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The equiform differential geometry of curves
in 4-dimensional galilean space G4

M. Evren Aydin and Mahmut Ergüt

Abstract. In this paper, we establish equiform differential geometry of curves in 4-
dimensional Galilean space G4. We obtain the angle between the equiform Frenet
vectors and their derivatives in G4. Also, we characterize generalized helices with
respect to their equiform curvatures.
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1. Introduction

Differential geometry of the Galilean space G3 has been largely developed in O.
Röschel’s paper [12]. The Frenet formulas of a curve in 4-dimensional Galilean space
G4 are given by [13]. The helices in G3 are characterized by [8]. The equiform differen-
tial geometry of isotropic spaces and Galilean-pseudo Galilean spaces are represented
by [9, 4, 5]. In this paper, we construct equiform differential geometry of curves in
G4.

The Galilean space is three dimensional complex projective space, P3, in which
absolute figure {w, f, I1, I2} consist of a real plane w (absolute plane), a real line
f ⊂ w (absolute line) and two complex conjugate points, I1, I2 ∈ f (absolute points)
[7].

The equiform geometry of Cayley - Klein space is defined by requesting that
similarity group of the space preserves angles between planes and lines, respectively.
Cayley-Klein geometries are studied for many years. However, they recently have
become interesting again since their importance for other fields, like soliton theory
[11], have been rediscovered. The positive aspect of this paper is the equiform Frenet
formulas and equiform curvatures of G3 to generalize these of G4.
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2. Preliminaries

Four-dimensional Galilean geometry can be described as the study of properties
of four-dimensional space with coordinates that are invariant under general Galilean
transformations

x′ = (cos β cos α− cos γ sinβ sinα) x + (sinβ cos α− cos γ sinβ sinα) y

+(sin γ sinα) z + (v cos δ1) t + a,

y′ = − (cos β sinα + cos γ sinβ cos α) x + (− sinβ sinα− cos γ cos β cos α) y

+(sin γ cos α) z + (v cos δ2) t + b,

z′ = (sin γ sinβ) x− (sin γ cos β) y + (cos γ) z + (v cos δ3) t + c,

t′ = t + d,

where cos2 δ1 + cos2 δ2 + cos2 δ3 = 1.

Given two vectors −→α and
−→
β with the coordinates (α1, α2, α3, α4) and (β1, β2, β3, β4),

respectively, then the Galilean scalar product g between the vectors is defined as
follows

g
(−→α ,

−→
β

)
=

{
α1β1, if α1 6= 0 or β1 6= 0,
α2β2 + α3β3 + α4β4, if α1 = 0 and β1 = 0.

(2.1)

For the vectors −→α ,
−→
β ,−→γ with the coordinates (α1, α2, α3, α4) , (β1, β2, β3, β4) ,

(γ1, γ2, γ3, γ4) , the cross product of G4 given by

−→α ×G
−→
β ×G

−→γ =

∣∣∣∣∣∣∣∣
0 −→e 2

−→e 3
−→e 4

α1 α2 α3 α4

β1 β2 β3 β4

γ1 γ2 γ3 γ4

∣∣∣∣∣∣∣∣ , (2.2)

where −→e i are the standard basis vectors.
Let C : I ⊂ R −→ G4 be a curve, parametrized by the invariant parameter

s = x, is given in the coordinate form

C (s) = (s, c1 (s) , c2 (s) , c3 (s)) ,

the Frenet vector fields of the curve C defined by

V1 = (1, ċ1, ċ2, ċ3) ,

V2 =
1
k1

(0, c̈1, c̈2, c̈3) ,

V3 =
1
k2

0,
d

(
1
k1

c̈1

)
ds

,
d

(
1
k1

c̈2

)
ds

,
d

(
1
k1

c̈3

)
ds

 , (2.3)

V4 = V1 ×G V2 ×G V3,
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where k1, k2, k3 are the first, second and third curvature functions, respectively,
defined by

k1 =
(
(c̈1)

2 + (c̈2)
2 + (c̈3)

2
) 1

2
,

k2 =
[
g

(
V̇2, V̇2

)] 1
2

, (2.4)

k3 = g
(
V̇3, V4

)
,

where the derivative with respect to s denote by a dot. Thus, the Frenet equations of
G4 given by as follows ([13])

V̇1 = k1V2,

V̇2 = k2V3,

V̇3 = −k2V2 + k3V4,

V̇4 = −k3V3.

