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Abstract. In this paper, we discuss the generalization of Szasz-Mirakyan-
Baskakov type operators defined in [7], using the iterative combinations in or-
dinary and simultaneous approximations. We have better estimates in higher
order modulus of continuity for these operators in simultaneous approximation.
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1. Introduction

Lebesgue integrable functions f on [0,∞) are defined by

H[0,∞) =

{
f :

∫ ∞
0

|f(t)|
(1 + t)n

dt <∞, n ∈ N
}

A new sequence of linear positive operators was introduced by Gupta-Srivastava [4]
in 1995. They combined Szasz-Mirakyan and Baskakov operators as

Sn(f ;x) = (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

pn,v(t)f(t)dt, ∀x ∈ [0,∞), (1.1)

where

pn,v(t) =
(n+ v − 1)!

v!(n− 1)!

tv

(1 + t)n+v
,

qn,v(x) =
e−nx(nx)v

v!
, 0 ≤ x <∞.

We define the norm ‖.‖ on Cγ [0,∞) by

‖f‖γ = sup
0≤t<∞

|f(t)|t−γ ,
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where Cγ [0,∞) = {f ∈ C[0,∞) : |f(t)| ≤ Mtγ , γ > 0}. It can be noticed that
the order of approximation by these operators (1.1) is at best of O(n−1), howsoever
smooth the function may be. So in order to improve the rate of convergence, we
consider the iterative combinations Rn,v : H[0,∞) → C∞[0,∞) of the operators
Sn(f, x) described as below

Rn,v(f(t), x) = (I − (I − Sn)v) (f ;x) =
v∑
r=1

(−1)r+1

(
v
r

)
Srn(f(t);x), (1.2)

where S0
n = I and Srn = Sn(Sr−1n ) for r ∈ N.

The purpose of this paper is to obtain the corresponding general results in terms
of (2k+ 2)th order modulus of continuity by using properties of linear approximating
method, namely Steklov Mean. In the present paper, we use the notations

I ≡ [a, b], 0 < a < b <∞,
Ii ≡ [ai, bi], 0 < a1 < a2 < ... < b2 < b1 <∞; i = 1, 2, . . .

Also ‖.‖C(I) is sup-norm on the interval I and having not same value in different
cases by constant C. Some approximation properties for similar type operators were
discussed in [3] and [7]. Very recently D. Sharma et al [8] obtained some results on
similar type of operators.

2. Auxiliary results

In this section, we obtain some important lemmas which will be useful for the
proof of our main theorem.

Lemma 2.1. [6] For m ∈ N0, we define

Un,m(x) =

∞∑
v=0

pn,v(x)
( v
n
− x
)m

,

then Un,0 = 1, Un,1 = 0. Further, there holds the recurrence formula

nUn,m+1(x) = x
[
U ′n,m(x) +mUn,m−1(x)

]
, m ≥ 1.

Consequently

1. Un,m(x) is a polynomial in x of degree ≤ m.

2. Un,m(x) = O(n−[m+1]/2), where [ζ] is integral part of ζ.

Lemma 2.2. [4] There exists the polynomials φi,j,r(x) independent of n and v such
that

xr(1 + x)r
dr

dxr
pn,v(x) =

∑
2i+j≤r;
i,j≥0

ni(v − nx)jφi,j,r(x)pn,v(x);

xr
dr

dxr
qn,v(x) =

∑
2i+j≤r;
i,j≥0

ni(v − nx)jφi,j,r(x)qn,v(x).
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Lemma 2.3. [3] We assume that 0 < a1 < a2 < b2 < b1 < ∞, for sufficiently
small δ > 0, then (2k + 2)th ordered Steklov mean g2k+2,δ(t) which corresponds to
g(t) ∈ Cγ [0,∞), is defined as

g2k+2,δ(t) = δ−(2k+2)

∫ δ/2

−δ/2

∫ δ/2

−δ/2
...

∫ δ/2

−δ/2
[g(t)−∆2k+2

η g(t)]

2k+2∏
i=1

dti,

where

η =
1

2k + 2

2k+2∑
i=1

ti, ∀t ∈ [a, b].

It is easily checked in [1], [2] and [5] that

1. g2k+2,δ has continuous derivatives upto order (2k + 2) on [a, b];

2. ‖g(r)2k+2,δ‖C[a1,b1] ≤ Kδ−rωr(g, δ, a, b), r = 1, 2, ...(2k + 2);

3. ‖g − g2k+2,δ‖C[a1,b1] ≤ Kω2k+2(g, δ, a, b);
4. ‖g2k+2,δ‖C[a1,b1] ≤ K‖g‖γ .

Here K is a constant not necessarily same at different places.

