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On approximation of functions of one variable
in spaces with a polynomial weight

Zbigniew Walczak

Abstract. In this paper we give some approximation theorems for a general class
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1. Introduction

The creation of the basics of approximation theory can be attributed to the
Russian mathematician Chebyshev, who formulated and examined the existence of
polynomials furnishing best approximations from a particular function over 150 years
ago. One of the first problems in the area was to find the polynomial that best ap-
proximated the function f(x) = xn in the interval [−1, 1] in the class of algebraic
polynomials having the degree n− 1. Solving that problem, Chebyshev defined poly-
nomials Tn(x) = cos(narccosx), which are now called Chebyshev polynomials and
which have been widely used in uniform function approximation. The origin of func-
tion approximation theory are also connected with K. Weierstrass, S. N. Bernstein,
L. Fejer and D. Jackson. It was at the turn of the 20th century that basic problems of
continuous function approximation were formulated. The authors proved that, among
other things, each continuous function on the closed and bounded interval could be ap-
proximated by an algebraic (trigonometric) polynomial with any predetermined order
of accuracy. Another important issue was to efficiently obtain operators approximat-
ing a particular function with a predetermined accuracy. In addition, research was
centred around estimating the rate of convergence of a series of polynomials to a
particular function approximated by the polynomials.

Research on function approximation was justified by it being used in other math-
ematical fields (especially mathematical analysis, functional analysis and the theory of
differential equations) and the progress in that field was influenced by other branches
of science. I would like to mention that the Fourier series is used in physics and
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technology and examining many limit problems comes down to studying approxima-
tion issues. The merging of function approximation and other branches of science is
now particularly visible thanks to numerical analysis and problems, e.g. Bernstein
polynomials are widely used in e.g. computer graphics.

The development and directions of research on function approximation by linear
operators have been defined in numerous publications and dissertations.

Our research has aimed at generalizing the aforementioned results concerning
approximation of functions by positive linear operators. Such research usually needs
to be carried out using more subtle proving methods, and results obtained in this way
make it possible to come up with additional conclusions.

In the sections more important definitions and theorems are designated by con-
secutive figures. Definitions and certain properties of the polynomial weighted space
and some other designations are denoted as in M. Becker [1].

Similarly to [1], let p ∈ N0 := {0, 1, 2, . . . }, and let

w0(x) := 1, wp(x) := (1 + xp)−1, if p ≥ 1. (1.1)

Denote by Cp, p ∈ N0, the set of all real-valued functions f , continuous on
R0 := [0,∞) and such that wpf is uniformly continuous and bounded on R0. The
norm on Cp is defined by the formula

‖f‖p ≡ ‖f (·) ‖p := sup
x∈R0

wp(x) |f(x)|. (1.2)

In the paper [12] it was constructed for any real function f on the interval R0 a
sequence of positive linear operators Sn defined by

Sn(f ;x) =
∞∑

k=0

ank(x; q)f
(

k + q

n

)
, n, q ∈ N := {1, 2, · · · } , (1.3)

where ank(x; q) := (nx)k

g(nx;q)(k+q)! and g(0; q) = 1
q! , g(t; q) = 1

tq

(
et −

∑q−1
k=0

tj

j!

)
. These

operators possess many remarkable properties. We present a few of them. It is
known [12] that for f ∈ Cp, p ∈ N0

lim
n→∞

Sn(f ;x) = f(x), (1.4)

uniformly on every interval [x1, x2], x2 > x1 ≥ 0. In [12] it was proved that

lim
n→∞

n(Sn(f ;x)− f(x)) =
x

2
f ′′(x) (1.5)

for all f ∈ C2
p .

