The equiform differential geometry of curves in 4-dimensional galilean space \mathbb{G}_{4}

M. Evren Aydin and Mahmut Ergüt

Abstract

In this paper, we establish equiform differential geometry of curves in 4dimensional Galilean space \mathbb{G}_{4}. We obtain the angle between the equiform Frenet vectors and their derivatives in \mathbb{G}_{4}. Also, we characterize generalized helices with respect to their equiform curvatures.

Mathematics Subject Classification (2010): 53A35.
Keywords: Equiform geometry, generalized helices.

1. Introduction

Differential geometry of the Galilean space \mathbb{G}_{3} has been largely developed in O. Röschel's paper [12]. The Frenet formulas of a curve in 4-dimensional Galilean space \mathbb{G}_{4} are given by [13]. The helices in \mathbb{G}_{3} are characterized by [8]. The equiform differential geometry of isotropic spaces and Galilean-pseudo Galilean spaces are represented by $[9,4,5]$. In this paper, we construct equiform differential geometry of curves in \mathbb{G}_{4}.

The Galilean space is three dimensional complex projective space, \mathbb{P}_{3}, in which absolute figure $\left\{w, f, I_{1}, I_{2}\right\}$ consist of a real plane w (absolute plane), a real line $f \subset w$ (absolute line) and two complex conjugate points, $I_{1}, I_{2} \in f$ (absolute points) [7].

The equiform geometry of Cayley - Klein space is defined by requesting that similarity group of the space preserves angles between planes and lines, respectively. Cayley-Klein geometries are studied for many years. However, they recently have become interesting again since their importance for other fields, like soliton theory [11], have been rediscovered. The positive aspect of this paper is the equiform Frenet formulas and equiform curvatures of \mathbb{G}_{3} to generalize these of \mathbb{G}_{4}.

2. Preliminaries

Four-dimensional Galilean geometry can be described as the study of properties of four-dimensional space with coordinates that are invariant under general Galilean transformations

$$
\begin{aligned}
x^{\prime}= & (\cos \beta \cos \alpha-\cos \gamma \sin \beta \sin \alpha) x+(\sin \beta \cos \alpha-\cos \gamma \sin \beta \sin \alpha) y \\
& +(\sin \gamma \sin \alpha) z+\left(v \cos \delta_{1}\right) t+a, \\
y^{\prime}= & -(\cos \beta \sin \alpha+\cos \gamma \sin \beta \cos \alpha) x+(-\sin \beta \sin \alpha-\cos \gamma \cos \beta \cos \alpha) y \\
& +(\sin \gamma \cos \alpha) z+\left(v \cos \delta_{2}\right) t+b, \\
z^{\prime}= & (\sin \gamma \sin \beta) x-(\sin \gamma \cos \beta) y+(\cos \gamma) z+\left(v \cos \delta_{3}\right) t+c, \\
t^{\prime}= & t+d,
\end{aligned}
$$

where $\cos ^{2} \delta_{1}+\cos ^{2} \delta_{2}+\cos ^{2} \delta_{3}=1$.
Given two vectors $\vec{\alpha}$ and $\vec{\beta}$ with the coordinates $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ and $\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$, respectively, then the Galilean scalar product g between the vectors is defined as follows

$$
g(\vec{\alpha}, \vec{\beta})= \begin{cases}\alpha_{1} \beta_{1}, & \text { if } \alpha_{1} \neq 0 \text { or } \beta_{1} \neq 0 \tag{2.1}\\ \alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}+\alpha_{4} \beta_{4}, & \text { if } \alpha_{1}=0 \text { and } \beta_{1}=0\end{cases}
$$

