Stud. Univ. Babeş-Bolyai Math. 59(2014), No. 1, 37-40

Improvement of a result due to P.T. Mocanu

Róbert Szász

Abstract. A result concerning the starlikeness of the image of the Alexander operator is improved in this paper. The techniques of differential subordinations are used.

Mathematics Subject Classification (2010): 30C45.

Keywords: Alexander operator, starlike functions, close-to-convex functions.

1. Introduction

Let $U = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in in the complex plane. Let \mathcal{A} be the class of analytic functions f, which are defined on the unit disk U and have the properties f(0) = f'(0) - 1 = 0. The subclass of \mathcal{A} , consisting of functions for which the domain f(U) is starlike with respect to 0 is denoted by S^* . An analytic characterization of S^* is given by

$$S^* = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \ z \in U \right\}.$$

Another subclass of \mathcal{A} we deal with is the class of close-to-convex functions denoted by C. A function $f \in \mathcal{A}$ belongs to the class C if and only if there is a starlike function $g \in S^*$, so that $\operatorname{Re} \frac{zf'(z)}{g(z)} > 0$, $z \in U$. We note that C and S^* contain univalent functions. The Alexander integral operator is defined by the equality:

$$A(f)(z) = \int_0^z \frac{f(t)}{t} dt$$

The authors of [1] pp. 310 - 311 proved the following result:

Theorem 1.1. Let A be the Alexander operator and let $g \in A$ satisfy

$$\operatorname{Re} \left| \frac{zg'(z)}{g(z)} \ge \left| \operatorname{Im} \frac{z(zg'(z))'}{g(z)} \right|, \ z \in U.$$
(1.1)

If $f \in \mathcal{A}$ and

$$\operatorname{Re} \frac{zf'(z)}{g(z)} > 0, \ z \in U,$$

then $F = A(f) \in S^*$.

Improvements of this result can be found in [3], [4] and [6]. In this paper we put the problem to determine the smallest c_1 such that the following theorems hold.

Theorem 1.2. Let A be the Alexander operator and let $g \in A$ satisfy

$$\operatorname{Re} \frac{zg'(z)}{g(z)} \ge c_1 \left| \operatorname{Im} \frac{z(zg'(z))'}{g(z)} \right|, \ z \in U.$$

$$\operatorname{Re} \frac{zf'(z)}{g(z)} > 0, \ z \in U,$$
(1.2)

If $f \in \mathcal{A}$ and

then
$$F = A(f) \in S^*$$
.

In [5] it has been proved that $A(C) \not\subseteq S^*$, and this result shows that $c_1 > 0$. We are not able to determine the the best value of c_1 , but we will give a new improvement for Theorem 1.1 in the present paper. In order to do this, we need some lemmas, which are exposed in the next section.

2. Preliminaries

Let f and g be analytic functions in U. The function f is said to be subordinate to g, written $f \prec g$, if there is a function w analytic in U, with w(0) = 0, |w(z)| < 1, $z \in U$ and f(z) = g(w(z)), $z \in U$. Recall that if g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(U) \subset g(U)$.

Lemma 2.1. [1] (Miller-Mocanu) Let $p(z) = a + \sum_{k=n}^{\infty} a_k z^k$ be analytic in U with $p(z) \not\equiv a$, $n \ge 1$ and let $q: U \to \mathbb{C}$ be an analytic and univalent function with q(0) = a. If p is not subordinate to q, then there are two points $z_0 \in U$, $|z_0| = r_0$ and $\zeta_0 \in \partial U$ and a real number $m \in [n, \infty)$, so that q is defined in ζ_0 , $p(U(0, r_0)) \subset q(U)$, and:

(i) $p(z_0) = q(\zeta_0)$ (ii) $z_0 p'(z_0) = m\zeta_0 q'(\zeta_0)$

and

$$(iii) \operatorname{Re}\left(1 + \frac{z_0 p''(z_0)}{p'(z_0)}\right) \ge m \operatorname{Re}\left(1 + \frac{\zeta_0 q''(\zeta_0)}{q'(\zeta_0)}\right).$$

We note that $z_0p'(z_0)$ is the outward normal to the curve $p(\partial U(0,r_0))$ at the point $p(z_0)$, while $\partial U(0,r_0)$ denotes the border of the disc $U(0,r_0)$.

In [6] the following result is proved:

Lemma 2.2. [6] Let $g \in \mathcal{A}$ be a function, which satisfies the condition

$$\left|\operatorname{Im}\frac{zg'(z)}{g(z)}\right| \le 1, \ z \in U.$$
(2.1)

If $f \in \mathcal{A}$ and

Re
$$\frac{zf'(z)}{g(z)} > 0, \ z \in U,$$

then $F = A(f) \in S^*$.

