Improvement of a result due to P.T. Mocanu

Róbert Szász

Abstract

A result concerning the starlikeness of the image of the Alexander operator is improved in this paper. The techniques of differential subordinations are used.

Mathematics Subject Classification (2010): 30C45.
Keywords: Alexander operator, starlike functions, close-to-convex functions.

1. Introduction

Let $U=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disk in in the complex plane. Let \mathcal{A} be the class of analytic functions f, which are defined on the unit disk U and have the properties $f(0)=f^{\prime}(0)-1=0$. The subclass of \mathcal{A}, consisting of functions for which the domain $f(U)$ is starlike with respect to 0 is denoted by S^{*}. An analytic characterization of S^{*} is given by

$$
S^{*}=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in U\right\}
$$

Another subclass of \mathcal{A} we deal with is the class of close-to-convex functions denoted by C. A function $f \in \mathcal{A}$ belongs to the class C if and only if there is a starlike function $g \in S^{*}$, so that $\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, \quad z \in U$. We note that C and S^{*} contain univalent functions. The Alexander integral operator is defined by the equality:

$$
A(f)(z)=\int_{0}^{z} \frac{f(t)}{t} d t
$$

The authors of [1] pp. $310-311$ proved the following result:
Theorem 1.1. Let A be the Alexander operator and let $g \in \mathcal{A}$ satisfy

$$
\begin{equation*}
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq\left|\operatorname{Im} \frac{z\left(z g^{\prime}(z)\right)^{\prime}}{g(z)}\right|, \quad z \in U \tag{1.1}
\end{equation*}
$$

If $f \in \mathcal{A}$ and

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, z \in U
$$

then $F=A(f) \in S^{*}$.
Improvements of this result can be found in [3], [4] and [6]. In this paper we put the problem to determine the smallest c_{1} such that the following theorems hold.

Theorem 1.2. Let A be the Alexander operator and let $g \in \mathcal{A}$ satisfy

$$
\begin{equation*}
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq c_{1}\left|\operatorname{Im} \frac{z\left(z g^{\prime}(z)\right)^{\prime}}{g(z)}\right|, z \in U \tag{1.2}
\end{equation*}
$$

If $f \in \mathcal{A}$ and

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, z \in U
$$

then $F=A(f) \in S^{*}$.
In [5] it has been proved that $A(C) \nsubseteq S^{*}$, and this result shows that $c_{1}>0$. We are not able to determine the the best value of c_{1}, but we will give a new improvement for Theorem 1.1 in the present paper. In order to do this, we need some lemmas, which are exposed in the next section.

2. Preliminaries

Let f and g be analytic functions in U. The function f is said to be subordinate to g, written $f \prec g$, if there is a function w analytic in U , with $w(0)=0,|w(z)|<$ $1, z \in U$ and $f(z)=g(w(z)), z \in U$. Recall that if g is univalent, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$.

Lemma 2.1. [1] (Miller-Mocanu) Let $p(z)=a+\sum_{k=n}^{\infty} a_{k} z^{k}$ be analytic in U with $p(z) \not \equiv$ $a, n \geq 1$ and let $q: U \rightarrow \mathbb{C}$ be an analytic and univalent function with $q(0)=a$. If p is not subordinate to q, then there are two points $z_{0} \in U,\left|z_{0}\right|=r_{0}$ and $\zeta_{0} \in \partial U$ and a real number $m \in[n, \infty)$, so that q is defined in $\zeta_{0}, p\left(U\left(0, r_{0}\right)\right) \subset q(U)$, and:
(i) $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$
(ii) $z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$
and
(iii) $\operatorname{Re}\left(1+\frac{z_{0} p^{\prime \prime}\left(z_{0}\right)}{p^{\prime}\left(z_{0}\right)}\right) \geq m \operatorname{Re}\left(1+\frac{\zeta_{0} q^{\prime \prime}\left(\zeta_{0}\right)}{q^{\prime}\left(\zeta_{0}\right)}\right)$.

We note that $z_{0} p^{\prime}\left(z_{0}\right)$ is the outward normal to the curve $p\left(\partial U\left(0, r_{0}\right)\right)$ at the point $p\left(z_{0}\right)$, while $\partial U\left(0, r_{0}\right)$ denotes the border of the disc $U\left(0, r_{0}\right)$.

In [6] the following result is proved:
Lemma 2.2. [6] Let $g \in \mathcal{A}$ be a function, which satisfies the condition

$$
\begin{equation*}
\left|\operatorname{Im} \frac{z g^{\prime}(z)}{g(z)}\right| \leq 1, z \in U \tag{2.1}
\end{equation*}
$$

If $f \in \mathcal{A}$ and

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, z \in U
$$

then $F=A(f) \in S^{*}$.