For the vectors $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ with the coordinates $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$, $\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$, $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)$, the cross product of \mathbb{G}_{4} given by

$$
\vec{\alpha} \times_{\mathbb{G}} \vec{\beta} \times_{\mathbb{G}} \vec{\gamma}=\left|\begin{array}{cccc}
0 & \vec{e}_{2} & \vec{e}_{3} & \vec{e}_{4} \tag{2.2}\\
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\
\beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} \\
\gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4}
\end{array}\right|
$$

where \vec{e}_{i} are the standard basis vectors.
Let $C: I \subset \mathbb{R} \longrightarrow \mathbb{G}_{4}$ be a curve, parametrized by the invariant parameter $s=x$, is given in the coordinate form

$$
C(s)=\left(s, c_{1}(s), c_{2}(s), c_{3}(s)\right),
$$

the Frenet vector fields of the curve C defined by

$$
\begin{align*}
& V_{1}=\left(1, \dot{c}_{1}, \dot{c}_{2}, \dot{c}_{3}\right) \\
& V_{2}=\frac{1}{k_{1}}\left(0, \ddot{c}_{1}, \ddot{c}_{2}, \ddot{c}_{3}\right) \\
& V_{3}=\frac{1}{k_{2}}\left(0, \frac{d\left(\frac{1}{k_{1}} \ddot{c}_{1}\right)}{d s}, \frac{d\left(\frac{1}{k_{1}} \ddot{c}_{2}\right)}{d s}, \frac{d\left(\frac{1}{k_{1}} \ddot{c}_{3}\right)}{d s}\right), \tag{2.3}\\
& V_{4}=V_{1} \times_{\mathbb{G}} V_{2} \times_{\mathbb{G}} V_{3}
\end{align*}
$$

where k_{1}, k_{2}, k_{3} are the first, second and third curvature functions, respectively, defined by

$$
\begin{align*}
k_{1} & =\left(\left(\ddot{c}_{1}\right)^{2}+\left(\ddot{c}_{2}\right)^{2}+\left(\ddot{c}_{3}\right)^{2}\right)^{\frac{1}{2}} \\
k_{2} & =\left[g\left(\dot{V}_{2}, \dot{V}_{2}\right)\right]^{\frac{1}{2}} \tag{2.4}\\
k_{3} & =g\left(\dot{V}_{3}, V_{4}\right)
\end{align*}
$$

where the derivative with respect to s denote by a dot. Thus, the Frenet equations of \mathbb{G}_{4} given by as follows ([13])

$$
\begin{aligned}
\dot{V}_{1} & =k_{1} V_{2} \\
\dot{V}_{2} & =k_{2} V_{3} \\
\dot{V}_{3} & =-k_{2} V_{2}+k_{3} V_{4} \\
\dot{V}_{4} & =-k_{3} V_{3}
\end{aligned}
$$

3. Frenet formulas in equiform geometry of \mathbb{G}_{4}

Let $C: I \subset \mathbb{R} \longrightarrow \mathbb{G}_{4}$ be a curve parametrized by arclength s. The equiform parameter of the curve $C(s)$ defined by

$$
\begin{equation*}
\sigma=\int \frac{d s}{\rho} \tag{3.1}
\end{equation*}
$$

where $\rho=\frac{1}{k_{1}}$ is radius of curvature of the curve. Considering the equation (3.1), it is written that

$$
\begin{equation*}
\frac{d s}{d \sigma}=\rho \tag{3.2}
\end{equation*}
$$

Suppose that h is a homothety with the center in the origin and the coefficient λ. If we take $\tilde{C}=h(C)$, then it can easily be seen that

$$
\begin{equation*}
\tilde{s}=\lambda s \quad \text { and } \quad \tilde{\rho}=\lambda \rho, \tag{3.3}
\end{equation*}
$$

where \tilde{s} is the arc-length parameter of \tilde{C} and $\tilde{\rho}$ the radius of curvature of this curve. Hence σ is an equiform invariant parameter of C.
Remark 3.1. Denote by k_{1}, k_{2}, k_{3} the curvature functions of the curve C. Then, the curvatures k_{1}, k_{2}, k_{3} are not invariants of the homothety group, because from (2.4), it follows that

$$
\tilde{k}_{1}=\frac{1}{\lambda} k_{1}, \tilde{k}_{2}=\frac{1}{\lambda} k_{2}, \tilde{k}_{3}=\frac{1}{\lambda} k_{3} .
$$

