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Analysis of a viscoelastic unilateral and
frictional contact problem with adhesion

Arezki Touzaline

Abstract. We consider a mathematical model which describes the quasistatic fric-
tional contact between a viscoelastic body with long memory and a foundation.
The contact is modelled with a normal compliance condition in such a way that
the penetration is limited and restricted to unilateral constraint and associated
to the nonlocal friction law with adhesion, where the coefficient of friction is
solution-independent. The bonding field is described by a first order differential
equation. We derive a variational formulation written as the coupling between
a variational inequality and a differential equation. The existence and unique-
ness result of the weak solution under a smallness assumption on the coefficient
of friction is established. The proof is based on arguments of time-dependent
variational inequalities, differential equations and Banach fixed point theorem.
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1. Introduction

Contact problems involving deformable bodies are quite frequent in the industry as
well as in daily life and play an important role in structural and mechanical systems.
Contact processes involve complicated surface phenomena, and are modelled by highly
nonlinear initial boundary value problems. Taking into account various contact condi-
tions associated with more and more complex behavior laws lead to the introduction
of new and non standard models, expressed by the aid of evolution variational inequal-
ities. An early attempt to study frictional contact problems within the framework of
variational inequalities was made in [10]. The mathematical, mechanical and numeri-
cal state of the art can be found in [23]. In this reference we find a detailed analysis and
numerical studies of the adhesive contact problems. Recently a new book [25] intro-
duces to the reader the theory of variational inequalities with emphasis on the study
of contact mechanics and, more specifically, on antiplane frictional contact problems.
Also, recently existence results were established in [1, 5, 6, 8, 11, 20, 26, 29, 30, 31] in the
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study of unilateral and frictional contact problems with or without adhesion. In [31]
a quasistatic viscoelastic unilateral contact problem with adhesion and friction was
studied and an existence and uniqueness result was proved for a coefficient of friction
sufficiently small. Also in [7] a dynamic contact problem with nonlocal friction and ad-
hesion between two viscoelastic bodies of Kelvin-Voigt type was studied. An existence
result was proved without condition on the coefficient of friction. Here as in [16] we
study a mathematical model which describes a frictional and adhesive contact prob-
lem between a viscoelastic body with long memory and a foundation. The contact is
modelled with a normal compliance condition associated to unilateral constraint and
the nonlocal friction law with adhesion. Recall that models for dynamic or quasistatic
processes of frictionless adhesive contact between a deformable body and a foundation
have been studied in [2, 3, 4, 5, 7, 8, 12, 19, 21, 23, 24, 27, 28]. Following [13, 14] we use
the bonding field as an additional state variable β, defined on the contact surface of
the boundary. The variable satisfies the restrictions 0 ≤ β ≤ 1. At a point on the
boundary contact surface, when β = 1 the adhesion is complete and all the bonds
are active; when β = 0 all the bonds are inactive, severed, and there is no adhesion;
when 0 < β < 1 the adhesion is partial and only a fraction β of the bonds is active.
However, according to [17], the method presented here considers a compliance model
in which the compliance term does not represent necessarily a compact perturbation
of the original problem without contact. This leads us to study such models, where
a strictly limited penetration is permitted with the limit procedure to the Signorini
contact problem. In this work as in [31] we derive a variational formulation of the
mechanical problem written as the coupling between a variational inequality and a
differential equation. We prove the existence of a unique weak solution if the coef-
ficient of friction is sufficiently small, and obtain a partial regularity result for the
solution.
The paper is structured as follows. In section 2 we present some notations and pre-
liminaries. In section 3 we state the mechanical problem and give a variational for-
mulation. In section 4 we establish the proof of our main existence and uniqueness
result, Theorem 4.1.

2. Notations and preliminaries

Everywhere in this paper we denote by Sd the space of second order symmetric tensors
on Rd (d = 2, 3) while |.| represents the Euclidean norm on Rd and Sd. Thus, for every
u, v ∈ Rd, u.v = uivi, |v| = (v.v)

1
2 , and for every σ, τ ∈ Sd, σ.τ = σijτij , |τ | = (τ.τ)

1
2 .

Here and below, the indices i and j run between 1 and d and the summation convention
over repeated indices is adopted. Let Ω ⊂ Rd be a bounded domain with a Lipschitz
boundary Γ and let ν denote the unit outer normal on Γ. We shall use the notation:

H =
(
L2 (Ω)

)d , H1 =
(
H1 (Ω)

)d , Q =
{
σ = (σij) : σij = σji ∈ L2 (Ω)

}
,

Q1 = {σ ∈ Q : divσ ∈ H} .
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Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

(u, v)H =
∫

Ω

uividx, 〈σ, τ〉Q =
∫

Ω

σijτijdx.

