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Strong and A-statistical comparisons
for double sequences and multipliers

Sevda Orhan and Fadime Dirik

Abstract. In this work, we obtain strong and A-statistical comparisons for double
sequences. Also, we study multipliers for bounded A-statistically convergent and
bounded A-statistically null double sequences. Finally, we prove a Steinhaus type
result.
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1. Introduction

Strong and A-statistical comparisons for sequences have been studied in [3].
Demirci, Khan and Orhan [4] have studied multipliers for bounded A-statistically
convergent and bounded A-statistically null sequences. Also, Connor, Demirci and
Orhan [1] have studied multipliers and factorizations for bounded statistically con-
vergent sequences. Yardimer [16] has extended the results in [1] using the concept of
ideal convergence. Diindar and Altay [6] have obtained analogous results in [16] for
bounded ideal convergent double sequences.

In this paper we show that the double sequence yn2, which is the character-
istic function of N? = N x N, is a multiplier from W (T, p, q) N 15°, the space of all
bounded strongly T-summable double sequences with index p, ¢ > 0, into the bounded
summability domain ¢ (b), when T and A two nonnegative RH-regular summability
matrices. Also A-statistical comparisons for both bounded as well as arbitrary double
sequences have been characterized.

We first recall the concept of A-statistical convergence for double sequences.

A double sequence z = (z,,,) is said to be convergent in the Pringsheim’s
sense if for every € > 0 there exists NV € N, the set of all natural numbers, such that
|€m.n — L| < e whenever m,n > N. L is called the Pringsheim limit of z and denoted
by P —limz = L (see [14]). We shall such an x more briefly as “P—convergent”.
By a bounded double sequence we mean there exists a positive number K such that



214 Sevda Orhan and Fadime Dirik

|Tm.n| < K for all (m,n) € N2 two-dimensional set of all positive integers. For
bounded double sequences, we use the notation

< 0.

||x||2,oo = SUp |Zp,n
m,n
Note that in contrast to the case for single sequences, a convergent double sequence
is not necessarily bounded. Let A = (aj,k}m’n) be a four-dimensional summability
method. For a given double sequence = = (), the A—transform of z, denoted by
Az := ((Az); k), is given by
00,00

(Ax)jk = Y GjkmnTmn

m,n=1,1

provided the double series converges in the Pringsheim’s sense for (m,n) € N2,

A two dimensional matrix transformation is said to be regular if it maps every
convergent sequence in to a convergent sequence with the same limit. The well-known
characterization for two dimensional matrix transformations is known as Silverman-
Toeplitz conditions ([8]). In 1926 Robison [15] presented a four dimensional analog of
regularity for double sequences in which he added an additional assumption of bound-
edness. This assumption was made because a double sequence which is P—convergent
is not necessarily bounded. The definition and the characterization of regularity
for four dimensional matrices is known as Robison-Hamilton conditions, or briefly,
RH —regularity ([7], [15]).

Recall that a four dimensional matrix A = (a; k,m,») is said to be RH—regular
if it maps every bounded P—convergent sequence into a P—convergent sequence with
the same P—limit. The Robison- Hamilton conditions state that a four dimensional
matrix A = (a; g m.n) is RH—regular if and only if

(i) P —lim;x aj kmn = 0 for each (m,n) € N?,
00,00
(43) P—1limj > @jkmn =1,

m,n=1,1

[e.°]
(t99) P —lim; x > |ajkmn| =0 for each n € N,
m=1

(o)
(iv) P —1lim;x > |ajkmmn| =0 for each m € N,
n=1

00,00

(v) Zl ) |@j k,m,n| is P—convergent for every (j, k) € N2,
m,n=1,
(vi) There exits finite positive integers A and B such that Y |ajkmn| < A
m,n>B

holds for every (j,k) € N2,
Now let A = (aj k,m,n) be a nonnegative RH—regular summability matrix, and
let K C N2, Then A—density of K is given by

64 (K) =P — hrlxcl Z Qjk.mon
(m,n)eK

provided that the limit on the right-hand side exists in the Pringsheim sense. A real
double sequence © = () is said to be A—statistically convergent to L if, for every
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e >0,
§5({(m,n) e N*: |y, ,, — L| > €}) = 0.

In this case, we write st% )~ limz = L. Clearly, a P—convergent double sequence is
A—statistically convergent to the same value but its converse it is not always true.
Also, note that an A—statistically convergent double sequence need not be bounded.
For example, consider the double sequence z = () given by

o J mn, if m and n are squares,
mn 1, otherwise.