Now, if we get

$$
\begin{equation*}
\mathbb{V}_{1}=\frac{d C}{d \sigma} \tag{3.4}
\end{equation*}
$$

then using (2.1), we have

$$
\begin{equation*}
\mathbb{V}_{1}=\rho V_{1} \tag{3.5}
\end{equation*}
$$

Also, we define the vectors $\mathbb{V}_{2}, \mathbb{V}_{3}, \mathbb{V}_{4}$ by

$$
\begin{equation*}
\mathbb{V}_{2}=\rho V_{2}, \quad \mathbb{V}_{3}=\rho V_{3}, \quad \mathbb{V}_{4}=\rho V_{4} \tag{3.6}
\end{equation*}
$$

Thus, $\left\{\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}, \mathbb{V}_{4}\right\}$ is an equiform invariant tetrahedron of the curve C.
Now, we will find the derivatives of these vectors with respect to σ using by (3.2), (3.4) and (3.6). For this purpose, it can be written that

$$
\mathbb{V}_{1}^{\prime}=\frac{d}{d \sigma}\left(\mathbb{V}_{1}\right)=\dot{\rho} \mathbb{V}_{1}+\mathbb{V}_{2}
$$

Similarly, we obtain

$$
\begin{aligned}
\mathbb{V}_{2}^{\prime} & =\frac{d \mathbb{V}_{2}}{d \sigma}=\dot{\rho} \mathbb{V}_{2}+\frac{k_{2}}{k_{1}} \mathbb{V}_{3}, \\
\mathbb{V}_{3}^{\prime} & =\frac{d \mathbb{V}_{3}}{d \sigma}=-\frac{k_{2}}{k_{1}} \mathbb{V}_{2}+\dot{\rho} \mathbb{V}_{3}+\frac{k_{3}}{k_{1}} \mathbb{V}_{4}, \\
\mathbb{V}_{4}^{\prime} & =\frac{d \mathbb{V}_{4}}{d \sigma}=-\frac{k_{3}}{k_{1}} \mathbb{V}_{3}+\dot{\rho} \mathbb{V}_{4},
\end{aligned}
$$

where the derivatives of the vectors $\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}, \mathbb{V}_{4}$ with respect to σ are denoted by a dash (${ }^{\prime}$).
Definition 3.2. The function $\mathbb{K}_{i}: I \longrightarrow \mathbb{R}(i=1,2,3)$ is defined by

$$
\begin{equation*}
\mathbb{K}_{1}=\dot{\rho}, \mathbb{K}_{2}=\frac{k_{2}}{k_{1}}, \mathbb{K}_{3}=\frac{k_{3}}{k_{1}} \tag{3.7}
\end{equation*}
$$

is called $i . t h$ equiform curvature of the curve C. It is easy to prove that \mathbb{K}_{i} is differential invariant of the group of equiform transformations.

Thus the formulas analogous to famous the Frenet formulas in the equiform geometry of the Galilean 4 -space \mathbb{G}_{4} have the following form:

$$
\begin{align*}
\mathbb{V}_{1}^{\prime} & =\mathbb{K}_{1} \mathbb{V}_{1}+\mathbb{V}_{2}, \\
\mathbb{V}_{2}^{\prime} & =\mathbb{K}_{1} \mathbb{V}_{2}+\mathbb{K}_{2} \mathbb{V}_{3}, \\
\mathbb{V}_{3}^{\prime} & =-\mathbb{K}_{2} \mathbb{V}_{2}+\mathbb{K}_{1} \mathbb{V}_{3}+\mathbb{K}_{3} \mathbb{V}_{4}, \tag{3.8}\\
\mathbb{V}_{4}^{\prime} & =-\mathbb{K}_{3} \mathbb{V}_{3}+\mathbb{K}_{1} \mathbb{V}_{4},
\end{align*}
$$