The strain tensor is
ε (u) = (εij (u)) =

1
2

(ui,j + uj,i) ;

divσ = (σij,j) is the divergence of σ. For every v ∈ H1 we also use the notation v for
the trace of v on Γ and we denote by vν and vτ the normal and tangential components
of v on the boundary Γ, given by

vν = v.ν, vτ = v − vνν.

We define, similarly, by σν and στ the normal and the tangential traces of a function
σ ∈ Q1, and when σ is a regular function then

σν = (σν) .ν, στ = σν − σνν,

and the following Green’s formula holds:

〈σ, ε (v)〉Q + (divσ, v)H =
∫

Γ

σν.vda ∀v ∈ H1,

where da is the surface measure element. Let T > 0. For every real Hilbert space X we
employ the usual notation for the spaces Lp (0, T ;X), 1 ≤ p ≤ ∞, and W 1,∞ (0, T ;X).
Recall that the norm on the space W 1,∞ (0, T ;X) is given by

‖u‖W 1,∞(0,T ;X) = ‖u‖L∞(0,T ;X) + ‖u̇‖L∞(0,T ;X) ,

where u̇ denotes the first derivative of u with respect to time. Finally, we denote by
C ([0, T ] ; X) the space of continuous functions from [0, T ] to X, with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x (t)‖X .

Moreover, for a real number r, we use r+ to represent its positive part, that is r+ =
max {r, 0} .

3. Problem statement and variational formulation

We consider the following physical setting. A viscoelastic body with long memory
occupies a bounded domain Ω ⊂ Rd (d = 2, 3) with a regular boundary Γ that is
partitioned into three disjoint measurable parts Γ1,Γ2,Γ3 such that meas (Γ1) > 0.
The body is acted upon by a volume force of density ϕ1 on Ω and a surface traction
of density ϕ2 on Γ2. The body is in unilateral contact with adhesion following the
nonlocal friction law with a foundation, over the potential contact surface Γ3.
Thus, the classical formulation of the mechanical problem is written as follows.
Problem P1. Find a displacement u : Ω× [0, T ] → Rd, a stress field σ : Ω× [0, T ] → Sd

and a bonding field β : Γ3 × [0, T ] → [0, 1] such that for all t ∈ [0, T ] ,

σ (t) = Fε (u (t)) +
∫ t

0

F (t− s) ε (u (s)) ds in Ω, (3.1)
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divσ (t) + ϕ1 (t) = 0 in Ω, (3.2)

u (t) = 0 on Γ1, (3.3)

σ (t) ν = ϕ2 (t) on Γ2, (3.4)

uν (t) ≤ g, σν (t) + p (uν (t))− cνβ2 (t)Rν (uν (t)) ≤ 0(
σν (t) + p (uν (t))− cνβ2 (t) Rν (uν (t))

)
(uν (t)− g) = 0

 on Γ3, (3.5)

∣∣στ (t) + cτβ2 (t) Rτ (uτ (t))
∣∣ ≤ µ |Rσν (u (t))|∣∣στ (t) + cτβ2 (t) Rτ (uτ (t))
∣∣ < µ |Rσν (u (t))| ⇒ uτ (t) = 0∣∣στ (t) + cτβ2 (t) Rτ (uτ (t))
∣∣ = µ |Rσν (u (t))| ⇒

∃λ ≥ 0 s.t. uτ (t) = −λ
(
στ (t) + cτβ2 (t) Rτ (uτ (t))

)


on Γ3, (3.6)

β̇ (t) = −
[
β (t) (cν (Rν (uν (t)))2 + cτ |Rτ (uτ (t))|2)− εa

]
+

on Γ3, (3.7)

β (0) = β0 on Γ3. (3.8)
Equation (3.1) represents the viscoelastic constitutive law with long memory of the
material; F is the elasticity operator and

∫ t

0
F (t− s) ε (u (s)) ds is the memory term

in which F denotes the tensor of relaxation; the stress σ (t) at current instant t
depends on the whole history of strains up to this moment of time. Equation (3.2)
represents the equilibrium equation while (3.3) and (3.4) are the displacement and
traction boundary conditions, respectively, in which σν represents the Cauchy stress
vector. The conditions (3.5) represent the unilateral contact with adhesion in which
cν is a given adhesion coefficient which may dependent on x ∈ Γ3 and Rν , Rτ are
truncation operators defined by

Rν (s) =

 L if s < −L
−s if − L ≤ s ≤ 0
0 if s > 0

, Rτ (v) =

{
v if |v| ≤ L,

L
v

|v|
if |v| > L.