The operators (1.3) are related to the well-known Szász-Mirakyan operators

Bn(f ;x) := e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
,

x ∈ R0, n ∈ N.
In many papers various modification of Bn were introduced and examined. They

have been studied intensively. We refer the reader to A. Ciupa [2]- [4], L. Rempulska,
A. Thiel [9]- [10]. Many publications on the topic allude to the research of V.Gupta [5]
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and V. Gupta, P. Maheshwari [6], V. Gupta, R. Yadav [7] and V. Gupta, D. K.
Verma [8]. Their results improve other related results in the literature.

The paper pays special attention to defining various classes of operators and
examining their certain approximation properties. Because of properties of examined
operators, classical (and widely used) methods of proving approximation theorems
were employed, in which traditional mathematical problems were subject to subtle
and sometimes difficult analytical techniques.

We shall use the modulus of continuity of f ∈ Cp,

ω1(f ;Cp; t) := sup
0≤h≤t

‖∆hf(·)‖p, t ≥ 0,

and the modulus of smoothness of f ∈ Cp

ω2(f ;Cp; t) := sup
0≤h≤t

‖∆2
hf(·)‖p, t ≥ 0,

where

∆hf(x) := f(x + h)− f(x), ∆2
hf(x) := f(x)− 2f(x + h) + f(x + 2h).

In this paper we shall denote by Mk(α, β), k = 1, 2, ..., suitable positive constants
depending only on indicated parameters α, β.

Similarly as in the paper [14] we introduce the following class of operators in Cp.

Definition 1.1. We define the class of operators Sn by the formula

Sn(f ;Fn,r;x) :=
∞∑

k=0

ank(x; q)Fn,r

(
f

(
k + q

n

))
, f ∈ Cp, p ∈ N0, q ∈ N, (1.6)

where (Fn,r)∞1 , is a sequence of continuous functions on R := (−∞,+∞) such that
supx∈R wr(|x|) |Fn,r(x)−x| ≤ M1(r)

bn
, (bn)∞1 is an increasing sequence of positive num-

bers with the property limn→∞ bn = ∞.

2. Preliminary results

In this section we shall give some results, which we shall apply to the proofs of
the main theorems.

First we give some properties of the operators Sn.

Lemma 2.1. ([12]) Let p ∈ N0 and q ∈ N be fixed numbers. Then there exists M2(p, q)
such that

‖Sn(1/wp)‖p ≤ M2(p, q). (2.1)

Moreover for every f ∈ Cp we have

‖Sn(f)‖p ≤ M2(p, q)‖f‖p. (2.2)

The formula (2.2) shows that Sn(f) is a positive linear operators on Cp.

Now we shall give approximation theorems for Sn.
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Theorem 2.2. ([12]) Let p ∈ N0 be a fixed number. Then there exists M3(p, q) such
that for every f ∈ Cp and n ∈ N we have

wp(x)|Sn(f ;x)− f(x)| ≤ M3(p, q)ω1

(
f ;Cp;

√
x + 1

n

)
, x ∈ R0. (2.3)

Now we shall give some properties of the operators (1.6).

Lemma 2.3. Let (Fn,r)∞1 , n, r ∈ N, be a sequence of continuous functions on R such
that supx∈R wr(|x|) |Fn,r(x) − x| ≤ M1(r)

bn
, where (bn)∞1 is an increasing sequence of

positive numbers and limn→∞ bn = ∞. For every p ∈ N0 we have

‖Sn(f ;Fn,r)‖pr ≤ M4(p, q, r, b1), f ∈ Cp.

The above inequality shows that Sn(f ;Fn,r) is well-defined on the space Cpr.