We should note that if we take A = C(1,1),which is double Ceséro matrix, then
C(1, 1)-statistical convergence coincides with the notion of statistical convergence for
double sequence, which was introduced in ([12], [13]).

By sty, st3’, st3 (b), st3° (D), ¢, ¢ (b),l5° we denote the set of all A-
statistically convergent double sequences, the set of all A-statistically null double
sequences, the set of all bounded A-statistically convergent double sequences, the set
of all bounded A-statistically null double sequences, the set of all convergent dou-
ble sequences, the set of all bounded convergent double sequences and the set of all
bounded double sequences, respectively. From now on the summability field of matrix
A will be denoted by 2, i.e.,

A= {:E : P —lim (Az), . exists} ,
ik g,

and % (b) := ¢4 NIL.
Let p,q positive real numbers and let A = (a;k,m,n) be a nonnegative RH-
regular infinite matrix. Write

W(A,p,q) := {x = (Tmn): P— lirchg)kmm |Zm.n — L|P? = 0 for some L} ;

)
m,n

we say that x is strongly A-summable with p,q > 0.

Definition 1.1. Let E and F' be two double sequence spaces. A multiplier from E into
F is a sequence & = (U, ) such that

UL = (U nTm,n) € F

whenever £ = (Tm,n) € E. The linear space of all such multipliers will be denoted by
m (E, F). Bounded multipliers will be denoted by M (E, F). Hence

M(E,F) =1 nm(E,F).

If E = F, then we write m (E) instead of m (E, E). Hence the inclusion X CY may
be interpreted as saying that the sequence xnz is a multiplier from X to Y.
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2. Strong and A-statistical comparisons for double sequences

In this section, we demonstrate equivalent forms of yn2 € m (W (T,p,q) NI, 4 (b))
that compares bounded strong summability field of the nonnegative RH-regular
summability matrices A and T. Also we will show that these characterize the A-
statistical comparisons for both bounded as well as arbitrary double sequences.

Theorem 2.1. Let A = (ajxmn) and T = (tjkmmn) be nonnegative RH-reqular
summability matrices. Then the followings are equivalent:

(1) xnz €M (W (T,p,q) N5, 4 (b)) ,

(i4) W (T,p,q) (IE C & (b),

(iii) Ae (W (T,p,q)NIL,c?),

(iv) For any subset K C N, 62 (K) = 0 implies that 6% (K) =0,

(v) Ae (W(T,p,q) NI, c*) and A preserves the strong limits of T.

Proof. Tt is obvious that the first three parts are equivalent. To show that (iii) im-
plies (iv), suppose that (7iz) holds. Assume the contrary and let K be a subset of
nonnegative integers with 6% (K) =0 but

hmsup Z aj kmn > 0. (2.1)
(mn)GK

So, K must be an infinitive set since A is RH-regular and P — lim;  a; k,m,n = 0 for
each (m,n) € N2. (Since 6% (K) = 0, and T is RH-regular, it must be that N x N — K
must also be infinitive). Now take a sequence x which is the indicator of the set K .
Note that for any p,q > 0, we have

P—ljir]£12|tj’k,myn| |Tmn — 0P = P—hmthkmnxmn
) -
= - hm Z j k,m,n
gik (m,n)eK

Hence, x € W (T,p,q) NI°. By A € (W (T, p,q) NI, 02), it must be that (Ax)j’k is
convergent. Combining this with (2.1) we obtain that the density 0% (K) exists and
so P —lim; . (Az), , = 8% (K) > 0. Consider the matrix D that keeps all the columns
of A whose positions correspond with the set K and fills the rest of the columns
with zero matrices. Because of P —lim;;, (Dz),, = P —lim;x (Az),, > 0, a straight
forward extension of an argument of Maddox provides a contradiction. Suppose now
(iv) holds, and let x € W (T, p,q) N15°, so that

P lji_’r]glztj,k,m,n |xm,n - L‘pq =0
for some number L. So x is T-statistically convergent. Then for any € > 0, define the
set K = {(m,n) : |zmn — L| > ¢} . And we have 6% (K) = 0. Then by assumption, it
must be that 6% (K) = 0. Since z is bounded, let |z, ,| < C for all m,n. So, for any
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p,q > 0, we have

pq _ pq
Y ikmanlTma =L = Y Gjkmnl@ma = LM+
m,n (m,n)eEK
prq
E aj,k,m,n |xm,n - L‘
(m,n)eKe
Pq
< (QC) E a5 k.m,n + P4 E jkm,n
(m,n)eK (m,n)EK*
rq
< (20) E Qj.kmmn T gl E Ajk,m,n-
(m,n)eK (m,n)eKe

Letting j,k — oo , we obtain

P—hm Z aj komn | Tmn — LMY =

PR o)

So that, (Az);, — L and A preserves the strong limit of 7", which gives (v). Observe
that (v) tr1v1a11y implies(#ii) . O

The following proposition collects the last result’s various equivalent forms. For
this purpose we introduce the notation

L .
" (T7p’ q> - {x e 111,r1£1ztj,k,m,n |$m,n - L|pq = O} .