Here L > 0 is the characteristic length of the bond, beyond which the latter has no
additional traction (see [23]) and p is a normal compliance function which satisfies the
assumption (3.19); g denotes the maximum value of the penetration which satisfies
g ≥ 0. When uν < 0 i.e. when there is separation between the body and the foundation
then the condition (3.5) combined with hypothese (3.19) and definition of Rν shows
that σν = cνβ2Rν (uν) and does not exeed the value L ‖cν‖L∞(Γ3)

. When g > 0, the
body may interpenetrate into the foundation, but the penetration is limited that is
uν ≤ g. In this case of penetration (i.e. uν ≥ 0), when 0 ≤ uν < g then −σν =
p (uν) which means that the reaction of the foundation is uniquely determined by the
normal displacement and σν ≤ 0. Since p is an increasing function then the reaction
is increasing with the penetration. When uν = g then −σν ≥ p (g) and σν is not
uniquely determined. When g > 0 and p = 0, conditions (3.5) become the Signorini’s
contact conditions with a gap and adhesion

uν ≤ g, σν − cνβ2Rν (uν) ≤ 0, (σν − cνβ2Rν (uν))(uν − g) = 0.
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When g = 0, the conditions (3.5) combined with hypothese (3.19) lead to the Signorini
contact conditions with adhesion, with zero gap, given by

uν ≤ 0, σν − cνβ2Rν (uν) ≤ 0, (σν − cνβ2Rν (uν))uν = 0.

These contact conditions were used in [26, 29]. It follows from (3.5) that there is no
penetration between the body and the foundation, since uν ≤ 0 during the process.
Also, note that when the bonding field vanishes, then the contact conditions (3.5)
become the classical Signorini contact conditions with zero gap, that is,

uν ≤ 0, σν ≤ 0, σνuν = 0.

Conditions (3.6) represent Coulomb’s law of dry friction with adhesion where µ de-
notes the coefficient of friction. Equation (3.7) represents the ordinary differential
equation which describes the evolution of the bonding field and it was already used
in [26]. Since β̇ ≤ 0 on Γ3× (0, T ), once debonding occurs bonding cannot be reestab-
lished and, indeed, the adhesive process is irreversible. Also from [18] it must be
pointed out clearly that condition (3.7) does not allow for complete debonding in
finite time.
We turn now to the variational formulation of Problem P1. We denote by V the closed
subspace of H1 defined by

V = {v ∈ H1 : v = 0 on Γ1} ,

and let the convex subset of admissible displacements given by

K = {v ∈ V : vν ≤ g a.e. on Γ3} .

Since meas (Γ1) > 0, the following Korn’s inequality holds [10],

‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V, (3.9)

where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V with the
inner product

(u, v)V = 〈ε (u) , ε (v)〉Q
and ‖.‖V is the associated norm. It follows from Korn’s inequality (3.9) that the norms
‖.‖H1

and ‖.‖V are equivalent on V. Then (V, ‖.‖V ) is a real Hilbert space. Moreover
by Sobolev’s trace theorem, there exists dΩ > 0 which only depends on the domain
Ω, Γ1 and Γ3 such that

‖v‖(L2(Γ3))d ≤ dΩ ‖v‖V ∀v ∈ V. (3.10)

We suppose that the body forces and surface tractions have the regularity

ϕ1 ∈ C ([0, T ] ; H) , ϕ2 ∈ C
(
[0, T ] ;

(
L2 (Γ2)

)d
)

. (3.11)

We define the function f : [0, T ] → V by

(f (t) , v)V =
∫

Ω

ϕ1 (t) .vdx +
∫

Γ2

ϕ2 (t) .vda ∀v ∈ V , t ∈ [0, T ] , (3.12)

and we note that (3.11) and (3.12) imply

f ∈ C ([0, T ] ; V ) .
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In the study of the mechanical problem P1 we assume that the elasticity operator F
satisfies

(a) F : Ω× Sd → Sd;

(b) there exists M > 0 such that
|F (x, ε1)− F (x, ε2)| ≤ M |ε1 − ε2| ∀ε1, ε2 ∈ Sd,
a.e. x ∈ Ω;

(c) there exists m > 0 such that
(F (x, ε1)− F (x, ε2)) . (ε1 − ε2) ≥ m |ε1 − ε2|2 ,
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(d) the mapping x → F (x, ε) is Lebesgue measurable on Ω
for any ε ∈ Sd;

(e) the mapping x → F (x, 0) ∈ Q.



(3.13)

We also need to introduce the space of the tensors of fourth order defined by

Q∞ = {E =(Eijkl) : Eijkl = Ejikl = Eklij ∈ L∞ (Ω) , 1 ≤ i, j, k, l ≤ d} ,

which is the real Banach space with the norm

‖E‖Q∞
= max

1≤i,j,k,l≤d
‖Eijkl‖L∞(Ω) .

