Some fixed point theorems on cartesian product in terms of vectorial measures of noncompactness

Ioan A. Rus and Marcel-Adrian Şerban

Abstract

In this paper we study a system of operatorial equations in terms of some vectorial measures of noncompactness. The basic tools are the cartesian hull of a subset of a cartesian product and some classical fixed point principle. Mathematics Subject Classification (2010): 47H10, 54H25. Keywords: Matrix convergent to zero, cartesian hull, vectorial measure of noncompactness, operator on cartesain product, fixed point principle.

1. Introduction

Let $X_{i}, i=\overline{1, m}$, be some nonempty sets, $X:=\prod_{i=1}^{m} X_{i}$ and $f: X \rightarrow X$ be an operator. In this case the fixed point equation

$$
x=f(x),
$$

where $x=\left(x_{1}, \ldots, x_{m}\right)$ and $f=\left(f_{1}, \ldots, f_{m}\right)$ takes the following form

$$
\left\{\begin{array}{l}
x_{1}=f_{1}\left(x_{1}, \ldots, x_{m}\right) \\
\vdots \\
x_{m}=f_{m}\left(x_{1}, \ldots, x_{m}\right)
\end{array}\right.
$$

In this paper we shall study the above system of operatorial equation in the case when $X_{i}, i=\overline{1, m}$, are metric spaces. In order to do this, we introduce the cartesian hull and vectorial measure of noncompactness.

2. Preliminaries

Let (X, d) be a metric space. In this paper we shall use the following notations: $\mathcal{P}(X)=\{Y \mid Y \subset X\}$
$P(X)=\{Y \subset X \mid Y$ is nonempty $\}, P_{b}(X):=\{Y \in P(X) \mid Y$ is bounded $\}$,
$P_{c l}(X):=\{Y \in P(X) \mid Y$ is closed $\}, P_{b, c l}(X):=P_{b}(X) \cap P_{c l}(X)$,

$$
P_{c p}(X):=\{Y \in P(X) \mid Y \text { is compact }\}
$$

If X is a Banach space then $P_{c v}(X):=\{Y \in P(X) \mid Y$ is convex $\}$
Let $f: X \rightarrow X$ is an operator. Then, we denote by $F_{f}:=\{x \in X \mid x=f(x)\}$ the fixed point set of the operator f.
Definition 2.1. A matrix $S \in \mathbb{R}_{+}^{m \times m}$ is called a matrix convergent to zero iff $S^{k} \rightarrow 0$ as $k \rightarrow+\infty$.

Theorem 2.2. (see [2], [16], [18], [20], [23]) Let $S \in \mathbb{R}_{+}^{m \times m}$. The following statements are equivalent:
(i) S is a matrix convergent to zero;
(ii) $S^{k} x \rightarrow 0$ as $k \rightarrow+\infty, \forall x \in \mathbb{R}^{m}$;
(iii) $I_{m}-S$ is non-singular and

$$
\left(I_{m}-S\right)^{-1}=I_{m}+S+S^{2}+\ldots
$$

(iv) $I_{m}-S$ is non-singular and $\left(I_{m}-S\right)^{-1}$ has nonnegative elements;
(v) $\lambda \in \mathbb{C}$, $\operatorname{det}\left(S-\lambda I_{m}\right)=0$ imply $|\lambda|<1$;
(vi) there exists at least one subordinate matrix norm such that $\|S\|<1$.

The matrices convergent to zero were used by A. I. Perov [15] to generalize the contraction principle in the case of generalized metric spaces with the metric taking values in the positive cone of \mathbb{R}^{m}. For fixed point principle in such spaces see [16], [20], [22], [23].

3. Closure operators. Cartesian hull of a subset of a cartesian product

Let X be a nonempty set. By definition an operator $\eta: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ is a closure operator if:
(i) $Y \subset \eta(Y), \forall Y \in \mathcal{P}(X)$;
(ii) $Y, Z \in \mathcal{P}(X), Y \subset Z \Longrightarrow \eta(Y) \subset \eta(Z)$;
(iii) $\eta \circ \eta=\eta$.

