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On Cheney and Sharma type operators
reproducing linear functions
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Abstract. With the help of generating functions, we present general conditions to
construct positive linear operators which reproduce linear functions. The results
are used to present a modification of the Cheney and Sharma operators and the
rate of convergence is studied.
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1. Introduction

For an interval I, let C(I) (CB(I)) be the space of the real (bounded) continuous
functions defined on I. As usual, we denote ek(x) = xk, for k ∈ N0.

In [5] Cheney and Sharma introduced a modification of Meyer-König and Zeller
operators by defining, for a fixed t ≤ 0, f ∈ C[0, 1] and x ∈ [0, 1)

Ln,t(f, x) = (1− x)n+1 exp
(

tx

1− x

) ∞∑
k=0

f (xn,k) L
(n)
k (t)xk, (1.1)

where

xn,k =
k

n + k
,

and the functions L
(n)
k (t) are the Laguerre polynomials. It is known that (see [12], p.

101, eq. 5.1.6))

L
(n)
k (t) =

k∑
j=0

(
n + k

k − j

)
(−t)j

j!
. (1.2)

Hence L
(n)
k (t) ≥ 0 (for t ≤ 0) and the operators (1.1) are positive. On the other hand,

it follows from the properties of Laguerre polynomials that Ln,t(e0) = e0 (see [12], p.
101, eq. 5.1.9)). It can be proved that Ln,t(e1) = e1 if and only if t = 0 (see [1]). This
property was asserted in [5], but the proof given there is not correct. When t = 0,
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we obtain what are usually called the (slight modification of the) Meyer-König and
Zeller operators (see [11]).

The Meyer-König and Zeller operators have been intensively studied and several
modifications have been proposed (for instance, see [1], [6], [9], [10], [13] and the
references therein).

In Section 3 of this paper we show that the nodes xn,k in (1.1) can be selected
in such a way that the new operators reproduce linear functions, and we also give
an estimate of the rate of convergence (in terms of the so called Ditzian-Totik mod-
uli). First, in Section 2, we analyze the problem for general positive linear operators
constructed by means of generating functions. Finally, in the last section we provide
another example to show that the general approach of Section 2 can be used to modify
other known operators.

2. Generating functions

Let us begin with a general approach to construct positive linear operators.

Theorem 2.1. Fix a > 0 and sequence {ak} of positive real numbers such that

lim sup
k→∞

(ak

k!

)1/k

=
1
a

(2.1)

and set

g(z) =
∞∑

k=0

ak

k!
zk, | z |< a. (2.2)

Let {yk}∞k=0 be any increasing sequence of points satisfying yk ∈ [0, a).
(i) If f : [0, a) → R is a bounded function and x ∈ [0, a), then the series

L(f, x) =
1

g(x)

∞∑
k=0

ak

k!
f (yk) xk, (2.3)

defines a function that is continuous on [0, a).
(ii) The map L defines a positive linear operator in CB [0, a) which reproduces

the constant functions.
(iii) One has L(e1) = e1 if (and only if) y0 = 0 and

yk+1 =
(k + 1)ak

ak+1
, for all k ≥ 0. (2.4)

(iv) Suppose that yk −→ a and g(x) −→∞ as x −→ a. If f ∈ C[0, a] and we set
L(f, a) = f(a), then L(f) ∈ C[0, a].

Proof. (i) It follows from (2.1) that g is an analytic function in the domain | z |< a.
If | f(x) |≤ C(f) for x ∈ [0, a), then | L(f, x) |≤ C(f)g(x) and the series converges
uniformly on the compact subsets of [0, a).

(ii) It is clear that L(f) is well defined for each f ∈ CB [0, 1] and L is a positive
linear operator on this space. The assertion L(e0) = e0 follows from (2.2).

(iii) If L(e1) = e1, then L(e1, 0) = a0e1(y0) = e1(0) = 0. Since a0 > 0, we obtain
y0 = 0. On the other hand, if y0 = 0, then L(e1, 0) = 0 = e1(0).
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For 0 < x < a,

L(e1, x) =
x

g(x)

∞∑
k=1

ak

k!
yk xk−1 =

x

g(x)

∞∑
k=0

ak

k!
ak+1yk+1

ak(k + 1)
xk

= x +
x

g(x)

∞∑
k=0

ak

k!

