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Fekete-Szegő problem for a new class of analytic
functions with complex order defined by certain
differential operator

Rabha M. El-Ashwah, Mohammed K. Aouf and Alaa H. Hassan

Abstract. In this paper, we obtain Fekete-Szegő inequalities for a new class of

analytic functions f ∈ A for which 1+
1

b
[(1− γ)

Dnλ (f∗g)(z)
z

+γ(Dn
λ(f ∗g)(z))′−1]

(γ, λ ≥ 0; b ∈ C∗ = C\ {0} ;n ∈ N0; z ∈ U) lies in a region starlike with respect
to 1 and is symmetric with respect to the real axis.
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1. Introduction

Let A denote the class of functions f of the form:

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disc U = {z ∈ C and |z| < 1}. Further let S
denote the family of functions of the form (1.1) which are univalent in U , and g ∈ A
be given by

g(z) = z +

∞∑
k=2

gkz
k. (1.2)

A classical theorem of Fekete-Szegő [8] states that, for f ∈ S given by (1.1), that

∣∣a3 − µa22∣∣ ≤


3− 4µ, if µ ≤ 0,

1 + 2 exp

(
−2µ

1− µ

)
, if 0 ≤ µ ≤ 1,

4µ− 3, if µ ≥ 1.

(1.3)

The result is sharp.
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Given two functions f and g, which are analytic in U with f(0) = g(0), the function
f is said to be subordinate to g if there exists a function w, analytic in U, such
that w(0) = 0 and |w(z)| < 1 (z ∈ U) and f(z) = g(w(z)) (z ∈ U). We denote this
subordination by f(z) ≺ g(z) ([10]).

Let ϕ be an analytic function with positive real part on U, which satisfies ϕ(0) =
1 and ϕ′(0) > 0, and which maps the unit disc U onto a region starlike with respect
to 1 and symmetric with respect to the real axis. Let S∗(ϕ) be the class of functions
f ∈ S for which

zf ′(z)

f(z)
≺ ϕ(z), (1.4)

and C(ϕ) be the class of functions f ∈ S for which

1 +
zf ′′(z)

f ′(z)
≺ ϕ(z). (1.5)

The classes of S∗(ϕ) and C(ϕ) were introduced and studied by Ma and Minda [9].
The familier class S∗(α) of starlike functions of order α and the class C(α) of convex
functions of order α (0 ≤ α < 1) are the special cases of S∗(ϕ) and C(ϕ), respectively,

when ϕ(z) = 1+(1−2α)z
1−z (0 ≤ α < 1).

Ma and Minda [9] have obtained the Fekete-Szegő problem for the functions in the
class C(ϕ).

Definition 1.1. (Hadamard Product or Convolution) Given two functions f and g in
the class A, where f is given by (1.1) and g is given by (1.2) the Hadamard product
(or convolution) of f and g is defined (as usual) by

(f ∗ g)(z) = z +

∞∑
k=2

akgkz
k = (g ∗ f)(z). (1.6)

For the functions f and g defined by (1.1) and (1.2) respectively, the linear operator
Dn
λ : A −→ A (λ ≥ 0;n ∈ N0 = N ∪ {0} ,N = {1, 2, 3, ...}) is defined by(see [4], see

also [7, with p = 1]):

D0
λ(f ∗ g)(z) = (f ∗ g)(z),

Dn
λ(f ∗ g)(z) = Dλ(Dn−1

λ (f ∗ g)(z))

= z +

∞∑
k=2

[1 + λ(k − 1)]nakgkz
k (λ ≥ 0;n ∈ N0). (1.7)

Remark 1.2. (i) Taking g(z) =
z

1− z
, then operator Dn

λ(f ∗ z

1− z
)(z) = Dn

λf(z), was

introduced and studied by Al-Oboudi [2];

(ii) Taking g(z) =
z

1− z
and λ = 1, then operator Dn

1 (f ∗ z

1− z
)(z) = Dnf(z), was

introduced by Sălăgean [12].