In a real linear space X, the following operators are closure operators:

$$
\begin{aligned}
\eta & : \mathcal{P}(X) \rightarrow \mathcal{P}(X), \eta(Y):=\text { linear hull of } Y ; \\
\eta & : \mathcal{P}(X) \rightarrow \mathcal{P}(X), \eta(Y):=\text { affine hull of } Y ; \\
\eta & : \mathcal{P}(X) \rightarrow \mathcal{P}(X), \eta(Y):=c o Y:=\text { convex hull of } Y ;
\end{aligned}
$$

In a topological space X, the operator $\eta: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ defined by $\eta(Y):=\bar{Y}$ is a closure operator. In a linear topological space X, the operator $\eta: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ defined by $\eta(Y):=\overline{c o} Y:=\overline{c o Y}$ is a closure operator.

The main property of a closure operator is given by:
Lemma 3.1. Let X be a nonempty set and $\eta: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ a closure operator. Let $\left(Y_{i}\right)_{i \in I}$ be a family of subsets of X such that $\eta\left(Y_{i}\right)=Y_{i}$ for all $i \in I$. Then

$$
\eta\left(\bigcap_{i \in I} Y_{i}\right)=\bigcap_{i \in I} Y_{i}
$$

In our considerations, in this paper, we need the following example of closure operator.

Let $X_{i}, i=\overline{1, m}$, be some nonempty sets and $X:=\prod_{i=1}^{m} X_{i}$ their cartesian product. Let us denote by $\pi_{i}, i=\overline{1, m}$, the canonical projection on X_{i}, i.e.,

$$
\pi_{i}: X \rightarrow X_{i}, \quad\left(x_{1}, \ldots, x_{m}\right) \mapsto x_{i}, i=\overline{1, m}
$$

Definition 3.2. Let $Y \subset X$ be a subset of X. By the cartesian hull of Y we understand the subset

$$
c a Y:=\pi_{1}(Y) \times \ldots \times \pi_{m}(Y)
$$

Remark 3.3. In the paper [11] the set $c a Y$ is denoted by $[Y]$.
Lemma 3.4. The operator

$$
c a: \mathcal{P}(X) \rightarrow \mathcal{P}(X), Y \mapsto c a Y
$$

is a closure operator.
Proof. We remark that:

1) $Y \subset c a Y$, for all $Y \in \mathcal{P}(X)$;
2) $Y, Z \in \mathcal{P}(X), Y \subset Z$ then $c a Y \subset c a Z$;
3) $c a(c a Y)=c a Y$, for all $Y \in \mathcal{P}(X)$.

So, $c a: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ is a closure operator.
Remark 3.5. $c a Y=Y$ if and only if Y is a cartesian product, i.e., there exists $Y_{i} \subset X_{i}$, $i=\overline{1, m}$, such that $Y=\prod_{i=1}^{m} Y_{i}$.

We denote by $P_{c a}(X):=\{Y \in P(X) \mid Y$ is cartesian set $\}$.
Remark 3.6. From Lemma 3.1 and 3.4 it follows that the intersection of an arbitrary family of cartesian sets is a cartesian set.

Lemma 3.7. Let $Y \subset X$ be a nonempty cartesian product subset of X and $f: Y \rightarrow Y$ an operator. Then $f(c a f(Y)) \subset c a f(Y)$.

Proof. We remark that $f(Y) \subset c a f(Y) \subset Y$.
The above lemmas will be basic for our proofs.