We assume that the tensor of relaxation F satisfies

F ∈ C ([0, T ] ; Q∞) . (3.14)

The adhesion coefficients cν , cτ and εa satisfy

cν , cτ ∈ L∞ (Γ3) , εa ∈ L2 (Γ3) and cν , cτ , εa ≥ 0 a.e. on Γ3, (3.15)

and we assume that the initial bonding field satisfies

β0 ∈ L2 (Γ3) ; 0 ≤ β0 ≤ 1 a.e. on Γ3. (3.16)

Next, we consider the subset W of H1 defined as

W = {v ∈ H1 : divσ (v) ∈ H}

and let jc : V × V → R, jf : (V ∩W )× V → R be the functionals given by

jc (u, v) =
∫
Γ3

p (uν) vνda ∀(u, v) ∈ V × V ,

jf (u, v) =
∫
Γ3

µ |Rσν (u)| |vτ | da ∀(u, v) ∈ (V ∩W )× V ,

where

R : H− 1
2 (Γ) → L2 (Γ3) is a linear and continuous mapping (see [9]). (3.17)

The coefficient of friction µ is assumed to satisfy

µ ∈ L∞ (Γ3) and µ ≥ 0 a.e. on Γ3. (3.18)
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Next we let
j = jc + jf .

We also define the functional

h : L2 (Γ3)× V × V → R

by

h (β, u, v) =
∫

Γ3

(−cνβ2Rν(uν)vν + cτβ2Rτ (uτ ) .vτ )da, ∀ (β, u, v) ∈ L2 (Γ3)× V × V,

where the normal compliance function p satisfies:

(a) p : Γ3 × R → R+;

(b) there exists Lp > 0 such that
|p (x, r1)− p (x, r2)| ≤ Lp |r1 − r2|
∀r1, r2 ∈ R, a.e. x ∈ Γ3;

(c) (p (x, r1)− p (x, r2)) (r1 − r2) ≥ 0
∀r1, r2 ∈ R, a.e. x ∈ Γ3;

(d) the mapping x → p (x, r) is Lebesgue measurable on Γ3,
for any r ∈ R;

(e) p (x, r) = 0 ∀r ≤ 0, a.e. x ∈ Γ3.

(3.19)

Finally, we need to introduce the following set of the bonding field:

B =
{
θ : [0, T ] → L2 (Γ3) : 0 ≤ θ (t) ≤ 1, ∀t ∈ [0, T ] , a.e. on Γ3

}
.

By a standard procedure based on Green’s formula we derive the following variational
formulation of Problem P1, in terms of displacement and bonding field.

Problem P2. Find a displacement field u ∈ C ([0, T ] ; V ) and a bonding field β ∈
W 1,∞ (

0, T ;L2 (Γ3)
)
∩B such that

u (t) ∈ K ∩W, 〈Fε (u (t)) , ε (v)− ε (u (t))〉Q

+
〈∫ t

0
F (t− s) ε (u (s)) ds, ε (v)− ε (u (t))

〉
Q

+h (β (t) , u (t) , v − u (t)) + j (u (t) , v)− j (u (t) , u (t))

≥ (f (t) , v − u (t))V ∀ v ∈ K, t ∈ [0, T ] ,

(3.20)

β̇ (t) = −
[
β (t) (cν (Rν (uν (t)))2 + cτ |Rτ (uτ (t))|2)− εa

]
+

a.e. t ∈ (0, T ) , (3.21)

β (0) = β0. (3.22)
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4. Existence and uniqueness of solution

Our main result in this section is the following theorem.

Theorem 4.1. Let (3.11) , (3.13), (3.14), (3.15), (3.16) , (3.17), (3.18) and (3.19) hold.
Then, there exists a constant µ0 > 0 such that Problem P2 has a unique solution if

‖µ‖L∞(Γ3)
< µ0.

The proof of Theorem 4.1 is carried out in several steps. In the first step, we consider
the closed subset Z of the space C

(
[0, T ] ; L2 (Γ3)

)
defined as

Z =
{
θ ∈ C

(
[0, T ] ; L2 (Γ3)

)
∩B : θ (0) = β0

}
,

where the Banach space C
(
[0, T ] ; L2 (Γ3)

)
is endowed with the norm

‖β‖k = max
t∈[0,T ]

[
exp (−kt) ‖β (t)‖L2(Γ3)

]
, k > 0.

Next for a given β ∈ Z, we consider the following variational problem.
Problem P1β . Find uβ ∈ C ([0, T ] ; V ) such that

uβ (t) ∈ K ∩W , 〈Fε (uβ (t)) , ε (v)− ε (uβ (t))〉Q

+
〈∫ t

0
F (t− s) ε (uβ (s)) ds, ε (v)− ε (uβ (t))

〉
Q

+h (β (t) , uβ (t) , v − uβ (t)) + j (uβ (t) , v)− j (uβ (t) , uβ (t))

≥ (f (t) , v − uβ (t))V ∀ v ∈ K, t ∈ [0, T ] .