Proposition 2.2. Let A = (ajkmn) and T = (tjkmn) be nonnegative RH-reqular
summability matrices. The following statements are equivalent:

(i) st7 (b) C st (b),

(i4) W(T P, q )mgo C W (A,s,t)NI° for some p,q,s,t >0,

(ii1) A € (W (T,p,q) N l§°,c2) and A preserves the strong limits of T. That is,
WE(T,p,q) NI CWE (A, s,t)NIL for every L,

(iv) For any subset K C N2, 62 (K) = 0 implies that 5% (K) = 0,

(v) 52 (b) C st (1),
(vi) stz (b) C st% (b) and A preserves the T-statistical limits,

i) WL (T,p,q ) 12 C WE (A, s,t)NIS° for some p,q,s,t > 0 and some real

z) W (T, p, q) N1° C & (b) for some p,q >0,
st2. C sty and A preserves the T-statistical limits,
(z) stk C st2

—~
=
5
N

Proof. At fist we give the following notation:
sth(b) := {x € 15° : 2 is T — statistically convergent to L} .
Note that
sty (b) = W5 (T,p,q) N15°
for any p,q > 0. Because of this, taking union over all L gives that (i) and (i¢) are
equivalent. By theorem, we know that (ii¢) and (iv) are equivalent. Taking union over



218 Sevda Orhan and Fadime Dirik

L shows that (ii7) implies (i¢) . To show that (¢7) implies (ii7) , clearly (i7) implies that
W (T,p,q) N15° C % (b). Hence, A € (W (T,p,q) NI5°,c*) . Therefore, by theorem,
(iv) holds. Therefore, (i7i) holds. Also theorem implies that (iv) and (viii) are equiv-
alent. While (vii) holds some L, if z € WM (T, p, q) N13° then define a new squence
Ymn = Tmn — M + L. Since y € WE (T, p,q) N15°, we have y € WE (A, s,t) NIL.
This implies that

> ik Emn =M™ = 05k mn [ymn — LI — 0.
m,n

So that, y € WM (A, s,t) N15°. That is,
WM (T, p,q) NI CWE (A, s5,t)NIP

for every M. If supremum over all M takes then (ii) holds. Now (ii) implies (i4i)
and clearly (ii¢) implies (vii). Hence (i) and (4i%) together imply (vi). Trivially (vi)
implies (%) .Also, (vi) implies (v). Conversely (v) implies (vii) with L = 0. Hence, (i)
through (viii) are all equivalent. So far all arguments were for bounded sequences.
Now (iz) implies (), and (x) implies (i). To show that (i) implies (iz), let = € st2.
with T-statistical limit L. For € > 0, define hy, , =0 if |2, p, — L] < € and Ay, =1
otherwise. Hence, any such h € st%’o (b) C sti{o (b) by (v). This implies that = € st
with L being the A-statistical limit, the proof is complete. O

3. Multipliers

In this section, we introduce multipliers on above some different spaces. Firstly,
we give some notations.

Definition 3.1. ([5]) Let A = (ajk,mn) be a non-negative RH-reqular summability
matriz and let () be a positive non-increasing double sequence. A double sequence
T = (Tm,n) i A-statistically convergent to a number L with the rate of o(auy, ) if for
every € > 0,

1
P— j,ilinoo or > tikma =0,
(m,n)€K (e)
where
K(e) == {(m,n) EN*: |z, — L| > £} .
In this case, we write
Tmn — L = st% —0(Qm,n) as m,n — oo.

Definition 3.2. ([5]) Let A = (ajxmmn) and (amn) be the same as in Definition
3.1. Then, a double sequence = = (T, n) is A-statistically bounded with the rate of
O(tm,n) if for every e > 0,

1
sup—- E aj.k,mmn < OO,
gk Xk
(m,n)eL(e)

where
L(e) == {(m,n) EN*: |zpn| > € }.
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In this case, we write
2
Tmn = StA - O(am,n) as m,n — oQ.