4. Measures of noncompactness. Examples

Let (X, d) be a complete metric space and $\delta: P_{b}(X) \rightarrow \mathbb{R}_{+}$

$$
\delta(Y):=\sup \{d(a, b) \mid a, b \in Y\} .
$$

be the diameter functional on X. The Kuratowski measure of noncompactness on X is defined by $\alpha_{K}: P_{b}(X) \rightarrow \mathbb{R}_{+}$

$$
\alpha_{K}(Y):=\inf \left\{\varepsilon>0 \mid Y=\bigcup_{i=1}^{m} Y_{i}, \delta\left(Y_{i}\right) \leq \varepsilon, m \in \mathbb{N}^{*}\right\}
$$

The Hausdorff measure of noncompactness on X is defined by $\alpha_{H}: P_{b}(X) \rightarrow \mathbb{R}_{+}$
$\alpha_{H}(Y):=\inf \{\varepsilon>0 \mid Y$ can be covered by a finitely many balls of radius $\leq \varepsilon\}$.
If we denote by α one of the functionals α_{K} and α_{H} then we have (see [1], [3], [5], [8], [19], [22], [4], ...):

Theorem 4.1. The functional α has the following properties:
(i) $\alpha(A)=0 \Longrightarrow \bar{A}$ is compact;
(ii) $\alpha(A)=\alpha(\bar{A}), \forall A \in P_{b}(X)$;
(iii) $A \subset B, A, B \in P_{b}(X) \Longrightarrow \alpha(A) \leq \alpha(B)$;
(iv) If $A_{n} \in P_{b, c l}(X), A_{n+1} \subset A_{n}$ and $\alpha\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$ then $A_{\infty}:=$ $\bigcap_{n \in \mathbb{N}} A_{n} \neq \emptyset$ and $\alpha\left(A_{\infty}\right)=0$.
In the case of a Banach space we have that
(v) $\alpha(c o A)=\alpha(A), \forall A \in P_{b}(X)$.

Let (X, d) be a complete metric space. By definition (see [19]), a functional

$$
\alpha: P_{b}(X) \rightarrow \mathbb{R}_{+}
$$

is called an abstract measure of noncompactness on X iff:
(i) $\alpha(A)=0 \Longrightarrow \bar{A}$ is compact;
(ii) $\alpha(A)=\alpha(\bar{A})$, for all $A \in P_{b}(X)$;
(iii) $A \subset B, A, B \in P_{b}(X) \Longrightarrow \alpha(A) \leq \alpha(B)$;
(iv) If $A_{n} \in P_{b, c l}(X), A_{n+1} \subset A_{n}$ and $\alpha\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$ then

$$
A_{\infty}:=\bigcap_{n \in \mathbb{N}} A_{n} \neq \emptyset \text { and } \alpha\left(A_{\infty}\right)=0
$$

In the case of a Banach space we add to these axioms the following:
(v) $\alpha(c o A)=\alpha(A)$, for all $A \in P_{b}(X)$.

We remark that the Kuratowski's measure of noncompactness, α_{K}, the Hausdorff's measure of noncompactness, α_{H} and the diameter functional, δ, are examples of measure of noncompactness in the sense of the above definition (see [3], [7], [8], [9], [12], [19], ...). For other notions of abstract measures of noncompactness see [5], [14], [19] ...

5. Vectorial measures of noncompactness on a cartesian product of some metric spaces

Let $\left(X_{i}, d_{i}\right), i=\overline{1, m}$, be some complete metric spaces and let $X:=\prod_{i=1}^{m} X_{i}$ their cartesian product. We consider on X the cartesian product topology. By definition a subset Y of X is a bounded subset if $\pi_{i}(Y) \in P_{b}\left(X_{i}\right), i=\overline{1, m}$. Let α^{i} be a measure of noncompactness on $X_{i}, i=\overline{1, m}$. We consider on $P_{b}(X)$ the following vectorial functional

$$
\alpha: P_{b}(X) \rightarrow \mathbb{R}_{+}^{m}, \alpha(Y):=\left(\alpha^{1}\left(\pi_{1}(Y)\right), \ldots, \alpha^{m}\left(\pi_{m}(Y)\right)\right)^{T}
$$

We have:

Lemma 5.1. The functional α has the following properties:
(i) $Y \in P_{b}(X), \alpha(Y)=0 \Longrightarrow \overline{c a Y}$ is compact;
(i') $\alpha(c a Y)=\alpha(Y)$, for all $Y \in P_{b}(X)$;
(ii) $\alpha(\bar{Y})=\alpha(Y)$, for all $Y \in P_{b}(X)$;
(iii) $Y \subset Z, Y, Z \in P_{b}(X) \Longrightarrow \alpha(Y) \leq \alpha(Z)$;
(iv) $Y_{n} \in P_{b, c l, c a}(X), Y_{n+1} \subset Y_{n}, \alpha\left(Y_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$ then $Y_{\infty}:=\bigcap_{n \in \mathbb{N}} Y_{n} \neq \emptyset$, $Y_{\infty} \in P_{b, c l, c a}(X)$ and $\alpha\left(Y_{\infty}\right)=0$.
If $\left(X_{i},|\cdot|_{i}\right), i=\overline{1, m}$, are Banach spaces then we have
(v) $\alpha(c o Y)=\alpha(Y)$, for all $Y \in P_{b}(X)$.

Proof. The proof follows from the definition of α and from the definition of α^{i}.
If we take $\alpha^{i}:=\alpha_{K}^{i}, i=\overline{1, m}$, we have, by definition, the Kuratowski vectorial measure of noncompactness and if we take $\alpha^{i}:=\alpha_{H}^{i}, i=\overline{1, m}$, we have the Hausdorff vectorial measure of noncompactness.

6. Fixed point theorems in terms of vectorial measures of noncompactness

Definition 6.1. Let $S \in \mathbb{R}_{+}^{m \times m}$ be a matrix convergent to zero and $\left(X_{i}, d_{i}\right), i=\overline{1, m}$, complete metric spaces. Let α^{i} be a measure of noncompactness on $X_{i}, i=\overline{1, m}$, and α the corresponding vectorial measure of noncompactness on $X:=\prod_{i=1}^{m} X_{i}$. An operator $f: X \rightarrow X$ is by definition an (α, S)-contraction iff:
(i) $A \in P_{b}(X) \Longrightarrow f(A) \in P_{b}(X)$;
(ii) $\alpha(f(A)) \leq S \alpha(A)$, for all $A \in P_{b, c a}(X)$ such that $f(A) \subset A$.

If the condition (ii) is satisfied for all $A \in P_{b, c a}(X)$ then f is called a strict (α, S) contraction.

Lemma 6.2. Let $Y \in P_{b, c l, c a}(X)$. Let $f: Y \rightarrow Y$ be an operator such that:
(i) f is continuous;
(ii) f is an (α, S)-contraction.

Then, there exists $A^{*} \in P_{b, c l, c a}(Y)$ such that $f\left(A^{*}\right) \subset A^{*}$ and $\alpha\left(A^{*}\right)=0$.
Proof. Let $Y_{1}:=\overline{c a f(Y)}, Y_{2}:=\overline{c a f\left(Y_{1}\right)}, \ldots, Y_{n+1}:=\overline{c a f\left(Y_{n}\right)}, \ldots$. It is clear that $Y_{n} \in P_{b, c l, c a}(Y), Y_{n+1} \subset Y_{n}$ and $f\left(Y_{n}\right) \subset Y_{n}$. Moreover, from Lemma 5.1 and (ii) we have

$$
\alpha\left(Y_{n}\right)=\alpha\left(\overline{\operatorname{caf}\left(Y_{n-1}\right)}\right)=\alpha\left(f\left(Y_{n-1}\right)\right) \leq S \alpha\left(Y_{n-1}\right) \leq \ldots \leq S^{n} \alpha(Y)
$$

therefore, $\alpha\left(Y_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$. From these we have that

$$
Y_{\infty}:=\bigcap_{n \in \mathbb{N}} Y_{n} \neq \emptyset, Y_{\infty} \in P_{b, c l, c a}(Y), f\left(Y_{\infty}\right) \subset Y_{\infty} \text { and } \alpha\left(Y_{\infty}\right)=0
$$

So, $A^{*}:=Y_{\infty}$.