3. The main result

Theorem 3.1. Let $g \in \mathcal{A}$ be a function such that

$$
\begin{equation*}
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq \frac{2}{5}\left|\operatorname{Im} \frac{z\left(z g^{\prime}(z)\right)^{\prime}}{g(z)}\right|, z \in U \tag{3.1}
\end{equation*}
$$

If $f \in \mathcal{A}$ and

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, z \in U
$$

then $F=A(f) \in S^{*}$.
Proof. If we denote $p(z)=\frac{z g^{\prime}(z)}{g(z)}$, then (3.1) becomes

$$
\begin{equation*}
\operatorname{Re} p(z)>\frac{2}{5}\left|\operatorname{Im}\left[z p^{\prime}(z)+p^{2}(z)\right]\right|, \quad z \in U \tag{3.2}
\end{equation*}
$$

We will prove that

$$
p \prec q \text { where } q(z)=1+\frac{2}{\pi} \log \frac{1+z}{1-z}, z \in U
$$

If the subordination $p \prec q$ does not hold, then according to Lemma 2.1, there are two points $z_{2} \in U, \zeta_{2}=e^{i \theta_{2}}$ and a real number $m_{2} \in[1, \infty)$ such that

$$
p\left(z_{2}\right)=q\left(\zeta_{2}\right)=1+\frac{2}{\pi} \log \frac{1+\zeta_{2}}{1-\zeta_{2}}=1+\frac{2}{\pi}\left(\ln \left|\cot \frac{\theta_{2}}{2}\right| \pm i \frac{\pi}{2}\right)
$$

and

$$
z_{2} p^{\prime}\left(z_{2}\right)=m_{2} \zeta_{2} q^{\prime}\left(\zeta_{2}\right)=\frac{2 m_{2} i}{\pi \sin \theta_{2}}
$$

We discuss the case $\theta_{2} \in(0, \pi)$, the other case $\theta_{2} \in[-\pi, 0)$ is similar. If $\theta_{2} \in[0, \pi]$ and $x=\cot \frac{\theta_{2}}{2}$, then

$$
p\left(z_{2}\right)=1+\frac{2}{\pi}\left(\ln \left|\cot \frac{\theta_{2}}{2}\right|+i \frac{\pi}{2}\right)
$$

and we get

$$
\begin{gathered}
\left|\operatorname{Im}\left[z_{2} p^{\prime}\left(z_{2}\right)+p^{2}\left(z_{2}\right)\right]\right|-\frac{5}{2} \operatorname{Re} p\left(z_{2}\right) \\
=\frac{2 m_{2}}{\pi \sin \theta_{2}}+2\left[1+\frac{2}{\pi} \ln \left(\cot \frac{\theta_{2}}{2}\right)\right]-\frac{5}{2}\left[1+\frac{2}{\pi} \ln \left(\cot \frac{\theta_{2}}{2}\right)\right] \\
\geq \frac{1+x^{2}}{\pi x}-\frac{1}{2}\left[1+\frac{2}{\pi} \ln (x)\right]=\frac{1+x^{2}}{\pi x}-\frac{1}{2}-\frac{1}{\pi} \ln (x) \geq 0, x \in(0, \infty) .
\end{gathered}
$$

This contradicts (3.2), and consequently the subordination

$$
\frac{z g^{\prime}(z)}{g(z)}=p(z) \prec q(z)=1+\frac{2}{\pi} \log \frac{1+z}{1-z}
$$

holds. This subordination implies $\left|\operatorname{Im} \frac{z g^{\prime}(z)}{g(z)}\right| \leq 1, z \in U$ and so according to Lemma 2.2 we have $F=A(f) \in S^{*}$.

References

[1] Miller, S.S., Mocanu, P.T., Differential Subordinations Theory and Applications, Marcel Dekker, New York, Basel 2000.
[2] Miller, S.S., Mocanu, P.T., The theory and applications of second-order differential subordinations, Stud. Univ. Babeş-Bolyai Math., 34(1989), no. 4, 3-33.
[3] Imre, A., Kupán, P.A., Szász, R., Improvement of a criterion for starlikeness, Rocky Mountain J. Math., 42(2012), no. 2.
[4] Kupán, P.A., Szász, R., About a Condition for starlikeness Ann. Univ. Sci. Budapest. Sect. Comput., 37(2012), 261-274.
[5] Szász, R., A Counter-Example Concerning Starlike Functions, Stud. Univ. Babeş-Bolyai Math., 52 (2007), no. 3, 171-172.
[6] Szász, R., An improvement of a criterion for starlikeness, Math. Pannon., 20(2009), no. 1, 69-77.

Róbert Szász
Univ. Sapientia Hungarian University of Transylvania
Department of Mathematics and Informatics
Sos. Sighisoarei 1c, Tg. Mures, Romania
e-mail: rszasz@ms.sapientia.ro