3. Frenet formulas in equiform geometry of G4

Let C : I ⊂ R −→ G4 be a curve parametrized by arclength s. The equiform
parameter of the curve C (s) defined by

σ =
∫

ds

ρ
, (3.1)

where ρ = 1
k1

is radius of curvature of the curve. Considering the equation (3.1) , it
is written that

ds

dσ
= ρ. (3.2)

Suppose that h is a homothety with the center in the origin and the coefficient
λ. If we take C̃ = h(C), then it can easily be seen that

s̃ = λs and ρ̃ = λρ, (3.3)

where s̃ is the arc-length parameter of C̃ and ρ̃ the radius of curvature of this curve.
Hence σ is an equiform invariant parameter of C.
Remark 3.1. Denote by k1, k2, k3 the curvature functions of the curve C. Then, the
curvatures k1, k2, k3 are not invariants of the homothety group, because from (2.4) ,
it follows that

k̃1 =
1
λ

k1, k̃2 =
1
λ

k2, k̃3 =
1
λ

k3.

Now, if we get

V1 =
dC

dσ
, (3.4)

then using (2.1), we have
V1 = ρV1. (3.5)
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Also, we define the vectors V2, V3, V4 by

V2 = ρV2, V3 = ρV3, V4 = ρV4 (3.6)

Thus, {V1, V2, V3, V4} is an equiform invariant tetrahedron of the curve C.
Now, we will find the derivatives of these vectors with respect to σ using by

(3.2) , (3.4) and (3.6) . For this purpose, it can be written that

V′
1 =

d

dσ
(V1) = ρ̇V1 + V2.

Similarly, we obtain

V′
2 =

dV2

dσ
= ρ̇V2 +

k2

k1
V3,

V′
3 =

dV3

dσ
= −k2

k1
V2 + ρ̇V3 +

k3

k1
V4,

V′
4 =

dV4

dσ
= −k3

k1
V3 + ρ̇V4,

where the derivatives of the vectors V1, V2, V3, V4 with respect to σ are denoted by
a dash (′) .
Definition 3.2. The function Ki : I −→ R (i = 1, 2, 3) is defined by

K1 = ρ̇, K2 =
k2

k1
, K3 =

k3

k1
(3.7)

is called i.th equiform curvature of the curve C. It is easy to prove that Ki is differential
invariant of the group of equiform transformations.

Thus the formulas analogous to famous the Frenet formulas in the equiform
geometry of the Galilean 4−space G4 have the following form:

V′
1 = K1V1 + V2,

V′
2 = K1V2 + K2V3,

V′
3 = −K2V2 + K1V3 + K3V4, (3.8)

V′
4 = −K3V3 + K1V4,

where the functions K1, K2, K3 is the equiform curvatures of this curve.
These formulas can be written in matrix form as follows:

V′
1

V′
2

V′
3

V′
4

 =


K1 1 0 0
0 K1 K2 0
0 −K2 K1 K3

0 0 −K3 K1




V1

V2

V3

V4


Because of the equiform Frenet formulas (3.8) , the below equalities regarding

equiform curvatures can be given

Ki =


1
ρ2

g
(
V′

j , Vj

)
, (j = 1, 2, 3, 4) , for i = 1,

1
ρ2

g (V′
i, Vi+1) = − 1

ρ2
g

(
Vi, V′

i+1

)
, for i = 2, 3,

(3.9)
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where ρ = 1
k1

is radius of curvature of C.

Theorem 3.3. Let C : I ⊂ R −→ G4 be a curve parametrized by arclength s,
{V1, V2, V3, V4} be the equiform invariant tetrahedron and the function Ki : I −→ R
(i = 1, 2, 3) be i.th equiform curvature of the curve C. Then for 1 ≤ i ≤ 4, the angle
between the vectors Vi and V′

i is given as follows

] (Vi, V′
i) =



ρ
√

K2
1 − 2K1 + 2 for i = 1,

arccos
(

K1√
K2

1+K2
2

)
, for i = 2,

arccos
(

K1√
K2

1+K2
2+K2

3

)
, for i = 3,

arccos
(

K1√
K2

1+K2
3

)
, for i = 4

(3.10)

Proof. For i = 1, let θ1 be the angle between the vectors V1 and V′
1. Since these

vectors are non-isotropic, it is obtained as follows

θ1 = [g (V1 − V′
1, V1 − V′

1)]
1
2

= ρ
√

K2
1 − 2K1 + 2.