In the case of Banach spaces, if $Y \in P_{b, c l, c a, c o}(Y)$ then we have in addition $\underline{\text { that }} \operatorname{co} Y_{\infty}=Y_{\infty}$. In the construction of the sequence set $\left(Y_{n}\right)_{n \in \mathbb{N}^{*}}$ we take $Y_{n+1}:=$ $\overline{c o\left(c a f\left(Y_{n}\right)\right)}$.

From Lemma 6.2 we have the following basic fixed point principle in the case of metric spaces:
Theorem 6.3. Let $\left(X_{i}, d_{i}\right), i=\overline{1, m}$, be some complete metric spaces and let $X:=\prod_{i=1}^{m} X_{i}$ their cartesian product. Let $Y \in P_{b, c l, c a}(X)$ and $f: Y \rightarrow Y$ such that:
(i) f is continuous;
(ii) f is an (α, S)-contraction;
(iii) $A \in P_{b, c l, c a}(Y), \alpha(A)=0$ and $f(A) \subset A$ implies that $F_{f} \cap A \neq \emptyset$.

Then
(a) $F_{f} \neq \emptyset$;
(b) $\alpha\left(F_{f}\right)=0$.

Proof. (a) From Lemma 6.2, there exists $A^{*} \in P_{b, c l, c a}(Y)$ such that $f\left(A^{*}\right) \subset A^{*}$ and $\alpha\left(A^{*}\right)=0$ and from condition (iii) it follows that $F_{f} \cap A^{*} \neq \emptyset$, i.e., $F_{f} \neq \emptyset$.
(b) We remark that $F_{f} \subset A^{*}=Y_{\infty}$ (see the proof of Lemma 6.2) and

$$
0 \leq \alpha\left(F_{f}\right) \leq \alpha\left(Y_{\infty}\right)=0
$$

If we take $\alpha:=\delta$, the vectorial diameter functional, then from Theorem 6.3 we have:

Theorem 6.4. Let $\left(X_{i}, d_{i}\right), i=\overline{1, m}$, be some complete metric spaces and $X:=\prod_{i=1}^{m} X_{i}$. Let $Y \in P_{b, c l, c a}(X)$ and $f: Y \rightarrow Y$ such that:
(i) f is continuous;
(ii) f is an (δ, S)-contraction.

Then $F_{f}=\left\{x^{*}\right\}$.
Proof. From Lemma 6.2, there exists $A^{*} \in P_{b, c l, c a}(Y)$ such that $f\left(A^{*}\right) \subset A^{*}$ and $\delta\left(A^{*}\right)=0$. From $\delta\left(A^{*}\right)=0$ we have that $A^{*}=\left\{x^{*}\right\}$ and $f\left(A^{*}\right) \subset A^{*}$ implies that $x^{*} \in F_{f}$. Also, from Theorem 6.3 we have that $\delta\left(F_{f}\right)=0$, so $F_{f}=\left\{x^{*}\right\}$.

In the case of Banach spaces we have:
Theorem 6.5. Let $\left(X_{i},| |_{i}\right)$, $i=\overline{1, m}$, be Banach spaces, $X:=\prod_{i=1}^{m} X_{i}$ and $Y \in$ $P_{b, c l, c v, c a}(X)$. Let $f: Y \rightarrow Y$ be such that:
(i) f is continuous;
(ii) f is an (α, S)-contraction.

Then
(a) $F_{f} \neq \emptyset$;
(b) $\alpha\left(F_{f}\right)=0$.

