About a class of rational TC-Bézier curves with two shape parameters

Laurian Ioan Pişcoran and Cătălin Barbu

> To the memory of Professor Mircea-Eugen Craioveanu (1942-2012)

Abstract

In this paper, we will study some properties concerning the cubic rational trigonometric Bézier curve attached at a class of cubic trigonometric Bézier curves with two shape parameters (for short TC-Bézier curves) introduced in paper [6].

Mathematics Subject Classification (2010): 65D17, 65D18, 65 U 05.
Keywords: Quadratic trigonometric Bézier curves with shape parameter, fractals, Koch curves.

1. Introduction

In the following lines, we will present some well known results about Bézier curves.

A Bézier curve is defined using the classical Bernstein polynomials, in the following way:

$$
\begin{equation*}
P(t)=\sum_{i=0}^{n} B_{i, n}(t) p_{i} \tag{1.1}
\end{equation*}
$$

where p_{i} with $i=\overline{0, n}$, represent the control points attached to Bézier curve and

$$
B_{i, n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

with $t \in[0,1]$ represent the Bernstein polynomials.
A cubic Bézier curve can be obtained for $n=3$ and have the following form:

$$
P(t)=\binom{3}{0}(1-t)^{3} p_{0}+\binom{3}{1} t(1-t)^{2} p_{1}+\binom{3}{2} t^{2}(1-t) p_{2}+\binom{3}{3} t^{3} p_{3}
$$

or, for short:

$$
P(t)=(1-t)^{3} p_{0}+3 t(1-t)^{2} p_{1}+3 t^{2}(1-t) p_{2}+t^{3} p_{3}
$$

A rational Bézier curve is given by:

$$
\begin{equation*}
x(t)=\frac{w_{0} p_{0} B_{0, n}(t)+\ldots+w_{n} p_{n} B_{n, n}(t)}{w_{0} B_{0, n}(t)+\ldots+w_{n} B_{n, n}(t)} \tag{1.2}
\end{equation*}
$$

Here, w_{i} with $i=\overline{0, n}$ represent the weights of the control points p_{i}. We can rewrite (1.2) in the following way:

$$
\begin{equation*}
x(t)=\frac{\sum_{i=0}^{n} w_{i} p_{i} B_{i, n}(t)}{\sum_{i=0}^{n} w_{i} B_{i, n}(t)} \tag{1.3}
\end{equation*}
$$

The authors of paper [6], H. Liu, L. Li and Z. Daming, have replaced the classical Bernstein base of the cubic Bézier curve with a new one which has 2 parameters λ and μ.

The trigonometric base choosed by the authors of paper [6] for the cubic TC Bézier curve, is:

$$
\left\{\begin{array}{l}
B_{0,3}(t)=1-(1+\lambda) \sin t+\lambda \sin ^{2} t \tag{1.4}\\
B_{1,3}(t)=(1+\lambda) \sin t-(1+\lambda) \sin ^{2} t \\
B_{2,3}(t)=(1+\mu) \cos t-(1+\mu) \cos ^{2} t \\
B_{3,3}(t)=1-(1+\mu) \cos t+\mu \cos ^{2} t
\end{array}\right.
$$

where $t \in\left[0, \frac{\pi}{2}\right]$ and $\lambda, \mu \in[-1,1]$.
Other results concerning classical and trigonometric Bézier curves are obtained in the following papers:[1], [2], [3], [4], [5], [7] and [8].
Next, we will present some important results obtained in paper [6].
Theorem 1.1. ([6]) The basis functions (1.4) have the following properties:
(1) Nonnegativity and partition of unity: $B_{i, 3}(t) \geq 0, i \in\{0,1,2,3\}$.
(2) Monotonicity: For a given parameter $t, B_{0,3}(t)$ and $B_{3,3}(t)$ are monotonically decreasing for the shape parameters λ and μ; respectively; $B_{1,3}(t)$ and $B_{2,3}(t)$ are monotonically increasing for the shape parameters λ and μ; respectively;
(3) Symmetry: $B_{i, 3}(t ; \lambda, \mu)=B_{3-i, 3}\left(\frac{\pi}{2}-t ; \lambda, \mu\right)$ for $i=\overline{0,3}$.