(
ak+1 yk+1

ak(k + 1)
− 1
)

xk .

Thus, L(e1, x) = x if and only if
ak+1 yk+1

ak(k + 1)
= 1, for all k ≥ 0,

and this is equivalent to (2.4).
(iv) Fix ε > 0 and t > 0 such that | f(x) − f(a) |< ε/2, whenever | x − a |< t.

Since yk −→ a, there exists a natural m such that | yk − a |< t, for all k > m. Set

C = sup
x∈[0,a]

∣∣∣∣∣
m∑

k=0

ak

k!
xk

∣∣∣∣∣ .

On the other hand, there exists δ > 0 such that, if 0 < a− x < δ, then
1

g(x)
<

ε

4C(1 + ‖f‖)
,

where we consider the sup norm on [0, a]. Therefore, if 0 < a− x < δ, then

| L(f, x)− f(x) |=

∣∣∣∣∣ 1
g(x)

∞∑
k=0

ak

k!

(
f(yk)− f(a)

)
xk

∣∣∣∣∣
≤ 2‖f‖

g(x)

m∑
k=0

ak

k!
xk +

1
g(x)

∞∑
k=m+1

ak

k!
| f(yk)− f(a) | xk

≤ 2‖f‖C
g(x)

+
ε

2
1

g(x)

∞∑
k=0

ak

k!
xk < ε .

This proves the assertion. �
Notice that, in order to use condition (2.4), we also need the inequality

ak < a
ak+1

k + 1
, (k ≥ 0) ,

which follows from the conditions yk ∈ [0, a).
In the next result we consider the case a = 1.

Theorem 2.2. Suppose that the analytic function h has the expansion

h(z) =
∞∑

k=0

bkzk, | z |< 1,

with 0 < bk−1 < bk, for all k ∈ N. Then the equation

L(f, x) =
1

h(x)

∞∑
k=0

bk f

(
bk−1

bk

)
xk, x ∈ [0, 1), (2.5)
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where b−1 = 0, defines a positive linear operator, L : CB [0, 1) → CB [0, 1) such that
L(e0) = e0 and L(e1) = e1.

Moreover, if

lim
x→1−

h(x) = ∞, lim
k→∞

bk−1

bk
= 1 (2.6)

and we set L(f, 1) = f(1), then L : C[0, 1] → C[0, 1].

Proof. With the notation given above, one has k!bk = ak and a ≥ 1. Thus, in this
case, equation (2.4) can be written as

yk+1 =
(k + 1)ak

ak+1
=

bk

bk+1
< 1, for all k ≥ 0. �

3. A variation of Cheney and Sharma operators

Theorem 3.1. Fix t ≤ 0 and let the numbers L
(n)
k (t) (n ∈ N, k ≥ 0) be defined by

(1.2) and set L
(n)
−1 = 0. Then the equation

Sn,t(f, x) = (1− x)n+1 exp
(

tx

1− x

) ∞∑
k=0

L
(n)
k (t) f

(
L

(n)
k−1(t)

L
(n)
k (t)

)
xk, (3.1)

where L
(n)
−1 (t) = 0 and x ∈ [0, 1), defines a positive linear operator on CB [0, 1) such

that
Sn,t(e0, x) = 1, Sn,t(e1, x) = x (3.2)

and

0 ≤ Sn,t(e2, x)− x2 ≤ x2 +
2x(1− x)(1− tx)2

n
. (3.3)

Moreover, if for f ∈ C[0, 1] we set Sn,t(f, 1) = f(1), then Sn,t : C[0, 1] → C[0, 1].

Proof. Since t will be fixed, in order to simplify, we write L
(n)
k instead of L

(n)
k (t).