where the functions $\mathbb{K}_{1}, \mathbb{K}_{2}, \mathbb{K}_{3}$ is the equiform curvatures of this curve.
These formulas can be written in matrix form as follows:

$$
\left[\begin{array}{c}
\mathbb{V}_{1}^{\prime} \\
\mathbb{V}_{2}^{\prime} \\
\mathbb{V}_{3}^{\prime} \\
\mathbb{V}_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbb{K}_{1} & 1 & 0 & 0 \\
0 & \mathbb{K}_{1} & \mathbb{K}_{2} & 0 \\
0 & -\mathbb{K}_{2} & \mathbb{K}_{1} & \mathbb{K}_{3} \\
0 & 0 & -\mathbb{K}_{3} & \mathbb{K}_{1}
\end{array}\right]\left[\begin{array}{c}
\mathbb{V}_{1} \\
\mathbb{V}_{2} \\
\mathbb{V}_{3} \\
\mathbb{V}_{4}
\end{array}\right]
$$

Because of the equiform Frenet formulas (3.8), the below equalities regarding equiform curvatures can be given

$$
\mathbb{K}_{i}=\left\{\begin{array}{l}
\frac{1}{\rho_{2}^{2}} g\left(\mathbb{V}_{j}^{\prime}, \mathbb{V}_{j}\right), \quad(j=1,2,3,4), \quad \text { for } i=1 \tag{3.9}\\
\frac{1}{\rho^{2}} g\left(\mathbb{V}_{i}^{\prime}, \mathbb{V}_{i+1}\right)=-\frac{1}{\rho^{2}} g\left(\mathbb{V}_{i}, \mathbb{V}_{i+1}^{\prime}\right), \quad \text { for } i=2,3,
\end{array}\right.
$$

where $\rho=\frac{1}{k_{1}}$ is radius of curvature of C.
Theorem 3.3. Let $C: I \subset \mathbb{R} \longrightarrow \mathbb{G}_{4}$ be a curve parametrized by arclength s, $\left\{\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}, \mathbb{V}_{4}\right\}$ be the equiform invariant tetrahedron and the function $\mathbb{K}_{i}: I \longrightarrow \mathbb{R}$ $(i=1,2,3)$ be $i . t h$ equiform curvature of the curve C. Then for $1 \leq i \leq 4$, the angle between the vectors \mathbb{V}_{i} and \mathbb{V}_{i}^{\prime} is given as follows

$$
\measuredangle\left(\mathbb{V}_{i}, \mathbb{V}_{i}^{\prime}\right)= \begin{cases}\rho \sqrt{\mathbb{K}_{1}^{2}-2 \mathbb{K}_{1}+2} & \text { for } i=1, \tag{3.10}\\ \arccos \left(\frac{\mathbb{K}_{1}}{\sqrt{\mathbb{K}_{1}^{2}+\mathbb{K}_{2}^{2}}}\right), & \text { for } i=2, \\ \arccos \left(\frac{\mathbb{K}_{1}}{\sqrt{\mathbb{K}_{1}^{2}+\mathbb{K}_{2}^{2}+\mathbb{K}_{3}^{2}}}\right), & \text { for } i=3, \\ \arccos \left(\frac{\mathbb{K}_{1}}{\sqrt{\mathbb{K}_{1}^{2}+\mathbb{K}_{3}^{2}}}\right), & \text { for } i=4\end{cases}
$$

Proof. For $i=1$, let θ_{1} be the angle between the vectors \mathbb{V}_{1} and \mathbb{V}_{1}^{\prime}. Since these vectors are non-isotropic, it is obtained as follows

$$
\begin{aligned}
\theta_{1} & =\left[g\left(\mathbb{V}_{1}-\mathbb{V}_{1}^{\prime}, \mathbb{V}_{1}-\mathbb{V}_{1}^{\prime}\right)\right]^{\frac{1}{2}} \\
& =\rho \sqrt{\mathbb{K}_{1}^{2}-2 \mathbb{K}_{1}+2}
\end{aligned}
$$