Proof. For f ∈ Cp and p, q, r ∈ N we have

wpr(x)|Sn(f ;Fn,r;x)| ≤ wpr(x)
∞∑

k=0

ank(x; q)
∣∣∣∣Fn,r

(
f

(
k + q

n

))∣∣∣∣ .
≤ wpr(x)

∞∑
k=0

ank(x; q)

×
{∣∣∣∣Fn,r

(
f

(
k + q

n

))
− f

(
k + q

n

)∣∣∣∣+ ∣∣∣∣f (k + q

n

)∣∣∣∣}
From (1.3) by our assumption we get

wpr(x)|Sn(f ;Fn,r;x)| ≤ wpr(x)
∞∑

k=0

ank(x; q)

×
{

M1(r)
bn

(
1 +

∣∣∣∣f (k + q

n

)∣∣∣∣r)+
∣∣∣∣f (k + q

n

)∣∣∣∣}
≤ M5(r, q, b1)wpr(x) {1 + Sn (|f (t)|r ;x) + Sn (|f (t)| ;x)}

Observe that

wpr(x)Sn (|f (t)|r ;x) ≤ M6(p, q, r)‖f‖prwpr(x)Sn (1/wpr(t);x) ≤ M7(p, q, r). (2.4)

From this we immediately obtain

‖Sn(f ;Fn,r)‖pr ≤ M8(p, q, r, b1), f ∈ Cp, p ∈ N.

The proof is similar for p = 0. Thus the proof is completed. �

Theorem 2.4. If the assumptions of Lemma 2.3 are satisfied then there exists
M9(p, q, r) such that for every f ∈ Cp and p ∈ N0 we have

wpr(x)|Sn(f ;Fn,r;x)− f(x)| ≤ M9(p, q, r)

{
b−1
n + ω1

(
f ;Cp;

√
x + 1

n

)}
. (2.5)
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Proof. By (1.6) and (1.3) we get

wpr(x)(Sn(f ;Fn,r;x)− f(x)) = wpr(x)
∞∑

k=0

ank(x; q)

×
{(

Fn,r

(
f

(
k + q

n

))
− f

(
k + q

n

))
+
(

f

(
k + q

n

)
− f (x)

)}
= wpr(x)

∞∑
k=0

ank(x; q)
(

Fn,r

(
f

(
k + q

n

))
− f

(
k + q

n

))
+wpr(x)(Sn(f(t);x)− f(x)).

From Theorem 2.2 we have

wpr(x)|Sn(f(t);x)− f(x)| ≤ M3(p, q, r)ω1

(
f ;Cp;

√
x + 1

n

)
.

By our assumptions we get

wpr(x)
∞∑

k=0

ank(x; q)
∣∣∣∣Fn,r

(
f

(
k + q

n

))
− f

(
k + q

n

)∣∣∣∣
≤ M1(r)

bn
wpr(x)

∞∑
k=0

ank(x; q)
(

1 +
∣∣∣∣f (k + q

n

)∣∣∣∣r)
=

M1(r)
bn

(1 + wpr(x)Sn (|f (t)|r ;x)) .

Applying (2.4) we obtain (2.5). �

3. Main results

In this section we shall use the same method to obtain a general class of opera-
tors.

Similarly as in the paper [14] let Ω be the set of all infinite matrices A =
[ank(x)]n∈N,k∈N0

, of functions ank ∈ C0 having the following properties:
(a) ank(x) ≥ 0 for x ∈ R0, n ∈ N, k ∈ N0,
(b)

∑∞
k=0 ank(x) = 1 for x ∈ R0, n ∈ N,

(c)
∑∞

k=0 kpank(x), x ∈ R0, n ∈ N, p ∈ N, is uniformly convergent on R0 and its
sum is a function belonging to the space Cp

(d) for given p ∈ N there exists a positive constant M10(p, A) dependent on p
and A such that the function

Tn,p(A;x) :=
∞∑

k=0

ank(x)
(

k

n
− x

)p

, x ∈ R0, n ∈ N, (3.1)

satisfies the conditions

‖Tn,2p(A; ·)‖2p ≤ M10(p, A)n−p, n ∈ N, (3.2)

and
Tn,1(A;x) = 0. (3.3)
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We introduce the following class of operators in Cp.