Proof. Let $Y_{1}:=\overline{c o(c a f(Y))}, Y_{2}:=\overline{c o\left(c a f\left(Y_{1}\right)\right)}, \ldots, Y_{n+1}:=\overline{c o\left(c a f\left(Y_{n}\right)\right)}, n \in \mathbb{N}^{*}$. We remark that $Y_{n} \in P_{b, c l, c v, c a}(Y), f\left(Y_{n}\right) \subset Y_{n}, Y_{n+1} \subset Y_{n}$ and

$$
\alpha\left(Y_{n}\right)=\alpha\left(\overline{c o\left(c a f\left(Y_{n-1}\right)\right)}\right)=\alpha\left(f\left(Y_{n-1}\right)\right) \leq S \alpha\left(Y_{n-1}\right) \leq \ldots \leq S^{n} \alpha(Y)
$$

therefore, $\alpha\left(Y_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$. These imply that

$$
Y_{\infty}:=\bigcap_{n \in \mathbb{N}} Y_{n} \neq \emptyset, Y_{\infty} \in P_{b, c l, c v, c a}(Y), f\left(Y_{\infty}\right) \subset Y_{\infty} \text { and } \alpha\left(Y_{\infty}\right)=0
$$

Since Y_{∞} is a compact convex subset in the Banach space $X=\prod_{i=1}^{m} X_{i}$ (we take, for example, on X the norm $|x|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots\left|x_{m}\right|\right\}$, which generates the cartesian product topology on X), from Schauder's fixed point theorem we have that $F_{f} \neq \emptyset$. But $F_{f} \subset Y_{\infty}$ is a closed subset of the compact subset Y_{∞}, so, F_{f} is a nonempty compact subset.

For the operator $f: \prod_{i=1}^{m} X_{i} \rightarrow \prod_{i=1}^{m} X_{i}$, in the terms of vectorial norm, we have:
Theorem 6.6. Let $\left(X_{i},|\cdot|_{i}\right), i=\overline{1, m}$, be Banach spaces, $X:=\prod_{i=1}^{m} X_{i},\|x\|:=$ $\left(\left|x_{1}\right|_{1}, \ldots,\left|x_{m}\right|_{m}\right)^{T}$, and $f: X \rightarrow X$ such that:
(i) f is continuous;
(ii) f is an (α, S)-contraction;
(iii) there exists $T \in \mathbb{R}_{+}^{m \times m}$ and a vector $M \in \mathbb{R}_{+}^{m}$ such that:
(1) T is a matrix convergent to zero;
(2) $\|f(x)\| \leq T\|x\|+M$, for all $x \in X$.

Then
(a) $F_{f} \neq \emptyset$;
(b) $\alpha\left(F_{f}\right)=0$.

Proof. Let $R=\left(R_{1}, \ldots, R_{m}\right)^{T} \in \mathbb{R}_{+}^{m}$, with $R_{i}>0, i=\overline{1, m}$. We denote by

$$
D_{R}:=\{x \in X \mid\|x\| \leq R\}
$$

It is clear that $D_{R} \in P_{b, c l, c a, c o}(X)$.
First we shall prove that there exists $R^{0} \in \mathbb{R}_{+}^{m}$ such that

$$
f\left(D_{R}\right) \subset D_{R}, \forall R \in \mathbb{R}_{+}^{m}, R \geq R^{0}
$$

Let $R \in \mathbb{R}_{+}^{m}$ and $x \in D_{R}$, from $(i i i)_{(2)}$ we have

$$
\|f(x)\| \leq T R+M
$$

To prove that $f\left(D_{R}\right) \subset D_{R}$ it is sufficient to have an R such that

$$
T R+M \leq R \Leftrightarrow M \leq\left(I_{m}-T\right) R \Leftrightarrow\left(I_{m}-T\right)^{-1} M \leq R .
$$

So, we can take $R^{0}:=\left(I_{m}-T\right)^{-1} M$. We remark that

$$
\left.f\right|_{D_{R}}: D_{R} \rightarrow D_{R}, \forall R \geq R^{0}
$$

satisfies the conditions from the Theorem 6.5 with $Y=D_{R}$.
Remark 6.7. The above results generalize some results given in [7], [16], [17], [21], [24].