Using the operator Dn
λ we introduce a new class of analytic functions with complex

order as following:
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Definition 1.3. For b ∈ C∗ = C\ {0} let the class Mn
λ (f, g; γ, b;ϕ) denote the subclass

of A consisting of functions f of the form (1.1) and g of the form (1.2) and satisfying
the following subordination:

1 +
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
≺ ϕ(z), (1.8)

(γ, λ ≥ 0; n ∈ N0) .

Specializing the parameters γ, λ, b, n, g and ϕ, we obtain the following subclasses
studied by various authors:

(i) M0
λ

(
f, z +

∞∑
k=2

knzk; γ, b;
1 +Az

1 +Bz

)
= Mn

1

(
f,

z

1− z
; γ, b;

1 +Az

1 +Bz

)
= Gn (γ, b, A,B) (γ, λ ≥ 0,−1 ≤ B < A ≤ 1, b ∈ C∗, n ∈ N0) (Sivasubramanian et al.
[14]);

(ii) M0
λ

(
f, g; γ, b;

1 + (1− 2α)z

1− z

)
= S (f, g; γ, α, b) (0 ≤ α < 1, γ ≥ 0, b ∈ C∗) (Aouf

et al. [5]);

(iii) M0
λ

(
f, z +

∞∑
k=2

knzk; γ, b;
1 + z

1− z

)
= Mn

1

(
f,

z

1− z
; γ, b;

1 + z

1− z

)
= Gn (γ, b)

(γ ≥ 0, b ∈ C∗, n ∈ N0) (Aouf [3]);

(iv) M0
λ

(
f,

z

1− z
; 1, b; (1− `) 1 +Az

1 +Bz
+ `

)
= Rb` (A,B) (b ∈ C∗, 0 ≤ ` < 1,

−1 ≤ B < A ≤ 1) (Reddy and Reddy [11]);

(v) M0
λ

(
f,

z

1− z
; 1, b;ϕ

)
= Rb (ϕ) (b ∈ C∗) (Ali et al. [1]).

Also we note that:

(i) If g(z) = z +
∞∑
k=2

Ψk(α1)zk (or gk = Ψk(α1)), where

Ψk(α1) =
(α1)k−1 ..... (αq)k−1

(β1)k−1 ..... (βs)k−1 (k − 1)!
(1.9)

(αi > 0, i = 1, ..., q;βj > 0, j = 1, ..., s; q ≤ s + 1; q, s ∈ N = {1, 2, ...}), where (ν)k is
the Pochhammer symbol defined in terms to the Gamma function Γ, by

(ν)k =
Γ(ν + k)

Γ(ν)
=

{
1, if k = 0,
ν(ν + 1)(ν + 2)...(ν + k − 1), if k ∈ N,

then the class Mn
λ (f, z +

∞∑
k=2

Ψk(α1)zk; γ, b;ϕ) reduces to the class

Mn
λ,q,s([α1]; γ, b;ϕ)

=

{
f ∈ A : 1 +

1

b

[
(1− γ)

Dn
λ(α1, β1)f(z)

z
+ γ(Dn

λ(α1, β1)f(z))′ − 1

]
≺ ϕ(z),

γ, λ ≥ 0; b ∈ C∗;n ∈ N0

}
,



28 Rabha M. El-Ashwah, Mohammed K. Aouf and Alaa H. Hassan

where, the operator Dn
λ(α1, β1) was defined as (see Selvaraj and Karthikeyan [13], see

also El-Ashwah and Aouf [6]):

Dn
λ(α1, β1)f(z) = z +

∞∑
k=2

[1 + λ(k − 1)]n
(α1)k−1 ... (αq)k−1

(β1)k−1 ... (βs)k−1 (1)k−1
akz

k

(ii) Mn
λ (f, g; 1, b;ϕ) = Gnλ (f, g; b;ϕ) = {f(z) ∈ A : 1 +

1

b
[(Dn

λ(f ∗ g)(z))
′ − 1] ≺ ϕ(z)

(λ ≥ 0; b ∈ C∗;n ∈ N0)};