For $i=2$, denote by θ_{2}, the angle between the vectors \mathbb{V}_{2} and \mathbb{V}_{2}^{\prime}. The vectors \mathbb{V}_{2} and \mathbb{V}_{2}^{\prime} are isotropic and we have

$$
\begin{aligned}
\cos \theta_{2} & =\frac{g\left(\mathbb{V}_{2}, \mathbb{V}_{2}^{\prime}\right)}{\left[g\left(\mathbb{V}_{2}, \mathbb{V}_{2}\right)\right]^{\frac{1}{2}}\left[g\left(\mathbb{V}_{2}^{\prime}, \mathbb{V}_{2}^{\prime}\right)\right]^{\frac{1}{2}}} \\
& =\frac{\mathbb{K}_{1}}{\sqrt{\mathbb{K}_{1}^{2}+\mathbb{K}_{2}^{2}}}
\end{aligned}
$$

The others are obtained in a similar way.

4. The characterizations of the curves

The equiform curvatures $\mathbb{K}_{i}(i=1,2,3)$ in \mathbb{G}_{4} have important geometric interpretation. For example,
(i) The equiform curvatures of a curve have following form

$$
\begin{equation*}
\mathbb{K}_{2}=\text { const., } \mathbb{K}_{3}=\text { const., } \tag{4.1}
\end{equation*}
$$

if and only if the curve is generalized helix. Here, we do not set condition on \mathbb{K}_{1}.
(ii) If (4.1) holds and \mathbb{K}_{1} is identically zero, then the curve is a W-curve.

Now, we present a few characterizations regarding a curve in \mathbb{G}_{4} with respect to the its equiform curvatures.
Theorem 4.1. Let C be a curve in \mathbb{G}_{4} with the equiform invariant tetrahedron $\left\{\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}, \mathbb{V}_{4}\right\}$ and with equiform curvatures $\mathbb{K}_{1} \neq 0$. Then C has $\mathbb{K}_{2} \equiv 0$ if and only if C lies fully in a 2 -dimensional subspace of \mathbb{G}_{4}.
Theorem 4.2. Let C be a curve in \mathbb{G}_{4} with the equiform invariant tetrahedron $\left\{\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}, \mathbb{V}_{4}\right\}$ and with equiform curvatures $\mathbb{K}_{1}, \mathbb{K}_{2} \neq 0$. Then C has $\mathbb{K}_{3} \equiv 0$ if and only if C lies fully in a hyperplane of \mathbb{G}_{4}.

Proof. If C has $\mathbb{K}_{3} \equiv 0$, then from (3.8), we have

$$
\begin{aligned}
C^{\prime}= & \mathbb{V}_{1} \\
C^{\prime \prime}= & \mathbb{K}_{1} \mathbb{V}_{1}+\mathbb{V}_{2} \\
C^{\prime \prime \prime}= & \left(\rho \dot{\mathbb{K}}_{1}+\mathbb{K}_{1}^{2}\right) \mathbb{V}_{1}+2 \mathbb{K}_{1} \mathbb{V}_{2}+\mathbb{K}_{2} \mathbb{V}_{3} \\
C^{(4)}= & \left(\frac{d\left(\rho \dot{\mathbb{K}}_{1}+\mathbb{K}_{1}^{2}\right)}{d \sigma}+\left(\rho \dot{\mathbb{K}}_{1}+\mathbb{K}_{1}^{2}\right) \mathbb{K}_{1}\right) \mathbb{V}_{1} \\
& +\left(\rho \dot{\mathbb{K}}_{1}+3 \mathbb{K}_{1}^{2}+2 \rho \dot{\mathbb{K}}_{1}-\mathbb{K}_{2}^{2}\right) \mathbb{V}_{2} \\
& +\left(3 \mathbb{K}_{1} \mathbb{K}_{2}+\rho \dot{\mathbb{K}}_{2}\right) \mathbb{V}_{3} .
\end{aligned}
$$

