.

So, A∗ := Y∞. �
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In the case of Banach spaces, if Y ∈ Pb,cl,ca,co (Y ) then we have in addition
that coY∞ = Y∞. In the construction of the sequence set (Yn)n∈N∗ we take Yn+1 :=

co (caf (Yn)).
From Lemma 6.2 we have the following basic fixed point principle in the case of

metric spaces:

Theorem 6.3. Let (Xi, di), i = 1,m, be some complete metric spaces and let

X :=
m∏
i=1

Xi their cartesian product. Let Y ∈ Pb,cl,ca (X) and f : Y → Y such that:

(i) f is continuous;
(ii) f is an (α, S)-contraction;
(iii) A ∈ Pb,cl,ca (Y ), α (A) = 0 and f (A) ⊂ A implies that Ff ∩A 6= ∅.

Then

(a) Ff 6= ∅;
(b) α (Ff ) = 0.

Proof. (a) From Lemma 6.2, there exists A∗ ∈ Pb,cl,ca (Y ) such that f (A∗) ⊂ A∗ and
α (A∗) = 0 and from condition (iii) it follows that Ff ∩A∗ 6= ∅, i.e., Ff 6= ∅.

(b) We remark that Ff ⊂ A∗ = Y∞ (see the proof of Lemma 6.2) and

0 ≤ α (Ff ) ≤ α (Y∞) = 0.

�

If we take α := δ, the vectorial diameter functional, then from Theorem 6.3 we
have:

Theorem 6.4. Let (Xi, di), i = 1,m, be some complete metric spaces and X :=
m∏
i=1

Xi.

Let Y ∈ Pb,cl,ca (X) and f : Y → Y such that:

(i) f is continuous;
(ii) f is an (δ, S)-contraction.

Then Ff = {x∗}.

Proof. From Lemma 6.2, there exists A∗ ∈ Pb,cl,ca (Y ) such that f (A∗) ⊂ A∗ and
δ (A∗) = 0. From δ (A∗) = 0 we have that A∗ = {x∗} and f (A∗) ⊂ A∗ implies that
x∗ ∈ Ff . Also, from Theorem 6.3 we have that δ (Ff ) = 0, so Ff = {x∗}. �

In the case of Banach spaces we have:

Theorem 6.5. Let (Xi, |·|i), i = 1,m, be Banach spaces, X :=
m∏
i=1

Xi and Y ∈

Pb,cl,cv,ca (X). Let f : Y → Y be such that:

(i) f is continuous;
(ii) f is an (α, S)-contraction.

Then

(a) Ff 6= ∅;
(b) α (Ff ) = 0.
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Proof. Let Y1 := co (caf (Y )), Y2 := co (caf (Y1)), ..., Yn+1 := co (caf (Yn)), n ∈ N∗.
We remark that Yn ∈ Pb,cl,cv,ca (Y ), f (Yn) ⊂ Yn, Yn+1 ⊂ Yn and

α (Yn) = α
(
co (caf (Yn−1))

)
= α (f (Yn−1)) ≤ Sα (Yn−1) ≤ . . . ≤ Snα (Y ) ,

therefore, α (Yn)→ 0 as n→ +∞. These imply that

Y∞ :=
⋂
n∈N

Yn 6= ∅, Y∞ ∈ Pb,cl,cv,ca (Y ) , f (Y∞) ⊂ Y∞ and α (Y∞) = 0.

Since Y∞ is a compact convex subset in the Banach space X =
m∏
i=1

Xi (we take, for

example, on X the norm |x|∞ = max {|x1| , . . . |xm|}, which generates the cartesian
product topology on X), from Schauder’s fixed point theorem we have that Ff 6= ∅.
But Ff ⊂ Y∞ is a closed subset of the compact subset Y∞, so, Ff is a nonempty
compact subset. �

For the operator f :
m∏
i=1

Xi →
m∏
i=1

Xi, in the terms of vectorial norm, we have:

Theorem 6.6. Let (Xi, |·|i), i = 1,m, be Banach spaces, X :=
m∏
i=1

Xi, ‖x‖ :=

(|x1|1 , . . . , |xm|m)
T

, and f : X → X such that:

(i) f is continuous;
(ii) f is an (α, S)-contraction;
(iii) there exists T ∈ Rm×m

+ and a vector M ∈ Rm
+ such that:

(1) T is a matrix convergent to zero;
(2) ‖f (x)‖ ≤ T ‖x‖+M , for all x ∈ X.

Then

(a) Ff 6= ∅;
(b) α (Ff ) = 0.

Proof. Let R = (R1, . . . , Rm)
T ∈ Rm

+ , with Ri > 0, i = 1,m. We denote by

DR := {x ∈ X | ‖x‖ ≤ R} .
It is clear that DR ∈ Pb,cl,ca,co (X).

First we shall prove that there exists R0 ∈ Rm
+ such that

f (DR) ⊂ DR, ∀R ∈ Rm
+ , R ≥ R0.

Let R ∈ Rm
+ and x ∈ DR, from (iii)(2) we have

‖f (x)‖ ≤ TR+M.

To prove that f (DR) ⊂ DR it is sufficient to have an R such that

TR+M ≤ R⇔M ≤ (Im − T )R⇔ (Im − T )
−1
M ≤ R.

So, we can take R0 := (Im − T )
−1
M . We remark that

f |DR
: DR → DR, ∀R ≥ R0,
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satisfies the conditions from the Theorem 6.5 with Y = DR. �

Remark 6.7. The above results generalize some results given in [7], [16], [17], [21],
[24].

Remark 6.8. For the vector-valued norm versus scalar norms see [16], [17], [20].

Remark 6.9. For the condition (iii) in the scalar case see [3], [8], [9], [10], [12], [13].
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