(iii) Mn
λ (f, g; 0, b;ϕ) = Rnλ (f, g; b;ϕ) = {f(z) ∈ A : 1 +

1

b
[
Dn
λ(f ∗ g)(z)

z
− 1] ≺ ϕ(z)

(λ ≥ 0; b ∈ C∗;n ∈ N0)};

(iv) Mn
λ

(
f, g; γ, (1− ρ) cos ηe−iη;ϕ

)
= En,ηλ,ρ (f, g; γ;ϕ) = {f(z ∈ A : eiη[(1− γ)

·D
n
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′
] ≺ (1 − ρ) cos ηϕ(z) + i sin η + ρ cos η (|η| ≤ π

2
;

γ, λ ≥ 0; 0 ≤ ρ < 1; b ∈ C∗;n ∈ N0)}.

In this paper, we obtain the Fekete-Szegő inequalities for functions in the class
Mn
λ (f, g; γ, b;ϕ) .

2. Fekete-Szegő problem

Unless otherwise mentioned, we assume in the reminder of this paper that λ ≥ 0,
b ∈ C∗ and z ∈ U.
To prove our results, we shall need the following lemmas:
Lemma 2.1. [9] If p(z) = 1 + c1z + c2z

2 + ..... (z ∈ U) is a function with positive real
part in U and µ is a complex number, then∣∣c2 − µc21∣∣ ≤ 2 max{1; |2µ− 1|}. (2.1)

The result is sharp for the functions given by

p(z) =
1 + z2

1− z2
and p(z) =

1 + z

1− z
(z ∈ U) . (2.2)

Lemma 2.2. [9] If p1(z) = 1 + c1z + c2z
2 + ..... is a function with positive real part in

U, then ∣∣c2 − νc21∣∣ ≤
 −4ν + 2, if ν ≤ 0,

2, if 0 ≤ ν ≤ 1,
4ν − 2, if ν ≥ 1.

When ν < 0 or ν > 1, the equality holds if and only if p1(z) =
1 + z

1− z
or one of its

rotations. If 0 < ν < 1, then the equality holds if and only if p1(z) =
1 + z2

1− z2
or one

of its rotations. If ν = 0, the equality holds if and only if

p1(z) =

(
1

2
+

1

2
γ

)
1 + z

1− z
+

(
1

2
− 1

2
γ

)
1− z
1 + z

(0 ≤ γ ≤ 1),
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or one of its rotations. If ν = 1, the equality holds if and only if

1

p1(z)
=

(
1

2
+

1

2
γ

)
1 + z

1− z
+

(
1

2
− 1

2
γ

)
1− z
1 + z

(0 ≤ γ ≤ 1).

Also the above upper bound is sharp and it can be improved as follows when 0 < ν < 1 :∣∣c2 − νc21∣∣+ ν |c1|2 ≤ 2 (0 < ν <
1

2
),

and ∣∣c2 − νc21∣∣+ (1− ν) |c1|2 ≤ 2 (
1

2
< ν < 1).

Using Lemma 2.1, we have the following theorem:

Theorem 2.3. Let ϕ(z) = 1+B1z+B2z
2+B3z

3+ ..., where ϕ(z) ∈ A and ϕ
′
(0) > 0. If

f(z) given by (1.1) belongs to the class Mn
λ (f, g; γ, b;ϕ) and if µ is a complex order,

then∣∣a3 − µa22∣∣ ≤ B1 |b|
(1 + 2λ)

n
(1 + 2γ) g3

max

{
1,

∣∣∣∣∣B2

B1
− (1 + 2λ)

n
(1 + 2γ) g3

(1 + λ)
2n

(1 + γ)
2
g22
µbB1

∣∣∣∣∣
}
.

(2.3)
The result is sharp.
Proof. If f ∈ Mn

λ (f, g; γ, b;ϕ) , then there exists a Schwarz function w analytic in
U with w(0) = 0 and |w(z)| < 1 in U and such that

1 +
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
= ϕ(w(z)). (2.4)

Define the function p1 by

p1(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + ... . (2.5)

Since w is a Schwarz function, we see that Rep1(z) > 0 and p1(0) = 1.
Let define the function p by:

p(z) = 1+
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
= 1+b1z+b2z

2+... (2.6)

In view of the equations (2.4), (2.5) and (2.6), we have

p(z) = ϕ

(
p1(z)− 1

p1(z) + 1

)
= ϕ

(
c1z + c2z

2 + ...