(4.1)

We have the following result.
Theorem 4.2. There exists a constant µ1 > 0 such that Problem P1β has a unique
solution if

‖µ‖L∞(Γ3)
< µ1.

To prove this theorem, for η ∈ C ([0, T ] ; Q) we consider the following intermediate
problem.

Problem P1βη. Find uβη ∈ C ([0, T ] ; V ) such that

uβη (t) ∈ K ∩W , 〈Fε (uβη (t)) , ε (v − uβη (t))〉Q + 〈η (t) , ε (v − uβη (t))〉Q

+h (β (t) , uβη (t) , v − uβη (t)) + j (uβη (t) , v)− j (uβη (t) , uβη (t))

≥ (f (t) , v − uβη (t))V ∀v ∈ K, t ∈ [0, T ] .

(4.2)

Since Riesz’s representation theorem implies that there exists an element fη ∈
C ([0, T ] ; V ) such that

(fη (t) , v)V = (f (t) , v)V − 〈η (t) , ε (v)〉Q ,

then Problem P1βη is equivalent to the following problem.
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Problem P2βη. Find uβη ∈ C ([0, T ] ; V ) such that

uβη (t) ∈ K ∩W , 〈Fε (uβη (t)) , ε (v − uβη (t))〉Q + h (β (t) , uβη (t) , v − uβη (t))

+j (uβη (t) , v)− j (uβη (t) , uβη (t)) ≥ (fη (t) , v − uβη (t))V ∀v ∈ K, t ∈ [0, T ] .
(4.3)

We now show the proposition below.
Proposition 4.3. There exists a constant µ1 > 0 such that Problem P2βη has a unique
solution if

‖µ‖L∞(Γ3)
< µ1.

We shall prove Proposition 4.3 in several steps by using arguments on Banach fixed
point theorem. Indeed, let q ∈ C+ where C+ is a non-empty closed subset of L2 (Γ3)
defined as

C+ =
{
s ∈ L2 (Γ3) ; s ≥ 0 a.e. on Γ3

}
and let the functional jq : V → R given by

jq (v) =
∫

Γ3

µq |vτ | da ∀v ∈ V.

We consider the following auxiliary problem.
Problem P2βηq. Find uβηq ∈ C ([0, T ] ; V ) such that

uβηq (t) ∈ K, 〈Fε (uβηq (t)) , ε (v − uβηq (t))〉Q + h (β (t) , uβηq (t) , v − uβηq (t))

+jc (uβηq (t) , v − uβηq (t)) + jq (v)− jq (uβηq (t)) ≥ (fη (t) , v − uβηq (t))V ,

∀v ∈ K, t ∈ [0, T ] .
(4.4)

We have the following lemma.
Lemma 4.4. Problem P2βηq has a unique solution.

Proof. Let t ∈ [0, T ] and let Aβ(t) : V → V be the operator defined by(
Aβ(t)u, v

)
V

= 〈Fε (u) , ε(v)〉Q + h (β (t) , u, v) + jc (u, v) ∀u, v ∈ V.

As in [28], using (3.13) (b), (3.13) (c), (3.15), (3.19) (b), (3.19) (c) and the properties
of Rν and Rτ , we see that the operator Aβ(t) is Lipschitz continuous and strongly
monotone. On the other hand the functional jq : V → R is a continuous seminorm;
using standard arguments on elliptic variational inequalties (see [25]), it follows that
there exists a unique element uβηq (t) ∈ K which satisfies the inequality (4.4).
Now, for each t ∈ [0, T ], we define the map Ψt : C+ → C+ by

Ψt (q) = |Rσν (uβηq (t))| .
We show the following lemma.
Lemma 4.5. There exists a constant µ1 > 0 such that the mapping Ψt has a unique
fixed point q∗ and uβηq∗ (t) is a unique solution of the inequality (4.3) if

‖µ‖L∞(Γ3)
< µ1.
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Proof. Let q1, q2 ∈ C+. Using (3.17), it follows that there exists a constant c0 > 0
such that

‖Ψt (q1)−Ψt (q2)‖L2(Γ3)
≤ c0 ‖σν (uβηq1 (t))− σν (uβηq2 (t))‖

H−
1
2 (Γ)

. (4.5)

Moreover using (3.13) (b) yields

‖σν (uβηq1 (t))− σν (uβηq2 (t))‖
H−

1
2 (Γ)

≤ M ‖uβηq1 (t)− uβηq2 (t)‖V . (4.6)

We also use (3.10), (3.13) (c), (3.19) (c) and the properties of Rν and Rτ to find after
some calculus algebra that

‖uβηq1 (t)− uβηq2 (t)‖V ≤
‖µ‖L∞(Γ3)dΩ

m
‖q1 − q2‖L2(Γ3)

. (4.7)

Hence, taking into account (3.18), we combine (4.5), (4.6) and (4.7) to deduce that

‖Ψt (q1)−Ψt (q2)‖L2(Γ3)
≤ ‖µ‖L∞(Γ3)

c0MdΩ

m
‖q1 − q2‖L2(Γ3)

.