Remark 6.8. For the vector-valued norm versus scalar norms see [16], [17], [20].
Remark 6.9. For the condition (iii) in the scalar case see [3], [8], [9], [10], [12], [13].
Acknowledgment. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

References

[1] Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadowskii, B.N., Measures of Noncompactness and Condensing Operators, Birkhäuser, 1992.
[2] Allaire, G., Kaber, S.M., Numerical Linear Algebra, Springer, 2008.
[3] Appell, J., De Pascale, E., Vignoli, A., Nonlinear Spectral Theory, Walter de Gruyter, 2004.
[4] Ayerbe Toledano, J.M., Dominguez Benavides, T., López Acedo, G., Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser, 1997.
[5] Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, M. Dekker, 1980.
[6] Brown, R.F., Retraction mapping principle in Nielsen fixed point theory, Pacific J. Math, 115(1984), 227-297.
[7] Czerwik, S., Fixed point theorems and special solutions of functional equations, Uniwersytet Slaski, Katowice, 1980.
[8] Deimling, K., Nonlinear Functional Analysis, Springer, 1985.
[9] Furi, M., Martelli, M., Vignoli, A., Contributions to the spectral theory for nonlinear operators in Banach spaces, Ann. Mat. Pura Appl., 118(1978), 229-294.
[10] Isac, G., New results about some nonlinear operators, Fixed Point Theory, 9(2008), 139157.
[11] Jaulin, L., Reliable minimax parameter estimation, Reliab. Comput., 7(2001), No. 3, 231-246.
[12] Kim, I.S., Fixed points, eigenvalues and surjectivity, J. Korean Math. Soc., 45(2008), No. 1, 151-161.
[13] Mawhin, J., The solvability of some operators equations with a quasibounded nonlinearity in normed spaces, J. Math. Anal. Appl., 45(1974), 455-467.
[14] Pasicki, L., On the measure of noncompactness, Comment. Math., 21(1979), 203-205.
[15] Perov, A.I., On the Cauchy problem for a system of ordinary differential equations, Priblijen. Metod Res. Dif. Urav., Kiev, 1964, (in Russian).
[16] Precup, R., The role of convergent to zero matrices in the study of semiliniar operator systems, Math. Comput. Modelling, 49(2009), No. 3-4, 703-708.
[17] Precup, R., Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications. Mathematical models in engineering, biology and medicine, 284-293, AIP Conf. Proc., 1124, Amer. Inst. Phys., Melville, NY, 2009.
[18] Robert, F., Matrices nonnégatives et normes vectorielles, Univ. Sc. et Médicale de Grenoble, 1973/1974.
[19] Rus, I.A., Fixed Point Structure Theory, Cluj University Press, Cluj-Napoca, 2006.
[20] Rus, I.A., Principles and Applications of the Fixed Point Theory, (Romanian), Dacia, Cluj-Napoca, 1979.
[21] Rus, I.A., On the fixed points of the mappings defined on a cartesian product (III), (in Romanian), Studia Univ. Babeş-Bolyai Math., 24(1979), 55-56.
[22] Rus, I.A., Petruşel, A., Petruşel, G., Fixed Point Theory, Cluj University Press, ClujNapoca, 2008.
[23] Şerban, M.A., Fixed point theorems on cartesian product, Fixed Point Theory, 9(2008), No. 1, 331-350.
[24] Şerban, M.A., Fixed Point Theory for Operators on Cartesian Product, (in Romanian), Cluj University Press, Cluj-Napoca, 2002.

Ioan A. Rus
Babeş-Bolyai University
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street,
400084 Cluj-Napoca, Romania
e-mail: iarus@math.ubbcluj.ro
Marcel-Adrian Şerban
Babeş-Bolyai University
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street,
400084 Cluj-Napoca, Romania
e-mail: mserban@math.ubbcluj.ro