Definition 3.1. Let A ∈ Ω and let r ∈ N be a fixed number. We define the class of
operators Sn and Sn,p by the formulas

Sn(f ;Fn,r;A;x) :=
∞∑

k=0

ank(x)Fn,r

(
f

(
k

n

))
, f ∈ Cp, p ∈ N0, (3.4)

x ∈ R0, where (Fn,r)∞1 , is a sequence of continuous functions on R := (−∞,+∞)
such that supx∈R wr(|x|) |Fn,r(x) − x| ≤ M1(r)

bn
, (bn)∞1 is an increasing sequence of

positive numbers with the property limn→∞ bn = ∞.

In this section we shall give some results, which we shall apply to the proofs of
the main theorems.

Definition 3.2. Let the matrix A ∈ Ω and let Cp for a given space with p ∈ N0. For
f ∈ Cp we define the operators

Kn(f ;A;x) :=
∞∑

k=0

ank(x)f
(

k

n

)
, n ∈ N, x ∈ R0. (3.5)

First we shall give some properties of the operators Kn.

Lemma 3.3. Let A ∈ Ω and p ∈ N0. Then there exists M11(p, A) such that

‖Kn(1/wp;A)‖p ≤ M11(p, A). (3.6)

Moreover for every f ∈ Cp we have

‖Kn(f ;A)‖p ≤ M11(p, A)‖f‖p. (3.7)

The formulas (3.6) and (3.7) show that Kn(f ;A) is a positive linear operators on Cp.

Proof. If p = 0, then by (1.1), (1.2) and the property (b) we have ‖Kn(1/w0)‖0 = 1.
Let p ∈ N . By (3.5), 1.1), (3.1), the property (b) and the Hölder inequality we

get
wp(x)Kn(1/wp(t);A;x) = wp(x)(1 + Kn(tp;A;x))

= wp(x)(1 + Kn(2p−1(|t− x|p + xp);A;x))

= wp(x)(1 + 2p−1xp + 2p−1Kn(|t− x|p;A;x))

≤ M12(p) + 2p−1(w2
p(x)Tn,2p(A;x))1/2

≤ M12(p) + 2p−1(w2p(x)Tn,2p(A;x))1/2

From this and by (3.2) we can write

‖Kn(1/wp;A)‖p ≤ M12(p)(1 + ‖Tn,2p(A)‖1/2
2p ) ≤ M11(p, A).

The formulas (3.5) and (1.1) yield

‖Kn(f ;A)‖p ≤ ‖f‖p‖Kn(1/wp;A)‖p

for f ∈ Cp. Applying (3.6) we obtain (3.7). �

Now we shall give approximation theorems for Kn.
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Theorem 3.4. Let p ∈ N0 be a fixed number. Then there exists a positive constant
M13(p, A) such that for every f ∈ C2

p we have

wp(x)|Kn(f ;A;x)− f(x)| ≤ M13(p, A)
‖f ′′‖p(1 + x)2

n
, n ∈ N, x ∈ R0. (3.8)

Proof. For a fixed x ∈ R0 and f ∈ C2
p we have

f(t) = f(x) + f ′(x)(t− x) +
∫ t

x

∫ s

x

f ′′(u)duds, t ∈ R0,

which yields

f(t) = f(x) + f ′(x)(t− x) +
∫ t

x

(t− u)f ′′(u)du, t ∈ R0.

From this and by (3.5) we deduce that

Kn(f(t);A;x) = f(x) + f ′(x)Kn(t− x;A;x) + Kn

(∫ t

x

(t− u)f ′′(u)du;A;x
)

(3.9)

for n ∈ N. By (1.1) and (1.2) we can write∣∣∣∣∫ t

x

(t− u)f ′′(u)du

∣∣∣∣ ≤ ‖f ′′‖p

(
1

wp(t)
+

1
wp(x)

)
(t− x)2.