Take µ1 = m/c0MdΩ, then this inequality shows that if ‖µ‖L∞(Γ3)
< µ1, Ψ is a

contraction; thus it has a unique fixed point q∗ and uβηq∗ (t) is a unique solution of
(4.3).

Denote uβηq∗ = uβη. We now shall see that uβη ∈ C ([0, T ] ; V ) . Indeed, let t1, t2 ∈
[0, T ]. Take v = uβη (t2) in (4.3) written for t = t1 and then v = uβη (t1) in the same
inequality written for t = t2. Using (3.13) (c), (3.17), (3.19) (c) and the properties
of Rν and Rτ , and adding the resulting inequalities, it follows that there exists a
constant c1 > 0 such that

‖uβη (t2)− uβη (t1)‖V ≤
c1

m− ‖µ‖L∞(Γ3)c0MdΩ
(‖β(t2)− β(t1)‖L2(Γ3) + ‖η(t2)− η(t1)‖Q + ‖f(t2)− f(t1)‖V ).

Then, as β ∈ C
(
[0, T ] ; L2 (Γ3)

)
, η ∈ C ([0, T ] ; Q) and f ∈ C ([0, T ] ; V ), we immedi-

ately conclude. We also have that uβη (t) ∈ W,∀t ∈ [0, T ]. Indeed, for each t ∈ [0, T ],
denote σ (uβη (t)) = Fε (uβη (t))+ η (t), take v = uβη (t)±ϕ in inequality (4.3) where
ϕ ∈ (C∞0 (Ω))d and use Green’s formula with the regularity ϕ1 (t) ∈ H leads to
divσ (uβη (t)) ∈ H and then uβη (t) ∈ W . �
Now we introduce the operator

Λβ : C ([0, T ] ; Q) → C ([0, T ] ; Q)

defined by

Λβη (t) =
∫ t

0

F (t− s) ε (uβη (s)) ds ∀η ∈ C ([0, T ] ; Q) , t ∈ [0, T ] . (4.8)

We have the lemma below.
Lemma 4.6. The operator Λβ has a unique fixed point ηβ .
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Proof. Let η1, η2 ∈ C ([0, T ] ; Q). Using (4.3), (4.8) and (3.14) we obtain for
‖µ‖L∞(Γ3)

< µ1 that

‖Λβη1 (t)− Λβη2 (t)‖Q ≤ c2

∫ t

0

‖η1 (s)− η2 (s)‖Q ds ∀t ∈ [0, T ] ,

where c2 > 0. Reiterating this inequality n times, yields∥∥Λn
βη1 − Λn

βη2

∥∥
C([0,T ];Q)

≤ (c2T )n

n!
‖η1 − η2‖C([0,T ];Q) .

As lim
n→+∞

(c2T )n

n!
= 0, it follows that for a positive integer n sufficiently large, Λn

β is

a contraction; then, by using the Banach fixed point theorem, it has a unique fixed
point ηβ which is also a unique fixed point of Λβ i.e.,

Λβηβ (t) = ηβ (t) ∀t ∈ [0, T ] . (4.9)

Then by (4.3) and (4.9) we conclude that uβηβ
is the unique solution of Problem P1β .

�
Next denote uβ = uβηβ

. In the second step we state the following problem.

Problem Pad. Find β∗ : [0, T ] → L2 (Γ3) such that

β̇∗ (t) = −
[
β∗ (t) (cν (Rν (uβ∗ν (t)))2 + cτ |Rτ (uβ∗τ (s))|2)− εa

]
+

a.e. t ∈ (0, T ) ,

(4.10)
β∗ (0) = β0. (4.11)

We obtain the following result.
Proposition 4.7. Problem Pad has a unique solution β∗ which satisfies

β∗ ∈ W 1,∞ (
0, T ;L2 (Γ3)

)
∩B.