For i = 2, denote by θ2, the angle between the vectors V2 and V′
2. The vectors

V2 and V′
2 are isotropic and we have

cos θ2 =
g (V2, V′

2)

[g (V2, V2)]
1
2 [g (V′

2, V′
2)]

1
2

=
K1√

K2
1 + K2

2

.

The others are obtained in a similar way.

4. The characterizations of the curves

The equiform curvatures Ki (i = 1, 2, 3) in G4 have important geometric inter-
pretation. For example,

(i) The equiform curvatures of a curve have following form

K2 = const., K3 = const., (4.1)

if and only if the curve is generalized helix. Here, we do not set condition on K1.
(ii) If (4.1) holds and K1 is identically zero, then the curve is a W−curve.
Now, we present a few characterizations regarding a curve in G4 with respect to

the its equiform curvatures.
Theorem 4.1. Let C be a curve in G4 with the equiform invariant tetrahedron
{V1, V2, V3, V4} and with equiform curvatures K1 6= 0. Then C has K2 ≡ 0 if and
only if C lies fully in a 2-dimensional subspace of G4.
Theorem 4.2. Let C be a curve in G4 with the equiform invariant tetrahedron
{V1, V2, V3, V4} and with equiform curvatures K1, K2 6= 0. Then C has K3 ≡ 0 if
and only if C lies fully in a hyperplane of G4.
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Proof. If C has K3 ≡ 0, then from (3.8) , we have

C ′ = V1,

C ′′ = K1V1 + V2,

C ′′′ =
(
ρK̇1 + K2

1

)
V1 + 2K1V2 + K2V3,

C(4) =

d
(
ρK̇1 + K2

1

)
dσ

+
(
ρK̇1 + K2

1

)
K1

 V1

+
(
ρK̇1 + 3K2

1 + 2ρK̇1 −K2
2

)
V2

+
(
3K1K2 + ρK̇2

)
V3.

Hence, by using Mclauren expansion for C, given by

C (σ) = C (0) + C ′ (0)σ + C ′′ (0)
σ2

2!
+ C ′′′ (0)

σ3

3!
+, ...,

we obtain that C lies fully in a hyperplane of G4 by spanned

{C ′ (0) , C ′′ (0) , C ′′′ (0)} .

Conversely, we suppose that C lies fully in a hyperplane Γ of G4. Then, there
exist the points p, q ∈ G4 such that C satisfies the equation of Γ given by

g (C (σ)− p, q) = 0, (4.2)

where q ∈ Γ⊥. Differentiating (4.2) with respect to σ, we can write

g (C ′, q) = g (C ′′, q) = g (C ′′′, q) = 0.

Since
C ′ = V1 and C ′′ = K1V1 + V2,

it follows that
g (V1, q) = g (V2, q) = 0. (4.3)

Similarly, we have
g (V3, q) = 0. (4.4)

Again, differentiating (4.4)

0 = g (−K2V2 + K1V3 + K3V4, q)
0 = K3g (V4, q) ,

because V4 is the only vector perpendicular to {V1, V2, V3} , we obtain

K3 = 0,

this completes the proof. �
Last, we give a characterization for a generalized helix in G4 with respect to the

curvatures in equiform geometry.
Theorem 4.3. Let C be a curve with equiform invariant vector V3 in the equiform
geometry of G4 is a generalized helix if and only if

V′′
3 + ϕ1V3 = ϕ2V2 + ϕ3V4, (4.5)
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where ϕ1 = K2
2 + K2

3 −K2
1 − ρK̇1, ϕ2 = −2K1K2 and ϕ3 = 2K1K3.

Proof. Suppose that the curve C is a generalized helix. Thus, we have

K2 = const. and K3 = const. (4.6)

From (3.8) and (4.6) , it is easy to prove that the equation (4.5) is satisfied.
Conversely, we assume that the equation (4.5) holds. Then from (3.8) , it follows

that
V′

3 = −K2V2 + K1V3 + K3V4, (4.7)
and differentiating (4.7) with respect to σ

V′′
3 =

(
−ρK̇2 − 2K1K2

)
V2

+
(
ρK̇1 + K2

1 −K2
2 −K2

3

)
V3

+
(
ρK̇3 + 2K1K3

)
V4,

so, we obtain
K̇2 = 0 and K̇3 = 0

which completes the proof. �
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