2 + c1z + c2z2 + ...

)
= ϕ

(
1

2
c1z +

1

2

(
c2 −

c21
2

)
z2 + ...

)
= 1 +

1

2
B1c1z +

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
z2 + ... (2.7)

Thus

b1 =
1

2
B1c1 and b2 =

1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1. (2.8)
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Since

1 +
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
= 1 +

(
1

b
(1 + λ)

n
(1 + γ) a2g2

)
z +

(
1

b
(1 + 2λ)

n
(1 + 2γ) a3g3

)
z2 + ...,

from (2.6) and (2.8), we obtain

a2 =
B1c1b

2 (1 + λ)
n

(1 + γ) g2
, (2.9)

and

a3 =
B1c2b

2 (1 + 2λ)
n

(1 + 2γ) g3
+

c21
4 (1 + 2λ)

n
(1 + 2γ) g3

[(B2 −B1) b] . (2.10)

Therefore, we have

a3 − µa22 =
B1b

2 (1 + 2λ)
n

(1 + 2γ) g3

[
c2 − νc21

]
, (2.11)

where

ν =
1

2

[
1− B2

B1
+

(1 + 2λ)
n

(1 + 2γ) g3µ

(1 + λ)
2n

(1 + γ)
2
g22

B1b

]
. (2.12)

Our result now follows by an application of Lemma 2.1. The result is sharp for the
functions f satisfying

1 +
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
= ϕ(z2), (2.13)

and

1 +
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
= ϕ(z). (2.14)

This completes the proof of Theorem 2.3.

Remark 2.4. (i) Taking γ = 1, n = 0 and g(z) =
z

1− z
in Theorem 2.3, we obtain the

result obtained by Ali et al. [1, Theorem 2.3, with k = 1];

(ii) Taking γ = 1, n = 0, g(z) =
z

1− z
and ϕ(z) = (1 − `) 1 +Az

1 +Bz
+ ` (0 ≤ ` < 1,

−1 ≤ B < A ≤ 1) in Theorem 2.3, we obtain the result obtained by Reddy and Reddy
[11, Theorem 4].

Also by specializing the parameters in Theorem 2.3, we obtain the following new sharp
results.

Putting n = 0, g(z) = z +

∞∑
k=2

knzk (n ∈ N0) and ϕ(z) = 1+Az
1−Bz (−1 ≤ B < A ≤ 1)

(or equivalently, B1 = A − B and B2 = −B(A − B)) in Theorem 2.3, we obtain the
corollary:
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Corollary 2.5. If f given by (1.1) belongs to the class Gn (γ, b;A,B) , then for any
complex number µ, we have∣∣a3 − µa22∣∣ ≤ (A−B) |b|

(1 + 2γ) 3n
max

{
1,

∣∣∣∣∣ (1 + 2γ) 3n

(1 + γ)
2

22n
µ (A−B) b+B

∣∣∣∣∣
}
. (2.15)

The result is sharp.

Putting n = 0 and ϕ(z) = 1+(1−2α)z
1−z (0 ≤ α < 1) in Theorem 2.3, we obtain the

following corollary:
Corollary 2.6. If f given by (1.1) belongs to the class S (f, g; γ, α, b) , then for any
complex number µ, we have∣∣a3 − µa22∣∣ ≤ 2 (1− α) |b|

(1 + 2γ) g3
max

{
1,

∣∣∣∣∣1− 2 (1 + 2γ) g3

(1 + γ)
2
g22

µ (1− α) b

∣∣∣∣∣
}
. (2.16)

The result is sharp.