Hence, by using Mclauren expansion for C, given by

$$
C(\sigma)=C(0)+C^{\prime}(0) \sigma+C^{\prime \prime}(0) \frac{\sigma^{2}}{2!}+C^{\prime \prime \prime}(0) \frac{\sigma^{3}}{3!}+\ldots
$$

we obtain that C lies fully in a hyperplane of \mathbb{G}_{4} by spanned

$$
\left\{C^{\prime}(0), C^{\prime \prime}(0), C^{\prime \prime \prime}(0)\right\}
$$

Conversely, we suppose that C lies fully in a hyperplane Γ of \mathbb{G}_{4}. Then, there exist the points $p, q \in \mathbb{G}_{4}$ such that C satisfies the equation of Γ given by

$$
\begin{equation*}
g(C(\sigma)-p, q)=0 \tag{4.2}
\end{equation*}
$$

where $q \in \Gamma^{\perp}$. Differentiating (4.2) with respect to σ, we can write

$$
g\left(C^{\prime}, q\right)=g\left(C^{\prime \prime}, q\right)=g\left(C^{\prime \prime \prime}, q\right)=0
$$

Since

$$
C^{\prime}=\mathbb{V}_{1} \text { and } C^{\prime \prime}=\mathbb{K}_{1} \mathbb{V}_{1}+\mathbb{V}_{2}
$$

it follows that

$$
\begin{equation*}
g\left(\mathbb{V}_{1}, q\right)=g\left(\mathbb{V}_{2}, q\right)=0 \tag{4.3}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
g\left(\mathbb{V}_{3}, q\right)=0 \tag{4.4}
\end{equation*}
$$

Again, differentiating (4.4)

$$
\begin{aligned}
0 & =g\left(-\mathbb{K}_{2} \mathbb{V}_{2}+\mathbb{K}_{1} \mathbb{V}_{3}+\mathbb{K}_{3} \mathbb{V}_{4}, q\right) \\
0 & =\mathbb{K}_{3} g\left(\mathbb{V}_{4}, q\right)
\end{aligned}
$$

because \mathbb{V}_{4} is the only vector perpendicular to $\left\{\mathbb{V}_{1}, \mathbb{V}_{2}, \mathbb{V}_{3}\right\}$, we obtain

$$
\mathbb{K}_{3}=0
$$

this completes the proof.
Last, we give a characterization for a generalized helix in \mathbb{G}_{4} with respect to the curvatures in equiform geometry.
Theorem 4.3. Let C be a curve with equiform invariant vector \mathbb{V}_{3} in the equiform geometry of \mathbb{G}_{4} is a generalized helix if and only if

$$
\begin{equation*}
\mathbb{V}_{3}^{\prime \prime}+\varphi_{1} \mathbb{V}_{3}=\varphi_{2} \mathbb{V}_{2}+\varphi_{3} \mathbb{V}_{4} \tag{4.5}
\end{equation*}
$$

where $\varphi_{1}=\mathbb{K}_{2}^{2}+\mathbb{K}_{3}^{2}-\mathbb{K}_{1}^{2}-\rho \dot{\mathbb{K}}_{1}, \varphi_{2}=-2 \mathbb{K}_{1} \mathbb{K}_{2}$ and $\varphi_{3}=2 \mathbb{K}_{1} \mathbb{K}_{3}$.
Proof. Suppose that the curve C is a generalized helix. Thus, we have

$$
\begin{equation*}
\mathbb{K}_{2}=\text { const. and } \mathbb{K}_{3}=\text { const } . \tag{4.6}
\end{equation*}
$$