Applying the above inequality, the Hölder inequality (1.1), (3.1), (3.3) and (3.5), we
derive from (3.9)

wp(x) |Kn(f ;A;x)− f(x)|

≤ ‖f ′′‖p

{
wp(x)Kn

(
(t− x)2

wp(t)
;A;x

)
+ Tn,2 (A;x)

}
≤

≤ M14(p,A)‖f ′′‖p(Tn,4 (A;x))1/2{(w2
p(x)Kn

(
1/w2

p(t);A;x
)
)1/2 + 1}

≤ M15(p,A)‖f ′′‖p(Tn,4 (A;x))1/2{(w2p(x)Kn (1/w2p(t);A;x))1/2 + 1}
for n ∈ N. Using (1.1), (1.2), (3.2) and (3.6), we obtain the desired estimate (3.8). �

Theorem 3.5. Let p ∈ N0 be a fixed number. Then there exists M16(p, A) such that
for every f ∈ Cp and n ∈ N we have

wp(x)|Kn(f ;A;x)− f(x)| ≤ M16(p, A)ω2

(
f ;Cp;

x + 1
n1/2

)
, x ∈ R0. (3.10)

Proof. Let x ∈ R0. Similarly as in [1] we apply the Stieklov function of f ∈ Cp

fh(x) :=
4
h2

∫ h
2

0

∫ h
2

0

[f(x + s + t)− f(x + 2(s + t))]dsdt (3.11)

for x ∈ R0, h > 0. From (3.11) we get

f ′h(x) =
1
h2

∫ h
2

0

[8∆h/2f(x + s)− 2∆hf(x + 2s)]ds,

f ′′h (x) =
1
h2

[
8∆2

h/2f(x)−∆2
hf(x)

]
.



378 Zbigniew Walczak

Consequently
‖fh − f‖p ≤ ω2 (f, Cp;h, ) , (3.12)

‖f ′′h ‖p ≤ 9h−2ω2 (f, Cp;h) , (3.13)

for h > 0. We see that fh ∈ C2
p if f ∈ Cp. Hence, for x ∈ R0 and n ∈ N, we can write

wp(x) |Kn(f ;A;x)− f(x)| ≤ wp(x) {|Kn (f − fh;A;x)|

+ |Kn (fh;A;x)− fh(x)|+ |fh(x)− f(x)|} := Z1 + Z2 + Z3.

By (3.7) and (3.12) we have

Z1 ≤ M17(p;A) ‖f − fh‖p ≤ M17(p;A)ω2 (f, Cp;h) , Z3 ≤ ω2 (f, Cp;h) .

Applying Theorem 3.4 and (3.13), we get

Z2 ≤ M18(p, A)
‖f ′′h ‖p(1 + x)2

n
≤

≤ M18(p, A)
9(1 + x)2

h2n
ω2 (f, Cp;h) .

Combining these and setting h = 1+x
n1/2 , for fixed n ∈ N, we obtain the inequality

(3.10). �

Now we shall give some properties of the operators (3.4).

Lemma 3.6. Let (Fn,r)∞1 , n, r ∈ N, be a sequence of continuous functions on R such
that supx∈R wr(|x|) |Fn,r(x) − x| ≤ M19(r)

bn
, where (bn)∞1 is an increasing sequence of

positive numbers with the property limn→∞ bn = ∞. For every A ∈ Ω and p ∈ N0 we
have

‖Sn(f ;Fn,r;A)‖pr ≤ M20(p, r, A, b1), f ∈ Cp.

The above inequality show that Sn(f ;Fn,r;A) is well-defined on the space Cpr.