Putting n = 0, g(z) = z +

∞∑
k=2

knzk (n ∈ N0) and ϕ(z) = 1+z
1−z in Theorem 2.3, we

obtain the following corollary:
Corollary 2.7. If f given by (1.1) belongs to the class Gn (γ, b) , then for any complex
number µ, we have∣∣a3 − µa22∣∣ ≤ 2 |b|

(1 + 2γ) 3n
max

{
1,

∣∣∣∣∣1− (1 + 2γ) 3n

(1 + γ)
2

22n−1
µb

∣∣∣∣∣
}
. (2.17)

The result is sharp.

Putting γ = 1 in Theorem 2.3, we obtain the following corollary:
Corollary 2.8. If f given by (1.1) belongs to the class Gnλ (f, g; b;ϕ) , then for any
complex number µ, we have∣∣a3 − µa22∣∣ ≤ B1 |b|

3 (1 + 2λ)
n
g3

max

{
1,

∣∣∣∣∣B2

B1
− 3 (1 + 2λ)

n
g3

4 (1 + λ)
2n
g22
µB1b

∣∣∣∣∣
}
. (2.18)

The result is sharp.

Putting γ = 0 in Theorem 2.3, we obtain the following corollary:
Corollary 2.9. If f given by (1.1) belongs to the class Rnλ (f, g; b;ϕ) , then for any
complex number µ, we have∣∣a3 − µa22∣∣ ≤ B1 |b|

(1 + 2λ)
n
g3

max

{
1,

∣∣∣∣∣B2

B1
− (1 + 2λ)

n
g3

(1 + λ)
2n
g22
µB1b

∣∣∣∣∣
}
. (2.19)

The result is sharp.

Putting (1−ρ) cos ηe−iη
(

0 ≤ ρ < 1; |η| ≤ π

2

)
in Theorem 2.3, we obtain the following

corollary:
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Corollary 2.10. If f given by (1.1) belongs to the class En,ηλ,ρ (f, g; γ;ϕ) , then for any
complex number µ, we have∣∣a3 − µa22∣∣ ≤ (1−ρ)B1 cos η

(1+2λ)n(1+2γ)g3
max

{
1,

∣∣∣∣B2

B1
eiη − (1+2λ)n(1+2γ)(1−ρ) cos η

(1+λ)2n(1+γ)2g22
g3µB1

∣∣∣∣} .
(2.20)

The result is sharp.

Using Lemma 2.2, we have the following theorem:
Theorem 2.11. Let ϕ(z) = 1 +B1z+B2z

2 +B3z
3 + ..., (b > 0;Bi > 0; i ∈ N) . Also let

σ1 =
(1 + λ)2n (1 + γ)

2
g22 (B2 −B1)

(1 + 2λ)n (1 + 2γ) g3bB2
1

,

and

σ2 =
(1 + λ)2n (1 + γ)

2
g22 (B2 +B1)

(1 + 2λ)n (1 + 2γ) g3bB2
1

.

If f is given by (1.1) belongs to the class Mn
λ (f, g; γ, b;ϕ) , then we have the following

sharp results:
(i) If µ ≤ σ1, then∣∣a3 − µa22∣∣ ≤ b

(1 + 2λ)n (1 + 2γ) g3

[
B2 −

(1 + 2λ)n (1 + 2γ) g3b

(1 + λ)2n (1 + γ)
2
g22

µB2
1

]
; (2.21)

(ii) If σ1 ≤ µ ≤ σ2, then ∣∣a3 − µa22∣∣ ≤ bB1

(1 + 2λ)n (1 + 2γ) g3
; (2.22)

(iii) If µ ≥ σ2, then∣∣a3 − µa22∣∣ ≤ b

(1 + 2λ)n (1 + 2γ) g3

[
−B2 +

(1 + 2λ)n (1 + 2γ) g3b

(1 + λ)2n (1 + γ)
2
g22

µB2
1

]
. (2.23)

Proof. For f ∈ Mn
λ (f, g; γ, b;ϕ) , p(z) given by (2.6) and p1 given by (2.5), then a2

and a3 are given as in Theorem 2.3. Also

a3 − µa22 =
B1b

2 (1 + 2λ)
n

(1 + 2γ) g3

[
c2 − νc21

]
, (2.24)

where

ν =
1

2

[
1− B2

B1
+

(1 + 2λ)
n

(1 + 2γ) g3µ

(1 + λ)
2n

(1 + γ)
2
g22

B1b

]
. (2.25)