Proof. Let t ∈ [0, T ] and consider the mapping Φ : Z → Z defined by

Φβ (t) = β0 −
∫ t

0

[β (s) (cν(Rν (uβν (s)))2 + cτ |Rτ (uβτ (s))|2)− εa]+ds,

where uβ is the solution of Problem P1β . For β1, β2 ∈ Z, there exists a constant
c2 > 0 such that

‖Φβ1 (t)− Φβ2 (t)‖L2(Γ3)

≤ c2

∫ t

0

∥∥∥β1 (s)
(
Rν

(
u

β1ν (s)
))2 − β2 (s)

(
Rν

(
u

β2ν (s)
))2

∥∥∥
L2(Γ3)

ds

+c2

∫ t

0

∥∥∥β1 (s)
∣∣Rτ

(
u

β1τ (s)
)∣∣2 − β2 (s)

∣∣Rτ

(
u

β2τ (s)
)∣∣2∥∥∥

L2(Γ3)
ds.

As in [31] we deduce

‖Φβ1 (t)− Φβ2 (t)‖L2(Γ3)
≤

c3(
∫ t

0
‖β1 (s)− β2 (s)‖L2(Γ3)

ds +
∫ t

0
‖uβ1 (s)− uβ2 (s)‖V ds),

(4.12)
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for some constant c3 > 0. Now to continue the proof we have needed to prove the
following lemma.

Lemma 4.8. There exists a constant µ0 > 0 such that

‖uβ1 (t)− uβ2 (t)‖V ≤ c ‖β1 (t)− β2 (t)‖L2(Γ3)
∀t ∈ [0, T ] ,

if

‖µ‖L∞(Γ3)
< µ0.

Proof. Let t ∈ [0, T ]. Take uβ2 (t) in (4.1) satisfied by uβ1 (t), then take uβ1 (t) in the
same inequality satisfied by uβ2 (t); by adding the resulting inequalities we obtain

〈Fε (uβ1 (t))− Fε (uβ2 (t)) , ε (uβ1 (t))− ε (uβ2 (t))〉Q

≤
〈∫ t

0
F (t− s) (ε (uβ1 (s))− ε (uβ2 (s)) ds, ε (uβ2 (t))− ε (uβ1 (t))

〉
Q

+h (β1 (t) , uβ1 (t) , uβ2 (t)− uβ1 (t)) + h (β2 (t) , uβ2 (t) , uβ1 (t)− uβ2 (t))

+j (uβ1 (t) , uβ2 (t))− j (uβ1 (t) , uβ1 (t)) + j (uβ2 (t) , uβ1 (t))− j (uβ2 (t) , uβ2 (t)) .

Using (3.13) (b) this inequality implies

m ‖uβ1 (t)− uβ2 (t)‖2V ≤〈∫ t

0
F (t− s) (ε (uβ1 (s))− ε (uβ2 (s)) ds, ε (uβ2 (t))− ε (uβ1 (t))

〉
Q

+h (β1 (t) , uβ1 (t) , uβ2 (t)− uβ1 (t)) + h (β2 (t) , uβ2 (t) , uβ1 (t)− uβ2 (t))

+j (uβ1 (t) , uβ2 (t))− j (uβ1 (t) , uβ1 (t)) + j (uβ2 (t) , uβ1 (t))− j (uβ2 (t) , uβ2 (t)) .
(4.13)

We have 〈∫ t

0
F (t− s) (ε (uβ1 (s))− ε (uβ2 (s))) ds, ε (uβ2 (t)− uβ1 (t))

〉
Q

≤
(∫ t

0
‖F (t− s)‖Q∞

‖uβ2 (s)− uβ1 (s)‖V ds
)
‖uβ1 (t)− uβ2 (t)‖V

≤ c4

(∫ t

0
‖uβ1 (s)− uβ2 (s)‖V ds

)
‖uβ1 (t)− uβ2 (t)‖V ,

for some positive constant c4. Using Young’s inequality, we find〈∫ t

0
F (t− s) (ε (uβ1 (s))− ε (uβ2 (s))) ds, ε (uβ2 (t)− uβ1 (t))

〉
Q

≤ c2
4

2m

(∫ t

0
‖uβ2 (s)− uβ1 (s)‖V ds

)2

+
m

2
‖uβ1 (t)− uβ2 (t)‖2V .

(4.14)
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Using the properties of Rν and Rτ (see [28] ), we have

h (β1 (t) , uβ1 (t) , uβ2 (t)− uβ1 (t)) + h (β2 (t) , uβ2 (t) , uβ1 (t)− uβ2 (t))

≤ c5 ‖β1 (t)− β2 (t)‖L2(Γ3)
‖uβ1 (t)− uβ2 (t)‖V ,

where c5 > 0. Using also (3.10), (3.17) and (3.19) (c) yields

j (uβ1 (t) , uβ2 (t))− j (uβ1 (t) , uβ1 (t)) + j (uβ2 (t) , uβ1 (t))− j (uβ2 (t) , uβ2 (t))

≤ c0MdΩ ‖µ‖L∞(Γ3)
‖uβ1 (t)− uβ2 (t)‖2V .