Now, we define the subspaces of A-statistically convergent double sequences as
follows:

sthe ¢ ={@:Tmn—L=st% —0(mn), as m,n — oo, for some L},
sS40 ¢ = 1% Tmn— L =st%h — O (mn), as m,n — oo, for some L},
3% ¢ = {r e = st 0 (), asmn = 00}
tho@ =1 Tma = sth = O (ama), as myn — oo},
515?4,11 b : = St?él,a nie,
sthow B) 1 =sth o NS,
sty (b)) =sthy NI,
Lilow 0) + = sl N

For each Z C N?, we let ¢ denote the set of double sequences which convergence
along Z and c¢% (b) bounded members of ¢%. Note that c¢% is the convergence domain
of a nonnegative RH —regular summability method. It is also easy to verify that
m(cg) =c% ; M (c%) =c% (b), and st (b) =U{c% (b) : 63 (2) = 1}.

Theorem 3.3. m (stiﬂ (b)) = st% , (b), and m (Sti\,o(a) (b)) = 3t,24,0(a) ().

Proof. Let u € m (st} , (b)) . Then ux € st} , (b) for all 2 € st% , (b). Especially,
r = xn € st%,(b), hence u € st , (b), which shows m (st% , (b)) C st% , (D).
Conversely, suppose that u € st% , (b) and take x € st , (b) . Then, by the discussion
preceding Section 2 we get ux € st , (b), by this u € m (st3 , (b)), ie., st , (b) C
m (st , (b)) . The same argument, works for the second part of the theorem. O

One may now expect that m (sti(zl (b)) = sti’f)a (b). However , as the next
example shows, it is not the case.
Example 3.4. Take o = xn2 and A = C (1,1). Then sti’?a (b) = st?Y (b), the set of all

bounded statistically null double sequences. Now define a double bounded sequence
U= (Um,n) by

1, m,n are odds,
U n = —1 , m,n are evens,
0o otherwise.

Then uz € st*° (b) for every x € st*° (b). Hence u € m (st*° (b)) , but u ¢ st* (b).
So, the next result characterizes the multipliers from sti’?a (b) into itself.

Theorem 3.5. m (sti’f)a (b)) =13.
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Proof. f u € m (575,247,0(1 (b)) , then uzx € sti’oa (b) C I3 for all x € sti’?a (b) .To show
that this implies that u € IS°, first observe that ¢ C st2  (b); and from this case
uEm (sti’oa( )) if and only if the matrix Tu = (tj,k,m,n) = (uJ 6F) ) maps

(m;n)

sti’o (b) into itself, where 6% is the Kronecker delta. Hence, it also maps c¢ into

(m n)

(4,k)
(m,n)

15°, which implies that sup > [t km.n| = supz

J.k m,n J.k m,n

w10 = sup |u; x| < oo. Con-
Jik

versely, suppose v € I3° and let z € stA)a (b), then

5
: > - _
{(m,n) : Jum 2 n| > €} € {<m,n> lzmanl = TR, }
Thus, since 2y, n, = 5t3—0 (am.n) , We obtain wp, pnTm n = $t3—0 (am.n) - Also it is clear

that uz is bounded, and hence I3° € m (sti’?a (b)) , and the proof is complete. 0
Theorem 3.6. m (st (b)) = U{M (%) : 6% (Z) =1}.

Proof. m (st (b)) = st% (b) =U{c% (b): 6% (2) =1} = U{M (%) :6%(Z)=1}.
Before proving the following theorem, we observe that, in general,
g Cm(sth (b),c?) C .
The first inclusion follows from noting uz € ¢ C st% (b) for any u € ¢ and z €
15°. The second inclusion follows from ynz € st (b). Note that if st3 (b) = ¢?, then
m (sti (b) ,02) = ¢?. The next theorem shows that this the only situation for which
m (st% (b),c?) = 2 O

Theorem 3.7. m (st (b),c?) = & and m (¢, st% (b)) = st? (b).

Proof. First we show that m (st3 (b),c?) = ¢. All we need to establish is that 1f
u € ¢® and limu = 1 # 0, then u ¢ m (st% (b),c?). Let z € st% (b), z ¢ ¢, and,
without loss of generality, suppose z is A—statistically convergent to 1. Then there
is an ¢ > 0 such that K = {(m,n) : |znn — 1| > ¢} is an infinite set. Note that
5% (K) = 0.

Define = by &, = Xxe (m,n) and observe that x is convergent in A—density
to 1, hence z € st% (b). Also note zu converges to [ # 0 along K¢ and to 0 along K,
hence zu ¢ ¢* and thus u ¢ m (st (b),c?).