It is known that (see [12], p. 102, Eq. (5.1.14) and (5.1.13))

L
(n)
k

L
(n)
k+1

=
k + 1

n + k + 1
+

t

n + k + 1
L

(n+1)
k

L
(n)
k+1

(3.4)

and
L

(n)
k

L
(n)
k+1

= 1−
L

(n−1)
k+1

L
(n)
k+1

. (3.5)

From the last equation we know that L
(n)
k < L

(n)
k+1. Thus the operators (3.1) are

well defined and it follows from the first part of Theorem 2.2 that (3.2) holds.
Let us verify (3.3). Since Sn−t is a positive linear operator, from (3.2) we know

that 0 ≤ Sn,t((e1 − x)2, x) = Sn,t(e2, x)− x2.
From (1.2) we know that

L
(n+1)
k =

k∑
j=0

k + 1− j

n + 1 + j

(
n + k + 1
k + 1− j

)
(−t)j

j!
<

k + 1
n + 1

L
(n)
k+1. (3.6)
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and from (3.4) and (3.5) we obtain (recall that t ≤ 0)

L
(n)
k

L
(n)
k

L
(n)
k+1

= L
(n)
k − L

(n−1)
k+1

L
(n)
k

L
(n)
k+1

= L
(n)
k − L

(n−1)
k+1

(
k + 1

n + k + 1
+

t

n + k + 1
L

(n+1)
k

L
(n)
k+1

)

≤ L
(n)
k − L

(n−1)
k+1

k + 1
n + k + 1

− L
(n−1)
k+1

t(k + 1)
(n + 1)(n + k + 1)

.

Let us set gn(x) = (1 − x)n+1 exp (tx/(1− x)). From the last estimate, taking
into account that L

(n)
−1 (t) = 0, for n > 2 and x ∈ (0, 1) we obtain

Sn,t(e2, x) = gn(x)
∞∑

k=1

L
(n)
k−1

(
L

(n)
k−1

L
(n)
k

)
xk = x gn(x)

∞∑
k=0

L
(n)
k

(
L

(n)
k

L
(n)
k+1

)
xk

≤ x gn(x)
∞∑

k=0

(
L

(n)
k − n + 1 + t

n + 1
k + 1

n + k + 1
L

(n−1)
k+1

)
xk

= x− (n + 1 + t)
n + 1

gn(x)
∞∑

k=0

(
k + 1

n + k + 1
L

(n−1)
k+1

)
xk+1

= x− (n + 1 + t)
n + 1

gn(x)
∞∑

k=0

(
L

(n−1)
k

k

n + k

)
xk

= x− (n + 1 + t)
n + 1

gn(x)
∞∑

k=0

(
L

(n−1)
k

k

n− 1 + k

(
1− 1

n + k

))
xk

= x− (n + 1 + t)(1− x)
n + 1

Ln−1,t(e1, x)

+
n + 1 + t

n + 1
gn(x)

∞∑
k=0

(
L

(n−1)
k

k

(n− 1 + k)(n + k)

)
xk

= x2 − tx(1− x)
n + 1

(
Ln−1,t(e1, x)− x

)
− tx(1− x)

n + 1

+ gn(x)
∞∑

k=1

(
L

(n−1)
k

k

(n− 1 + k)(n + k)

)
xk

≤ x2 − tx(1− x)
n + 1

(
Ln−1,t(e1, x)− x

)
− tx(1− x)

n + 1

+
1
n

gn(x)
∞∑

k=1

(
L

(n−1)
k

k

n− 2 + k

)
xk

= x2 − tx(1− x)
n + 1

(
Ln−1,t(e1, x)− x

)
− tx(1− x)

n + 1
+

1− x

n
Ln−1,t(e1, x) .
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Since (see Theorem 1 of [1])

Ln,t(e1, x) ≤ x− tx

n + 1
,

one has

Sn,t(e2, x) ≤ x2 +
(tx)2(1− x)

(n + 1)2
− tx(1− x)

n + 1
+

1− x

n

(
x− tx

n

)

≤ x2 +
x(1− x)

n
− 2tx(1− x)(2− tx)

n
.

For the last assertion, first notice that, since t ≤ 0,

lim
x→1−

1
(1− x)n+1

exp
(
−tx

1− x

)
= ∞.