Lemma 2.4. For the mth order moment Tn,m(x),m ∈ N0 defined by

Tn,m(x) = (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

pn,v(t)(t− x)mdt, ∀x ∈ [0,∞)

we obtain

Tn,0(x) = 1 (2.1)

Tn,1(x) =
1 + 2x

n− 2
, n > 2 (2.2)

Tn,2(x) =
(n+ 6)x2 + 2x(n+ 3) + 2

(n− 2)(n− 3)
, n > 3 (2.3)

and the recurrence relation for n > (m+ 2)

(n−m−2)Tn,m+1(x) = x[T ′n,m(x)+m(2+x)Tn,m−1(x)]+(m+1)(1+2x)Tn,m(x) (2.4)

Further, for all x ∈ [0,∞), we have Tn,m(x) = O(n−[m+1]/2).

Proof. Obviously (2.1)-(2.3) can be easily proved by using the definition of Tn,m(x).
To prove the recurrence relation (2.4), we proceed by taking

T ′n,m(x) = (n− 1)

∞∑
v=0

q′n,v(x)

∫ ∞
0

pn,v(t)(t− x)mdt−mTn,m−1(x)
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Multiplying by x on both sides and then using identity xq′n,v(x) = (v − nx)qn,v(x),
we have

x[T ′n,m(x) +mTn,m−1(x)] = (n− 1)

∞∑
v=0

(v − nx)qn,v(x)

∫ ∞
0

pn,v(t)(t− x)mdt

= (n− 1)

∞∑
v=0

(v − nx)qn,v(x)

∫ ∞
0

pn,v(t)(t− x)mdt

= (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

(v − nx)pn,v(t)(t− x)mdt

= (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

(v − nt)pn,v(t)(t− x)mdt

+(n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

npn,v(t)(t− x)m+1dt

= (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

(v − nt)pn,v(t)(t− x)mdt

+nTn,m+1(x).

Again, using identity t(1 + t)p′n,v(t) = (v − nt)pn,v(t) in RHS, we get

x[T ′n,m(x) +mTn,m−1(x)]

= (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

t(1 + t)p′n,v(t)(t− x)mdt+ nTn,m+1(x)

= (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

[(1 + 2x)(t− x) + (t− x)2 + x(1 + x)]p′n,v(t)

×(t− x)mdt+ nTn,m+1(x)

= −(m+ 1)(1 + 2x)Tn,m(x)− (m+ 2)Tn,m+1(x)−mx(1 + x)Tn,m−1(x)

+nTn,m+1(x).

This leads to our required result (2.4).

Further, for every m ∈ N0, the mth order moment T
(p)
n,m for the operator Spn is

defined by

T (p)
n,m(x) = Spn((t− x)m, x).

If we adopt the convention T
(1)
n,m(x) = Tn,m(x), obviously T

(p)
n,m(x) is of degree m.

Theorem 2.5. Let f ∈ Cγ [0,∞), if f (2v+p+2) exists at a point x ∈ [0,∞), then

lim
n→∞

nv+1[R(p)
n,v(f ;x)− f (p)(x)] =

2v+p+2∑
k=p

Q(k, v, p, x)f (k)(x), (2.5)

where Q(k, v, p, x) are certain polynomials in x. Further if f (2v+p+2) is continuous on
(a− η, b+ η) ⊂ [0,∞) and η > 0, then this theorem holds uniformly in [a, b].
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Proof will be along the similar lines [4].

3. Main results

In this section, we establish the direct theorem.

Theorem 3.1. Let f ∈ H[0,∞) be bounded on every finite subinterval of [0,∞) and
f(t) = O(tα) as t→∞ for some α > 0.

If f (p) exists and is continuous on (a− η, b+ η) ⊂ [0,∞), for some η > 0. Then

‖R(p)
n,v(f(t);x)− f (p)(x)‖C(I2) ≤ K{n

−v‖f‖C(I1) + ω2v+2(f (p), n−1/2, I1)}
where constant K is independent of f and n.

Proof. We can write∥∥∥Rpn,v(f(t);x)− f (p)(x)
∥∥∥
C(I2)

≤ ‖R(p)
n,v(f − fη,2v+2;x)‖C(I2) +

∥∥∥R(p)
n,v(fη,2v+2;x)− f (p)η,2v+2(x)

∥∥∥
C(I2)

+
∥∥∥f (p)(x)− f (p)η,2v+2(x)

∥∥∥
C(I2)

=: P1 + P2 + P3.

By the property of Steklov Mean and f
(p)
η,2v+2(x) = (f (p))η,2v+2(x), we get

P3 ≤ Kω2v+2(f (p), η, I1).

To estimate P2, applying Theorem 2.5 and interpolation property from [2], we have

P2 ≤ Kn−(v+1)

2v+p+2∑
i=p

‖f (i)η,2v+2(x)‖C(I2)

≤ Kn−(v+1)
(
‖fη,2v+2‖C(I2) + ‖(f (p)η,2v+2)(2v+2)‖C(I2)

)
.