Definition 1.2. ([6]) Given points $p_{i},(i=\overline{0,3})$ in $\mathbb{R}^{2}, \mathbb{R}^{3}$, then

$$
\begin{equation*}
r(t)=\sum_{i=0}^{3} p_{i} B_{i, 3}(t) \tag{1.5}
\end{equation*}
$$

$t \in\left[0, \frac{\pi}{2}\right] ; \lambda, \mu \in[0,1]$, is called a cubic trigonometric Bézier curve with two shape parameters, i.e. the TC-Bézier curve for short.
Theorem 1.3. ([6]) (partial enounce) The cubic TC-Bézier curves (1.5) have the following properties:
(1) Terminal properties:

$$
\left\{\begin{array} { l }
{ r (0) = p _ { 0 } } \\
{ r (\frac { \pi } { 2 }) = p _ { 3 } ; }
\end{array} \quad \left\{\begin{array}{l}
r^{\prime}(0)=(1+\lambda)\left(p_{1}-p_{0}\right) \\
r^{\prime}\left(\frac{\pi}{2}\right)=(1+\mu)\left(p_{3}-p_{2}\right)
\end{array}\right.\right.
$$

$$
\left\{\begin{array}{l}
r^{\prime \prime}(0)=2 \lambda p_{0}-2(1+\lambda) p_{1}+(1+\mu) p_{2}+(1-\mu) p_{3} \\
r^{\prime \prime}\left(\frac{\pi}{2}\right)=(1-\lambda) p_{0}+(1+\lambda) p_{1}-2(1+\mu) p_{2}+2 \mu p_{3}
\end{array}\right.
$$

(2) Symmetry: $p_{0}, p_{1}, p_{2}, p_{3}$ and $p_{3}, p_{2}, p_{1}, p_{0}$ define the same TC-Bézier curve in different parametrizations.
(3) Convex hull property: The entire TC-Bézier segment must lie inside its control polygon spanned by $p_{0}, p_{1}, p_{2}, p_{3}$.

For more details on TC-Bézier curves, please see [6].

2. Main results

Using the TC-Bézier curve presented before in this paper, we can introduce the cubic rational TC-Bézier curves, as follows:

$$
\begin{equation*}
r(t)=\frac{\sum_{i=0}^{3} w_{i} p_{i} B_{i, 3}(t)}{\sum_{i=0}^{3} w_{i} B_{i, 3}(t)} \tag{2.1}
\end{equation*}
$$

with $\lambda, \mu \in[-1,1]$ and w_{i} are the weights of the control points p_{i} with $i=\overline{0,3}$ and $B_{i, 3}(t)$ represent the trigonometric basis introduced in (1.4).

We can rewrite (2.1) in the following way:

$$
r(t)=\frac{\left(1-(1+\lambda) \sin t+\lambda \sin ^{2} t\right) w_{0} p_{0}+(1+\lambda)\left(\sin t-\sin ^{2} t\right) w_{1} p_{1}+(1+\mu)\left(\cos t-\cos ^{2} t\right) w_{2} p_{2}+\left(1-(1+\mu) \cos t+\mu \cos ^{2} t\right) w_{3} p_{3}}{\left(1-(1+\lambda) \sin ^{t+\lambda} \sin ^{2} t\right) w_{0}+(1+\lambda)\left(\sin t-\sin ^{2} t\right) w_{1}+(1+\mu)\left(\cos t-\cos ^{2} t\right) w_{2}+\left(1-(1+\mu) \cos t+\mu \cos ^{2} t\right) w_{3}}
$$ where $\lambda, \mu \in[-1,1], t \in\left[0, \frac{\pi}{2}\right]$.

Theorem 2.1. The curvature in $t=0$ for the rational TC-Bézier curve (2.1), is:

$$
K(0)=\left(\frac{1+\mu}{1+\lambda}\right) \frac{w_{0}}{w_{1}^{2}}\left(w_{3} \frac{\left\|\overline{p_{0} p_{1}} \times \overline{p_{0} p_{3}}\right\|}{\left\|\overline{p_{0} p_{1}}\right\|^{3}}-w_{2} \frac{\left\|\overline{p_{0} p_{1}} \times \overline{p_{0} p_{2}}\right\|}{\left\|\overline{p_{0} p_{1}}\right\|^{3}}\right)
$$

 $\overline{r^{\prime \prime}(t)}$, one obtains for $t=0$, the following result:

$$
\overline{r^{\prime}(0)}=-\frac{w_{1}}{w_{0}}\left(p_{0} \lambda-p_{1} \lambda+p_{0}-p_{1}\right)=-(\lambda+1) \frac{w_{1}}{w_{0}} \overline{p_{0} p_{1}}
$$

Then, we obtain:

$$
\begin{gathered}
\overline{r^{\prime \prime}(0)}=-\frac{1}{w_{0}^{2}}\left[w_{0} w_{2}(1+\mu) \overline{p_{0} p_{2}}-\right. \\
\left.-2\left(w_{1}^{2}+2 w_{1}^{2} \lambda+w_{1}^{2} \lambda^{2}-w_{0} w_{1} \lambda-w_{0} w_{1} \lambda^{2}\right) \overline{p_{0} p_{1}}-w_{0} w_{3}(1+\mu) \overline{p_{0} p_{3}}\right]
\end{gathered}
$$