From (3.8) and (4.6), it is easy to prove that the equation (4.5) is satisfied.
Conversely, we assume that the equation (4.5) holds. Then from (3.8) , it follows that

$$
\begin{equation*}
\mathbb{V}_{3}^{\prime}=-\mathbb{K}_{2} \mathbb{V}_{2}+\mathbb{K}_{1} \mathbb{V}_{3}+\mathbb{K}_{3} \mathbb{V}_{4} \tag{4.7}
\end{equation*}
$$

and differentiating (4.7) with respect to σ

$$
\begin{aligned}
\mathbb{V}_{3}^{\prime \prime}= & \left(-\rho \dot{K}_{2}-2 \mathbb{K}_{1} \mathbb{K}_{2}\right) \mathbb{V}_{2} \\
& +\left(\rho \dot{\mathbb{K}}_{1}+\mathbb{K}_{1}^{2}-\mathbb{K}_{2}^{2}-\mathbb{K}_{3}^{2}\right) \mathbb{V}_{3} \\
& +\left(\rho \dot{\mathbb{K}}_{3}+2 \mathbb{K}_{1} \mathbb{K}_{3}\right) \mathbb{V}_{4}
\end{aligned}
$$

so, we obtain

$$
\dot{\mathbb{K}}_{2}=0 \quad \text { and } \quad \dot{\mathbb{K}}_{3}=0
$$

which completes the proof.

References

[1] Ali, A.T., Hamdoonb, F.M., López, R., Constant Scalar Curvature of Three Dimensional Surfaces Obtained by the Equiform Motion of a helix, ArXiv:0907.3980v1 [math.DG] (2009).
[2] do Carmo, M.P., Differential Geometry of curves and surfaces, Prentice-Hall Inc., 1976.
[3] Ekmekci, N., Ilarslan, K., On characterization of general helices in Lorentzian space, Hadronic Journal, 23(2000), 677-82.
[4] Erjavec, Z., Divjak, B., The equiform differential geometry of curves in the pseudoGalilean space, Mathematical Communications, 13(2008), 321-332.
[5] Erjavec, Z., Divjak, B., Horvat, D., The General Solutions of Frenet's System in the Equiform Geometry of the Galilean, Pseudo-Galilean, Simple Isotropic and Double Isotropic Space, International Mathematical Forum, 6(2011), no. 17, 837-856.
[6] Hayden, H.A., On a generalized helix in a Riemannian n-space, Proc. London Math. Soc., 32(1931), 37-45.
[7] Kamenarović, I., Existence Theorems for Ruled Surfaces In the Galilean Space G ${ }_{3}$, Rad Hazu Math, 456(1991), no. 10, 183-196.
[8] Ogrenmis, A.O., Ergut, M., Bektas, M., On The Helices The Galilean Space G_{3}, Iranian Journal of Science \& Technology A, 31(2007), no. A2.
[9] Pavković, B.J., Kamenarović, I., The equiform differential geometry of curves in the Galilean space G_{3}, Glasnik Mat., 22(1987), no. 42, 449-457.
[10] Petrović-Torgašev, M., Šućurović, E., W-curves in Minkowski space-time, Novi Sad J. Math., 32(2002), no. 2, 55-65.
[11] Rogers, C., Schief, W.K., Backlund and Darboux Transformations, Geometry and Modern applications in Soliton Theory, Cambridge University Press, 2002.
[12] Roschel, O., Die Geometrie Des Galileischen Raumes, Berichte der Math.-Stat. Sektion im Forschumgszentrum Graz, Ber., 256(1986), 1-20.
[13] Yilmaz, S., Construction of the Frenet-Serret frame of a curve in $4 D$ Galilean space and some applications, International of the Physical Sciences, 5(2010), no. 8, 1284-1289.
M. Evren Aydin and Mahmut Ergüt

Firat University, Department of Mathematics
23119, Elazig, Turkey
e-mail: aydnevren@gmail.com