Hence by using properties (2) and (4) of Steklov Mean, we get

P2 ≤ Kn−(v+1)[‖f‖C(I1) + (η)−2v−2ω2v+2(f (p), η, I1)].

Suppose a∗ and b∗ be such that

0 < a1 < a∗ < a2 < b2 < b∗ < b1 <∞.
In order to estimate P1, let F = f − fη,2v+2. Then, by hypothesis, we have

F (t) =

p∑
i=0

F (i)(x)

i!
(t− x)i +

F (p)(ξ)− F (p)(x)

p!
(t− x)pψ(t) + h(t, x)(1−ψ(t)), (3.1)

where ξ lies between t and x, and ψ is the characteristic function of the interval
[a∗, b∗]. For t ∈ [a∗, b∗] and x ∈ [a2, b2], we get

F (t) =

p∑
i=0

F (i)(x)

i!
(t− x)i +

F (p)(ξ)− F (p)(x)

p!
(t− x)p,
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and for t ∈ [0,∞) \ [a∗, b∗], x ∈ [a2, b2], we define

h(t, x) = F (t)−
p∑
i=0

F (i)(x)

i!
(t− x)i.

Now operating Rpn,v on both the sides of (3.1), we have the three terms on right side
namely E1, E2 and E3 respectively. By using (1.2) and Lemma 2.4, we get

E1 =

p∑
i=0

F (i)(x)

i!

v∑
r=1

(−1)r+1

(
v
r

)
Dp
(
Srn((t− x)i;x

)
, D ≡ d

dx

=
F (p)(x)

p!

v∑
r=1

(−1)r+1

(
v
r

)
Dp (Srn(tp;x))

→ F (p)(x),

when n→∞ uniformly in I2. Therefore

‖E1‖C(I2) ≤ K
∥∥∥f (p) − f (p)η,2v+2

∥∥∥
C(I2)

.

To obtain E2, we have

‖E2‖C(I2) ≤ 2

p!

∥∥∥f (p) − f (p)η,2v+2

∥∥∥
C[a∗,b∗]

v∑
r=1

(n− 1)

(
v
r

) ∞∑
v=0

|q(p)n,v(x)|

×
∫ ∞
0

pn,v(t)S
r−1
n (|t− x|p, x) dt.

Using Lemma 2.2, Cauchy Schwartz Inequality and Lemma 2.1

(n− 1)

∞∑
v=0

|q(p)n,v(x)|
∫ ∞
0

pn,v(t)S
r−1
n (|t− x|p, x)dt

≤ K
∑

2r+j≤p;
r,j≥0

nrφr,j,p(x)x−p(n− 1)

∞∑
v=0

qn,v(x)(v − nx)j

×
∫ ∞
0

pn,v(t)S
r−1
n (|t− x|p, x)dt

≤ K
∑

2r+j≤p;
r,j≥0

nr

( ∞∑
v=0

qn,v(x)(v − nx)2j

)1/2

×

(
(n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

pn,v(t)S
r−1
n (|t− x|2p, x)dt

)1/2

= K
∑

2r+j≤p;
r,j≥0

nrO(nj/2)O(n−p/2)

= O(1)
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as n→∞ uniformly in I2. Therefore,

‖E2‖ ≤ K‖f (p) − f (p)η,2v+2‖C(a∗,b∗).

Since t ∈ [0,∞) \ [a∗, b∗] and x ∈ [a2, b2], we can choose a δ > 0 in such a way that
|t − x| ≥ δ. If β ≥ max{α, p} be an integer, we can find a positive constant Q such
that |h(t, x)| ≤ Q|t − x|β whenever |t − x| ≥ δ. Again applying Lemma 2.2, Cauchy
Schwartz Inequality three times, Lemma 2.1 and Lemma 2.4, we get

|E3| ≤ K

v∑
r=0

(
v
r

) ∑
2r+j≤p;
r,j≥0

nr

( ∞∑
v=0

qn,v(x)(v − nx)2j

)1/2

×

(
(n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

pn,v(t)S
r−1
n ((1− ψ(t))(t− x)2β ; t)dt

)1/2

≤ K

v∑
r=0

(
v
r

) ∑
2r+j≤p;
r,j≥0

nr

( ∞∑
v=0

qn,v(x)(v − nx)2j

)1/2

×

(
(n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

pn,v(t)S
r−1
n (

(t− x)2m

δ2m−2β
; t)dt

)1/2

≤ K
∑

2r+j≤p;
r,j≥0

nrO(nj/2)O(n−m/2), m > β, ∀m ∈ I.

Hence ‖E3‖ = O(1), as n → ∞, uniformly in I2. Combining the estimates of E1, E2

and E3, we get

P1 ≤ K‖f (p) − f (p)η,2v+2‖C(a∗,b∗) ≤ Kω2v+2(f (p), η, I1).

Substituting η = n−1/2, we get the required theorem.
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