3. The main result

Theorem 3.1. Let $g \in A$ be a function such that

$$\operatorname{Re} \frac{zg'(z)}{g(z)} \ge \frac{2}{5} \left| \operatorname{Im} \frac{z(zg'(z))'}{g(z)} \right|, \ z \in U.$$
(3.1)

If $f \in \mathcal{A}$ and

$$\operatorname{Re}\frac{zf'(z)}{g(z)} > 0, \ z \in U_{z}$$

then $F = A(f) \in S^*$.

Proof. If we denote $p(z) = \frac{zg'(z)}{g(z)}$, then (3.1) becomes

$$\operatorname{Re} p(z) > \frac{2}{5} \big| \operatorname{Im}[zp'(z) + p^2(z)] \big|, \quad z \in U.$$
(3.2)

We will prove that

$$p \prec q$$
 where $q(z) = 1 + \frac{2}{\pi} \log \frac{1+z}{1-z}, \ z \in U$

If the subordination $p \prec q$ does not hold, then according to Lemma 2.1, there are two points $z_2 \in U$, $\zeta_2 = e^{i\theta_2}$ and a real number $m_2 \in [1, \infty)$ such that

$$p(z_2) = q(\zeta_2) = 1 + \frac{2}{\pi} \log \frac{1 + \zeta_2}{1 - \zeta_2} = 1 + \frac{2}{\pi} (\ln |\cot \frac{\theta_2}{2}| \pm i\frac{\pi}{2})$$

and

$$z_2 p'(z_2) = m_2 \zeta_2 q'(\zeta_2) = \frac{2m_2 i}{\pi \sin \theta_2}$$

We discuss the case $\theta_2 \in (0, \pi)$, the other case $\theta_2 \in [-\pi, 0)$ is similar. If $\theta_2 \in [0, \pi]$ and $x = \cot \frac{\theta_2}{2}$, then

$$p(z_2) = 1 + \frac{2}{\pi} \left(\ln |\cot \frac{\theta_2}{2}| + i\frac{\pi}{2} \right)$$

and we get

$$\left|\operatorname{Im}[z_{2}p'(z_{2}) + p^{2}(z_{2})]\right| - \frac{5}{2}\operatorname{Re}p(z_{2})$$

$$= \frac{2m_{2}}{\pi\sin\theta_{2}} + 2\left[1 + \frac{2}{\pi}\ln\left(\cot\frac{\theta_{2}}{2}\right)\right] - \frac{5}{2}\left[1 + \frac{2}{\pi}\ln\left(\cot\frac{\theta_{2}}{2}\right)\right]$$

$$\geq \frac{1+x^{2}}{\pi x} - \frac{1}{2}\left[1 + \frac{2}{\pi}\ln(x)\right] = \frac{1+x^{2}}{\pi x} - \frac{1}{2} - \frac{1}{\pi}\ln(x) \ge 0, \ x \in (0,\infty).$$
A standicts (2.2) and construct the sub-adjustice.

This contradicts (3.2), and consequently the subordination

$$\frac{zg'(z)}{g(z)} = p(z) \prec q(z) = 1 + \frac{2}{\pi} \log \frac{1+z}{1-z}$$

holds. This subordination implies $\left| \operatorname{Im} \frac{zg'(z)}{g(z)} \right| \leq 1, \ z \in U$ and so according to Lemma 2.2 we have $F = A(f) \in S^*$.

Róbert Szász

References

- Miller, S.S., Mocanu, P.T., Differential Subordinations Theory and Applications, Marcel Dekker, New York, Basel 2000.
- [2] Miller, S.S., Mocanu, P.T., The theory and applications of second-order differential subordinations, Stud. Univ. Babeş-Bolyai Math., 34(1989), no. 4, 3-33.
- [3] Imre, A., Kupán, P.A., Szász, R., Improvement of a criterion for starlikeness, Rocky Mountain J. Math., 42(2012), no. 2.
- [4] Kupán, P.A., Szász, R., About a Condition for starlikeness Ann. Univ. Sci. Budapest. Sect. Comput., 37(2012), 261-274.
- [5] Szász, R., A Counter-Example Concerning Starlike Functions, Stud. Univ. Babeş-Bolyai Math., 52(2007), no. 3, 171-172.
- [6] Szász, R., An improvement of a criterion for starlikeness, Math. Pannon., 20(2009), no. 1, 69-77.

Róbert Szász Univ. Sapientia Hungarian University of Transylvania Department of Mathematics and Informatics Sos. Sighisoarei 1c, Tg. Mureş, Romania e-mail: rszasz@ms.sapientia.ro