From the curvature definition, for $t=0$, we know that:

$$
K(0)=\frac{\left\|\overline{r^{\prime}(0)} \times \overline{r^{\prime \prime}(0)}\right\|}{\left\|\overline{r^{\prime}(0)}\right\|^{3}}
$$

Now, we compute:

$$
\begin{gathered}
\overline{r^{\prime}(0)} \times \overline{r^{\prime \prime}(0)}=-\lambda^{2} \frac{w_{1}}{w_{0}^{3}}\left[w_{0} w_{2}(1+\mu)\left(\overline{p_{0} p_{1}} \times \overline{p_{0} p_{2}}-w_{0} w_{3}(1+\mu)\left(\overline{p_{0} p_{1}} \times \overline{p_{0} p_{3}}\right)\right]=\right. \\
\lambda^{2} \frac{w_{1}}{w_{0}^{2}}\left[w_{3}\left(\overline{p_{0} p_{1}} \times \overline{p_{0} p_{3}}\right)-w_{2}\left(\overline{p_{0} p_{1}} \times \overline{p_{0} p_{2}}\right)\right]
\end{gathered}
$$

Also, one obtains:

$$
\left\|\overline{r^{\prime}(0)}\right\|^{3}=\lambda^{3} \frac{w_{1}^{3}}{w_{0}^{3}}\left\|\overline{p_{0} p_{1}}\right\|^{3}
$$

Finally, we get:

$$
\begin{aligned}
K(0) & =\frac{\lambda^{2} \frac{w_{0} w_{1}}{w_{0}^{3}}\left[w_{3}(1+\mu)\left\|\overline{p_{0} p_{1}} \times \overline{p_{0} p_{3}}\right\|-w_{2}(1+\mu)\left\|\overline{p_{0} p_{1}} \times \overline{p_{0} p_{2}}\right\|\right]}{\lambda^{3} \frac{w_{1}^{3}}{w_{0}^{3}}\left\|\overline{p_{0} p_{1}}\right\|^{3}} \\
& =\left(\frac{1+\mu}{1+\lambda}\right) \frac{w_{0}}{w_{1}^{2}}\left(w_{3} \frac{\left\|\overline{p_{0} p_{1}} \times \overline{p_{0} p_{3}}\right\|}{\left\|\overline{p_{0} p_{1}}\right\|^{3}}-w_{2} \frac{\left\|\overline{p_{0} p_{1}} \times \overline{p_{0} p_{2}}\right\|}{\left\|\overline{p_{0} p_{1}}\right\|^{3}}\right)
\end{aligned}
$$

and this complete the proof.
Remark 2.2. For the particular case, when we have the same weights $w_{0}=w_{1}$, one obtains one of the well known results from Theorem 1.3, which was:

$$
r^{\prime}(0)=(1+\lambda)\left(p_{1}-p_{0}\right)
$$

Next, we will reparametrizate the TC-Bézier rational curve and we take $t=\arcsin (u)$ with $t \in[0,1] \subset\left[0, \frac{\pi}{2}\right]$.
After reparametrization, we get:

$$
\begin{equation*}
r(t)=\frac{\left(1-(1+\lambda) u+\lambda u^{2}\right) w_{0} p_{0}+(1+\lambda)\left(u-u^{2}\right) w_{1} p_{1}+(1+\mu)\left(\sqrt{1-u^{2}}-1+u^{2}\right) w_{2} p_{2}+\left(1-(1+\mu) \sqrt{1-u^{2}}+\mu\left(1-u^{2}\right) w_{3} p_{3}\right.}{\left(1-(1+\lambda) u+\lambda u^{2}\right) w_{0}+(1+\lambda)\left(u-u^{2}\right) w_{1}+(1+\mu)\left(\sqrt{1-u^{2}}-1+u^{2}\right) w_{2}+\left(1-(1+\mu) \sqrt{\left.1-u^{2}+\mu\left(1-u^{2}\right)\right) w_{3}}\right.} \tag{2.2}
\end{equation*}
$$

Remark 2.3. For $\lambda=\mu=1$, in the above expression (2.2), one obtains the following TC-Bézier rational curve:

$$
\begin{equation*}
r(t)=\frac{(1-u)^{2} w_{0} p_{0}+2\left(u-u^{2}\right) w_{1} p_{1}+2\left(\sqrt{1-u^{2}}-1+u^{2}\right) w_{2} p_{2}+\left(1-\sqrt{1-u^{2}}\right)^{2} w_{3} p_{3}}{\left.(1-u)^{2} w_{0}+2\left(u-u^{2}\right)\right) w_{1}+2\left(\sqrt{1-u^{2}}-1+u^{2}\right) w_{2}+\left(1-\sqrt{1-u^{2}}\right)^{2} w_{3}} \tag{2.3}
\end{equation*}
$$