(4.15)
We now combine inequalities (4.13), (4.14) and (4.15) to deduce

m ‖uβ1 (t)− uβ2 (t)‖2V ≤ c0MdΩ ‖µ‖L∞(Γ3)
‖uβ1 (t)− uβ2 (t)‖2V

+
c2
4

2m

(∫ t

0
‖uβ1 (s)− uβ2 (s)‖V ds

)2

+
m

2
‖uβ1 (t)− uβ2 (t)‖2V

+c5 ‖β1 (t)− β2 (t)‖L2(Γ3)
‖uβ1 (t)− uβ2 (t)‖V .

(4.16)

Using Young’s inequality we get

c5 ‖β1 (t)− β2 (t)‖L2(Γ3)
‖uβ1 (t)− uβ2 (t)‖V

≤ c6 ‖β1 (t)− β2 (t)‖2L2(Γ3)
+

m

4
‖uβ1 (t)− uβ2 (t)‖2V

(4.17)

for some constant c6 > 0. Then (4.16) and (4.17) imply that
m

4
‖uβ1 (t)− uβ2 (t)‖2V ≤

c0MdΩ ‖µ‖L∞(Γ3)
‖uβ1 (t)− uβ2 (t)‖2V +

c2
4

2m

(∫ t

0
‖uβ1 (s)− uβ2 (s)‖V ds

)2

+c6 ‖β1 (t)− β2 (t)‖2L2(Γ3)
.

Let now

µ0 = µ1/4.

Then if
‖µ‖L∞(Γ3)

< µ0,

we deduce that there exists a constant c7 > 0 such that

‖uβ1 (t)− uβ2 (t)‖2V ≤ c7

(∫ t

0

‖uβ1 (s)− uβ2 (s)‖2V ds + ‖β1 (t)− β2 (t)‖2L2(Γ3)

)
.

Then using Gronwall’s argument, it follows that there exists a constant c > 0 such
that

‖uβ1 (t)− uβ2 (t)‖V ≤ c ‖β1 (t)− β2 (t)‖L2(Γ3)
. (4.18)

�
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Now to end the proof of Proposition 4.7 we use (4.12) and (4.18) to deduce

‖Φβ1 (t)− Φβ2 (t)‖L2(Γ3)
≤ c8

∫ t

0
‖β1 (s)− β2 (s)‖L2(Γ3)

ds ∀t ∈ [0, T ] ,

where c8 > 0, and then we obtain

‖Φβ1 − Φβ2‖k ≤
c8

k
‖β1 − β2‖k .

This inequality shows that for k > c8, Φ is a contraction. Then it has a unique
fixed point β∗ which satisfies (4.10) and (4.11). We now have all ingredients to prove
Theorem 4.1.
Proof of Theorem 4.1. Existence. Let β = β∗ and let uβ∗ the solution of Problem
P1β . We conclude by (4.1), (4.10) and (4.11) that (uβ∗ , β

∗) is a solution to Problem
P2.
Uniqueness. Suppose that (u, β) is a solution of Problem P2 which satisfies (3.20),
(3.21) and (3.22). It follows from (3.20) that u is a solution to Problem P1β , and from
Theorem 4.2 that u = uβ . Take u = uβ in (3.20) and use the initial condition (3.22),
we deduce that β is a solution to Problem Pad. Therefore, we obtain from Proposition
4.7 that β = β∗ and then we conclude that (uβ∗ , β

∗) is a unique solution to Problem
P2. �
Let now σ∗ be the function defined by (3.1) which corresponds to the function uβ∗ .
Then, it results from (3.13) and (3.14) that σ∗ ∈ C ([0, T ] ; Q). Using also a standard
argument, it follows from the inequality (3.20) that

divσ∗ (t) + ϕ1 (t) = 0 in Ω, for all t ∈ [0, T ] .

Therefore, using the regularity ϕ1 ∈ C ([0, T ] ; H), we deduce that divσ∗ ∈
C ([0, T ] ; H) which implies that σ∗ ∈ C ([0, T ] ; Q1). The triple (uβ∗ , σ

∗, β∗) which
satisfies (3.1) and (3.20) − (3.22) is called a weak solution of Problem P1. We con-
clude that under the stated assumptions, the problem P1 has a unique weak solution
(uβ∗ , σ

∗, β∗). Moreover, the regularity of the weak solution is uβ∗ ∈ C ([0, T ] ; V ),
σ∗ ∈ C ([0, T ] ; Q1), β∗ ∈ W 1,∞ (

0, T ;L2 (Γ3)
)
∩B.
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