Proof. For f ∈ Cp and p, r ∈ N we have

wpr(x)|Sn(f ;Fn,r;A;x)| ≤ wpr(x)
∞∑

k=0

ank(x)
∣∣∣∣Fn,r

(
f

(
k

n

))∣∣∣∣ .
≤ wpr(x)

∞∑
k=0

ank(x)
{∣∣∣∣Fn,r

(
f

(
k

n

))
− f

(
k

n

)∣∣∣∣+ ∣∣∣∣f (k

n

)∣∣∣∣}
From (3.5) by our assumption we get

wpr(x)|Sn(f ;Fn,r;A;x)|

≤ wpr(x)
∞∑

k=0

ank(x)
{

M1(r)
bn

(
1 +

∣∣∣∣f (k

n

)∣∣∣∣r)+
∣∣∣∣f (k

n

)∣∣∣∣}
≤ M21(r, A, b1)wpr(x) {1 + Kn (|f (t)|r ;A;x) + Kn (|f (t)| ;A;x)}

Observe that
wpr(x)Kn (|f (t)|r ;A;x)

≤ M21(p, r, A)‖f‖prwpr(x)Kn (1/wpr(t);A;x) ≤ M22(p, r, A) (3.14)
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From this we immediately obtain

‖Sn(f ;Fn,r;A)‖pr ≤ M23(p, r, A, b1), f ∈ Cp, p ∈ N.

The proof is similar for p = 0. Thus the proof is completed. �

Theorem 3.7. If assumptions of Lemma 3.6 are satisfied then there exists M24(p, r, A)
such that for every f ∈ Cp and p ∈ N0 we have

wpr(x)|Sn(f ;Fn,r;A;x)− f(x)| ≤ M24(p, r, A)
{

b−1
n + ω2

(
f ;Cp;

x + 1
n1/2

)}
. (3.15)

Proof. By (3.4) and (3.5) we get

wpr(x)(Sn(f ;Fn,r;A;x)− f(x))

= wpr(x)
∞∑

k=0

ank(x)
{(

Fn,r

(
f

(
k

n

))
− f

(
k

n

))
+
(

f

(
k

n

)
− f (x)

)}

= wpr(x)
∞∑

k=0

ank(x)
(

Fn,r

(
f

(
k

n

))
− f

(
k

n

))
+wpr(x)(Kn(f(t);A;x)− f(x)).

From Theorem 3.5 we have

wpr(x)|Kn(f(t);A;x)− f(x)| ≤ M25(p, r, A)ω2

(
f ;Cp;

x + 1
n1/2

)
.

By our assumptions we get

wpr(x)
∞∑

k=0

ank(x)
∣∣∣∣Fn,r

(
f

(
k

n

))
− f

(
k

n

)∣∣∣∣
≤ M1(r)

bn
wpr(x)

∞∑
k=0

ank(x)
(

1 +
∣∣∣∣f (k

n

)∣∣∣∣r)
=

M1(r)
bn

(1 + wpr(x)Kn (|f (t)|r ;A;x)) .

Applying (3.14) we obtain (3.15). �

Now we shall give one example of operators of the Sn(f ;Fn,r;A) type. The
Baskakov operators

Vn(f ;x) :=
∞∑

k=0

(
n− 1 + k

k

)
xk(1 + x)−n−kf

(
k

n

)
, x ∈ R0, n ∈ N,

for f ∈ Cp, are generated by the matrix A∗ = [a∗nk(x)]n∈N, k∈N0
with

a∗nk(x) :=
(

n− 1 + k

k

)
xk(1 + x)−n−k, x ∈ R0,

i.e. Vn(f ;x) = Kn(f ;A∗;x). If Fn,r(x) = x for n ∈ N and x ∈ R, then the operators
Sn(f ;Fn,r;A∗) and Vn(f) are identical.

It is worth remarking that the introduced definitions also cover the case of nonlin-
ear operators. To the best of the author’s knowledge, there are not many publications
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on this topic. Another benefit from the definitions that we have proposed is the ability
to use the research method to modify other positive linear operators known in liter-
ature. We would like to stress that the approximation theorems found in this paper
covered results presented in many other papers.
Acknowledgment. The author is extremely thankful to the referee for making valuable
suggestions, leading to the better presentation of the paper.
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