In order to finish, we only need to verify the second equality in (2.6). But it is a known
result (for instance, see [3]). �

Theorem 3.2. Fix α ∈ (0, 1/2] and set ϕ(x) = (x(1−x))α. For t ≤ 0, let the operators
Sn,t be defined as in Theorem 3.1. For f ∈ C[0, 1], x ∈ [0, 1], and n > 2 one has

|f(x)− Sn,t(f, x)| ≤
(3

2
+ 3(1− tx)2

)
ωϕ

2

(
f,

√
(x(1− x))1−2α

n

)
,

where
ωϕ

2 (f, h) = sup
0 ≤ s ≤ h

sup
x± sϕ(x) ∈ [0, 1]

∣∣∣∆2
hϕ(x)f(x)

∣∣∣
and ∆2

hϕ(x)f(x) = f(x− sϕ(x)))− 2f(x) + f(x + sϕ(x)).

Proof. The result follows from (3.3) and Theorem 11 of [4]. �

4. Another example

Fix r ∈ Z and, for n ∈ N, consider the identity

1
(1− z)n+r

=
∞∑

k=0

bn,kzk | z |< 1,

where

bn,k =
(

n + r + k − 1
k

)
.

We also set bn,−1 = 0. Notice that, for k ≥ 1,

bn,k−1

bn,k
=

k

n + r + k − 1
.

Thus we have all the conditions of Theorem 2.2.
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Theorem 4.1. Fix r ∈ N. For n ∈ N, f ∈ C[0, 1] and x ∈ [0, 1) set

Mn,r(f, x) = (1− x)n+r
∞∑

k=0

(
n + r + k − 1

k

)
xkf

(
k

n + r + k − 1

)
,

and
Mn,r(f, 1) = f(1) .

(i) For each n ∈ N, Mn,r : C[0, 1] → C[0, 1] is a positive linear operator such
that

Mn,r(e0, x) = 1, Mn,r(e1, x) = x

and, for n > 2

x(1− x)2

2(n + r − 2)
≤ Mn,r(e2, x)− x2 ≤ x(1− x)2

n + r − 2
. (4.1)

(ii) Fix α ∈ (0, 1/2] and set ϕ(x) = (x(1− x)2)α. For f ∈ C[0, 1], x ∈ [0, 1], and
n > 2 one has

|f(x)−Mn,r(f, x)| ≤ 3ωϕ
2

(
f,

√
ϕ1−2α(x)
n + r − 2

)
.

Proof. We only need to verify (4.1). With the notation given above, one has

Mn,r(e2, x)− x2 = (1− x)n+r
∞∑

k=1

bn,k−1
bn,k−1

bn,k
xk − x2

= x

(
(1− x)n+r

∞∑
k=1

bn,k−1
bn,k−1

bn,k
xk−1 − x

)

= x(1− x)n+r
∞∑

k=0

bn,k

(
bn,k

bn,k+1
− bn,k−1

bn,k

)
xk

= x(1− x)n+r
∞∑

k=0

bn,k

(
k + 1

n + r + k
− k

r + n + k − 1

)
xk

= x(1− x)n+r
∞∑

k=0

bn,k

(
n + r − 1

(n + r + k)(r + n + k − 1)

)
xk

= x(1− x)n+r
∞∑

k=0

bn−1,k

(
1

n + r + k

)
xk

= x(1− x)n+r
∞∑

k=0

(n + r + k − 2)(n + r + k − 3)!
(n + r − 2)k!(n + r − 3)!

(
1

n + r + k

)
xk

=
x(1− x)n+r

n + r − 2

∞∑
k=0

bn−2,k

(
n + r + k − 2

n + r + k

)
xk.

Therefore, for n > 2,

x(1− x)2

2(n + r − 2)
= x(1− x)n+r

∞∑
k=0

bn−2,k
1

2(n + r − 2)
xk
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≤ x(1− x)n+r

n + r − 2

∞∑
k=0

bn−2,k

(
n + r + k − 2

n + r + k

)
xk

= Mn,r(e2, x)− x2

≤ x(1− x)2

n + r − 2
(1− x)n−2+r

∞∑
k=0

bn−2,k xk =
x(1− x)2

n + r − 2
. �

Remark 4.2. In [8] (p.17), Götz introduced the operators

M∗
n,r(f, x) = (1− x)n+r

∞∑
k=0

(
n + r + k − 1

k

)
xkf

(
k

n + k

)
.

They are similar to the Meyer-König and Zeller operators, but they do not reproduce
linear functions (see also [2], p. 126).
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Benemérita Universidad Autónoma de Puebla
Fac. Ciencias F́ısico Matemáticas,
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