Theorem 2.4. The hodograph of the TC-Bézier rational curve (2.3), for $u=0$, is

$$
2 \frac{w_{1}}{w_{0}}\left(p_{1}-p_{0}\right)
$$

Proof. We start with the above expression of the TC-Bézier rational curve (2.3), and we compute:

$$
\begin{aligned}
& \overline{r^{\prime}(u)}=\frac{-2(1-u) w_{0} p_{0}+(2-4 u) w_{1} p_{1}+\left(-\frac{2 u}{\sqrt{\left(1-u^{2}\right)}}+4 u\right) w_{2} p_{2}+\frac{2\left(1-\sqrt{1-u^{2}}\right) w_{3} p_{3} u}{\sqrt{1-u^{2}}}}{(1-u)^{2} w_{0}+\left(2 u-2 u^{2}\right) w_{1}+\left(2 \sqrt{1-u^{2}}+2 u^{2}-2\right) w_{2}+\left(1-\sqrt{1-u^{2}}\right)^{2} w_{3}} \\
& -\frac{(1-u)^{2} w_{0} p_{0}+\left(2 u-2 u^{2}\right) w_{1} p_{1}+\left(2 \sqrt{1-u^{2}}+2 u^{2}-2\right) w_{2} p_{2}+\left(1-\sqrt{1-u^{2}}\right)^{2} w_{3} p_{3} .}{(1-u)^{2} w_{0}+\left(2 u-2 u^{2}\right) w_{1}+\left(2 \sqrt{\left.1-u^{2}+2 u^{2}-2\right) w_{2}+\left(1-\sqrt{1-u^{2}}\right)^{2} w_{3}} .\right.} \\
& \cdot\left(-2(1-u) w_{0} p_{0}+(2-4 u) w_{1} p_{1}+\left(-\frac{2 u}{\sqrt{\left(1-u^{2}\right)}}+4 u\right) w_{2} p_{2}+\frac{2\left(1-\sqrt{1-u^{2}}\right) w_{3} p_{3} u}{\sqrt{1-u^{2}}}\right)
\end{aligned}
$$

Replacing in the above expression $u=0$, we get:

$$
\begin{equation*}
2 \frac{w_{1}}{w_{0}}\left(p_{1}-p_{0}\right) \tag{2.4}
\end{equation*}
$$

and this end the proof of the theorem.
Remark 2.5. The hodograph of the classical rational Bézier curve for $u=0$ is

$$
3 \frac{w_{1}}{w_{0}}\left(p_{1}-p_{0}\right)
$$

and this is a closed result obtained by us in (2.4).
Conclusion. In this paper we proved that the two shape parameters of one TC-Bézier rational curve have a key role when we compute the curvature of the curve. The computation of the torsion for this class of TC-Bézier rational curve is not an easy task. In a future paper we will try to continue our investigations on TC-Bézier rational curves.

References

[1] Farin, G.E., Curves and surfaces for computer-aided geometric design: a practical code, Academic Press Inc., 1996
[2] Han, X., Quadratic trigonometric polynomial curves with a shape parameter, Computer Aided Geometric Design, 19(7)(2002), 479-502.
[3] Han, X., Cubic Trigonometric Polynomial Curves with a Shape parameter, Computer Aided Geometric Design, 21(6)(2004), 535-548.
[4] Han, X., C2 Quadratic trigonometric polynomial curves with local bias, Journal of Computational and Applied Math., 180(1)(2005), 161-172.
[5] Han, X., Ma, Y., Huang, L., The cubic trigonometric Bézier curve with two shape parameters, Applied Math. Letters, 22 (2)(2009)(2), 226-231.
[6] Liu, H., Li, L., Zhang, D., Study on a class of TC-Bézier curve with shape parameters, Journal of Information and Computational Science, 8(7)(2011), 1217-1223.
[7] Sarfraz, M., Khan, M., Automatic outline capture of arabic fonts, Journal of Information Sciences, 140(3)(2002), 269-281.
[8] Uzma, B., Abbas, M., Awang, M., Ali, J., The quadratic trigonometric Bézier curve with single shape parameter, Journal of Basic and Applied Scientific Research, 2(3)(2012), 2541-2546.

Laurian Ioan Pişcoran
Technical University of Cluj-Napoca
North University Center of Baia Mare
Department of Mathematics and Computer Science
Victoriei 76, 430122 Baia Mare, Romania
e-mail: plaurian@yahoo.com

Cătălin Barbu
"Vasile Alecsandri" National College
Bacău, str. Vasile Alecsandri nr. 37
600011 Bacău, Romania
e-mail: kafka_mate@yahoo.com