Now we show that m (c?,st% (b)) = st (b). As xn2 € 2, m (%, st% (b))
st% (b) . The reserve inclusion follows from noting that if u € st (b) and z € ¢?
st% (b), then uzx is A—statistically convergent.

aininN

Theorem 3.8. (i) m (C%, st%° (b)) =
(i) m (Sti{o (b) ,C(Q)) ={u €l :uxg € ¢ for all E such that 6% (E) =0 }.
Proof. The proof of (i) follows from noting

15°=m(cf,c§) Cm (co,stA (b)) C .
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Next we prove (ii) . First note that if 6% (E) = 0, then xz € st%" (b) and thus, if
ueEm (sti’o (b) ,cg) , uxE € c3, or u goes 0 along E.

Hence,
m (sti’o (b), c%) C {u €5 1 uxg € ¢ for all E such that 6% (E) =0 }.

Now suppose that u is a bounded sequence such that u tends to 0 along every
A—null set and suppose x is bounded and convergent to 0 in A—density. Then there
is an K C N? such that, xxxe € 3, 0% (K) = 0. As ux = uzrxge + urxx and both
terms of the right hand side are null double sequences , uz € 3.

Now suppose = € stio (b) . Then there is a sequence (xj ok ) , each z7* convergent
in A—density to 0, such that 7% converges to x in I5°. Now uz?* — uz in I3°, and
as ux?® € 2 for all j, k and c2 is closed, ux € 2. Thus

{u €l :uxp € ¢ for all E such that 63 (E) =0} Cm (sti’o (b), c%)

and hence the theorem.
Note that m sti’o (), 0(2)) can be a variety of spaces. In particular m (cg, cg) =

[3° and, if 0(2)’ - denotes the sequences that converge to 0 along Z, then

m (C(z),z (b), Cg) = Cg,z (b). O

4. A Steinhaus-type result

The well known Theorem of Steinhaus knows that if 7" is a regular matrix then
XN is not a multipler from {* into ¢p := {z : Tx € ¢}. It may be true if regularity
condition on A is replaced by coregularity. Maddox [10] proved that xy is not a
multipler from [*° into fr := {x:Tx € f} either, where f denotes the space of all
almost convergent sequences [9]. It is known that almost convergence and statistical
convergence are not compatible summability methods [11]. So there seems some hope
that xn might be a multiplier from I* into (sta), = {z : Tz € sta}. However, it has
been shown in [1] that it is not the case. Of course xy is not a multipler from [* into
the space (sta,q)p :={x : Tx € st} either. Furthermore Demirci, Khan and Orhan
gave an alternate proof of it. What we offer in this study is to prove the theorem
which is characterized xye is not a multiplier from I5° into (st% ,),.-

Definition 4.1. Let A = (aj k.m,n) be ¢ non-negative RH -reqular summability matriz.
The characteristic x defined by

X (A) = ljl’r]glz Qjkommn — Z ljl,rl? aj.km,n-
If x (A) = 0 then we say A is co-null, if x (A) # 0 then we say A is co-reqular.
K§ = {A:x(4)=0},
K? = {A:x(A)#0}.

Now, we give the following lemma before the proof of theorem:;
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Lemma 4.2. ([2]) A € (13°,¢2 (b)) if and only if the condition Y |a; kmn| < C < 00
ok
holds and
(i) im; . @j k.mn = Qm.n for each (m,n) € N2,

k
(1) im; ;. > |aj k,m,n| exists for each m € N and
n=1

J
(160) Uim; i > |aj g m.n| exists for each n € N,
m=1
(1) > 16 kmn| converges,
j,k

s
(1)) limjyk Z Z |aj,k,m,n - Oém,n| =0.
m n

Theorem 4.3. Let A and B be conservative matrices and suppose that A € (15°, ¢%(b)).
Then

(i) BA € K2,

(i) If B € K? then A € K2.

Proof. (i) Because of A € (I3, ¢% (b)) we have B (Az) € ¢ (b) for all z € I5°. Now A
and B conservative implies B (Ax) = (BA) x for all 2 € [$°, therefore (BA) z € ¢ (b)
for all z € I3°, so that BA € (I3°,¢* (b)) C K3 from Lemma 4.2.

(#) By (7) and the fact that x is a scalar homomorphism we have x (B) x (4) =0,
whence the result. O

Theorem 4.4. Let A be a nonnegative RH -regular summability method. If T' is a co-
reqular summabillty matriz, then xn2 is not a multiplier from 13° into (sti a) =

T
{:1: Tx € St?‘!,a}‘

Proof. Suppose xnz € m (150, (sti,a)T) , then I5° C (stQA,a)T. Hence Tz € I3° and

Tx € sty , C st for all z € 15°. Then we have Tz € . So T : 13° — ¢%. Since A is
RH-regular, it follows from Theorem 4.3 that T is co-null double matrix which is a
contradiction. 0
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