First, if µ ≤ σ1, then we have ν ≤ 0, and by applying Lemma 2.2 to equality (2.24),
we have∣∣a3 − µa22∣∣ ≤ b

(1 + 2λ)n (1 + 2γ) g3

[
B2 −

(1 + 2λ)n (1 + 2γ) g3b

(1 + λ)2n (1 + γ)
2
g22

µB2
1

]
,

which is evidently inequality (2.21) of Theorem 2.11.



Fekete-Szegő problem for a new class of analytic functions 33

If µ = σ1, then we have ν = 0, therefore equality holds if and only if

p1(z) = (1+γ
2 )

1 + z

1− z
+ ( 1−γ

2 )
1− z
1 + z

(0 ≤ γ ≤ 1; z ∈ U).

Next, if σ1 ≤ µ ≤ σ2, we note that

max

{
1

2

[
1− B2

B1
+

(1 + 2λ)
n

(1 + 2γ) g3µ

(1 + λ)
2n

(1 + γ)
2
g22

B1b

]}
≤ 1, (2.26)

then applying Lemma 2.2 to equality (2.24), we have∣∣a3 − µa22∣∣ ≤ b

(1 + 2λ)n (1 + 2γ) g3
,

which is evidently inequality (2.22) of Theorem 2.11.
If σ1 < µ < σ2, then we have

p1(z) =
1 + z2

1− z2
.

Finally, If µ ≥ σ2, then we have ν ≥ 1, therefore by applying Lemma 2.2 to (2.24),
we have∣∣a3 − µa22∣∣ ≤ b

(1 + 2λ)n (1 + 2γ) g3

[
(1 + 2λ)n (1 + 2γ) g3b

(1 + λ)2n (1 + γ)
2
g22

µB2
1 −B2

]
,

which is evidently inequality (2.23) of Theorem 2.11.
If µ = σ2, then we have ν = 1, therefore equality holds if and only if

1

p1(z)
=

1 + γ

2

1 + z

1− z
+

1− γ
2

1− z
1 + z

(0 ≤ γ ≤ 1; z ∈ U).

To show that the bounds are sharp, we define the functions Ks
ϕ(s ≥ 2) by

1 +
1

b

[
(1− γ)

Dnλ(K
s
ϕ∗g)(z)
z + γ

(
Dn
λ(Ks

ϕ ∗ g)(z)
)′ − 1

]
= ϕ(zs−1), (2.27)

Ks
ϕ(0) = 0 = K

′s
ϕ (0)− 1,

and the functions Ft and Gt (0 ≤ t ≤ 1) by

1 +
1

b

[
(1− γ)

Dnλ(Ft∗g)(z)
z + γ (Dn

λ(Ft ∗ g)(z))
′ − 1

]
= ϕ

(
z(z+t)
1+tz

)
, (2.28)

Ft(0) = 0 = F ′t (0)− 1,

and

1 +
1

b

[
(1− γ)

Dnλ(Gt∗g)(z)
z + γ (Dn

λ(Gt ∗ g)(z))
′ − 1

]
= ϕ

(
− z(z+t)1+tz

)
, (2.29)

Gt(0) = 0 = G′t(0)− 1.

Cleary the functions Ks
ϕ, Ft and Gt ∈Mn

λ (f, g; γ, b;ϕ) . Also we write Kϕ = K2
ϕ.

If µ < σ1 or µ > σ2, then the equality holds if and only if f is Kϕ or one of
its rotations. When σ1 < µ < σ2, then the equality holds if f is K3

ϕ or one of its
rotations. If µ = σ1, then the equality holds if and only if f is Ft or one of its
rotations. If µ = σ2, then the equality holds if and only if f is Gt or one of its
rotations.
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Remark 2.12. Taking γ = 1, b = 1, n = 0 and g(z) =
z

1− z
in Theorem 2.11, we

obtain the result obtained by Ali et al. [1, Corollary 2.5, with k = 1].

Also, using Lemma 2.2 we have the following theorem:
Theorem 2.13. For ϕ(z) = 1 + B1z + B2z

2 + B3z
3 + ..., (b > 0;Bi > 0; i ∈ N) and

f(z) given by (1.1) belongs to the class Mn
λ (f, g; γ, b;ϕ) and σ1 ≤ µ ≤ σ2, then in

view of Lemma 2.2, Theorem 2.11 can be improved. Let

σ3 =
(1 + λ)2n (1 + γ)

2
g22B2

(1 + 2λ)n (1 + 2γ) g3bB2
1

,

(i) If σ1 ≤ µ ≤ σ3, then∣∣a3 − µa22∣∣+
(1+λ)2n(1+γ)2g22

(1+2λ)n(1+2γ)g3bB1

[
1− B2

B1
+ (1+2λ)n(1+2γ)g3

(1+λ)2n(1+γ)2g22
µbB1

]
|a2|2

≤ B1b

(1 + 2λ)n (1 + 2γ) g3
; (2.30)

(ii) If σ3 ≤ µ ≤ σ2, then∣∣a3 − µa22∣∣+
(1+λ)2n(1+γ)2g22

(1+2λ)n(1+2γ)g3bB1

[
1 +

B2

B1
− (1+2λ)n(1+2γ)g3

(1+λ)2n(1+γ)2g22
µbB1

]
|a2|2

≤ B1b

(1 + 2λ)n (1 + 2γ) g3
. (2.31)

Proof. For the values of σ1 ≤ µ ≤ σ3, we have∣∣a3 − µa22∣∣+ (µ− σ1) |a2|2

= B1b
2(1+2λ)n(1+2γ)g3

∣∣c2 − νc21∣∣+
(
µ− (1+λ)2n(1+γ)2g22(B2−B1)

(1+2λ)n(1+2γ)g3bB2
1

)
B2

1b
2

4(1+2λ)2n(1+γ)2g22
|c1|2

=
B1b

(1 + 2λ)
n

(1 + 2γ) g3

{
1

2

(∣∣c2 − νc21∣∣+ ν |c1|2
)}

. (2.32)

Now applying Lemma 2.2 to equality (2.32), we have∣∣a3 − µa22∣∣+ (µ− σ1) |a2|2 ≤
B1b

(1 + 2λ)n (1 + 2γ) g3
,

which is the inequality (2.30) of Theorem 2.13.
Next, for the values of σ3 ≤ µ ≤ σ2, we have∣∣a3 − µa22∣∣+ (σ2 − µ) |a2|2

= bB1

2(1+2λ)n(1+2γ)g3

∣∣c2 − νc21∣∣+
(

(1+λ)2n(1+γ)2g22(B2+B1)

(1+2λ)n(1+2γ)g3bB2
1
− µ

)
· B2

1b
2

4(1+2λ)2n(1+γ)2g22
|c1|2

=
B1b

(1 + 2λ)
n

(1 + 2γ) g3

{
1

2

( ∣∣c2 − νc21∣∣+ (1− ν) |c1|2
)}

. (2.33)

Now applying Lemma 2.2 to equality (2.33), we have∣∣a3 − µa22∣∣+ (σ2 − µ) |a2|2 ≤
B1b

(1 + 2λ)n (1 + 2γ) g3
,



Fekete-Szegő problem for a new class of analytic functions 35

which is the inequality (2.31). This completes the proof of Theorem 2.13.

Remark 2.14. (i) Specializing the parameters γ, λ, b, n, g and ϕ in Theorem 2.11
and Theorem 2.13, we obtain the corresponding results of the classes Gn (γ, b, A,B) ,
S (f, g; γ, α, b) , Gn (γ, b) , Rb` (A,B) , Mn

λ,q,s([α1]; γ, b;ϕ), Gnλ (f, g; b;ϕ) , Rnλ (f, g; b;ϕ)

and En,ηλ,ρ (f, g; γ;ϕ) , as special cases as defined before.
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