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Strong and A-statistical comparisons
for double sequences and multipliers

Sevda Orhan and Fadime Dirik

Abstract. In this work, we obtain strong and A-statistical comparisons for double
sequences. Also, we study multipliers for bounded A-statistically convergent and
bounded A-statistically null double sequences. Finally, we prove a Steinhaus type
result.
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1. Introduction

Strong and A-statistical comparisons for sequences have been studied in [3].
Demirci, Khan and Orhan [4] have studied multipliers for bounded A-statistically
convergent and bounded A-statistically null sequences. Also, Connor, Demirci and
Orhan [1] have studied multipliers and factorizations for bounded statistically con-
vergent sequences. Yardımcı [16] has extended the results in [1] using the concept of
ideal convergence. Dündar and Altay [6] have obtained analogous results in [16] for
bounded ideal convergent double sequences.

In this paper we show that the double sequence χN2 , which is the character-
istic function of N2 = N × N, is a multiplier from W (T, p, q) ∩ l∞2 , the space of all
bounded strongly T -summable double sequences with index p, q > 0, into the bounded
summability domain c2

A (b), when T and A two nonnegative RH-regular summability
matrices. Also A-statistical comparisons for both bounded as well as arbitrary double
sequences have been characterized.

We first recall the concept of A-statistical convergence for double sequences.
A double sequence x = (xm,n) is said to be convergent in the Pringsheim’s

sense if for every ε > 0 there exists N ∈ N, the set of all natural numbers, such that
|xm,n − L| < ε whenever m,n > N . L is called the Pringsheim limit of x and denoted
by P − lim x = L (see [14]). We shall such an x more briefly as “P−convergent”.
By a bounded double sequence we mean there exists a positive number K such that
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|xm,n| < K for all (m,n) ∈ N2, two-dimensional set of all positive integers. For
bounded double sequences, we use the notation

||x||2,∞ = sup
m,n

|xm,n| < ∞.

Note that in contrast to the case for single sequences, a convergent double sequence
is not necessarily bounded. Let A = (aj,k,m,n) be a four-dimensional summability
method. For a given double sequence x = (xm,n), the A−transform of x, denoted by
Ax := ((Ax)j,k), is given by

(Ax)j,k =
∞,∞∑

m,n=1,1

aj,k,m,nxm,n

provided the double series converges in the Pringsheim’s sense for (m,n) ∈ N2.
A two dimensional matrix transformation is said to be regular if it maps every

convergent sequence in to a convergent sequence with the same limit. The well-known
characterization for two dimensional matrix transformations is known as Silverman-
Toeplitz conditions ([8]). In 1926 Robison [15] presented a four dimensional analog of
regularity for double sequences in which he added an additional assumption of bound-
edness. This assumption was made because a double sequence which is P−convergent
is not necessarily bounded. The definition and the characterization of regularity
for four dimensional matrices is known as Robison-Hamilton conditions, or briefly,
RH−regularity ([7], [15]).

Recall that a four dimensional matrix A = (aj,k,m,n) is said to be RH−regular
if it maps every bounded P−convergent sequence into a P−convergent sequence with
the same P−limit. The Robison- Hamilton conditions state that a four dimensional
matrix A = (aj,k,m,n) is RH−regular if and only if

(i) P − limj,k aj,k,m,n = 0 for each (m,n) ∈ N2,

(ii) P − limj,k

∞,∞∑
m,n=1,1

aj,k,m,n = 1,

(iii) P − limj,k

∞∑
m=1

|aj,k,m,n| = 0 for each n ∈ N,

(iv) P − limj,k

∞∑
n=1

|aj,k,m,n| = 0 for each m ∈ N,

(v)
∞,∞∑

m,n=1,1
|aj,k,m,n| is P−convergent for every (j, k) ∈ N2,

(vi) There exits finite positive integers A and B such that
∑

m,n>B

|aj,k,m,n| < A

holds for every (j, k) ∈ N2.
Now let A = (aj,k,m,n) be a nonnegative RH−regular summability matrix, and

let K ⊂ N2. Then A−density of K is given by

δ2
A(K) := P − lim

j,k

∑
(m,n)∈K

aj,k,m,n

provided that the limit on the right-hand side exists in the Pringsheim sense. A real
double sequence x = (xm,n) is said to be A−statistically convergent to L if, for every
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ε > 0,

δ2
A(

{
(m,n) ∈ N2 : |xm,n − L| ≥ ε

}
) = 0.

In this case, we write st2(A) − limx = L. Clearly, a P−convergent double sequence is
A−statistically convergent to the same value but its converse it is not always true.
Also, note that an A−statistically convergent double sequence need not be bounded.
For example, consider the double sequence x = (xm,n) given by

xm,n =
{

mn, if m and n are squares,
1, otherwise.

We should note that if we take A = C(1, 1),which is double Cesáro matrix, then
C(1, 1)-statistical convergence coincides with the notion of statistical convergence for
double sequence, which was introduced in ([12], [13]).

By st2A, st2,0
A , st2A (b) , st2,0

A (b) , c2, c2 (b) , l∞2 we denote the set of all A-
statistically convergent double sequences, the set of all A-statistically null double
sequences, the set of all bounded A-statistically convergent double sequences, the set
of all bounded A-statistically null double sequences, the set of all convergent dou-
ble sequences, the set of all bounded convergent double sequences and the set of all
bounded double sequences, respectively. From now on the summability field of matrix
A will be denoted by c2

A, i.e.,

c2
A =

{
x : P − lim

j,k
(Ax)j,k exists

}
,

and c2
A (b) := c2

A ∩ l∞2 .

Let p, q positive real numbers and let A = (aj,k,m,n) be a nonnegative RH-
regular infinite matrix. Write

W (A, p, q) :=

{
x = (xm,n) : P − lim

j,k

∑
m,n

aj,k,m,n |xm,n − L|pq = 0 for some L

}
;

we say that x is strongly A-summable with p, q > 0.

Definition 1.1. Let E and F be two double sequence spaces. A multiplier from E into
F is a sequence u = (um,n) such that

ux = (um,nxm,n) ∈ F

whenever x = (xm,n) ∈ E. The linear space of all such multipliers will be denoted by
m (E,F ) . Bounded multipliers will be denoted by M (E,F ). Hence

M (E,F ) = l∞2 ∩m (E,F ) .

If E = F, then we write m (E) instead of m (E,E). Hence the inclusion X ⊂ Y may
be interpreted as saying that the sequence χN2 is a multiplier from X to Y .
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2. Strong and A-statistical comparisons for double sequences

In this section, we demonstrate equivalent forms of χN2 ∈ m
(
W (T, p, q) ∩ l∞2 , c2

A (b)
)

that compares bounded strong summability field of the nonnegative RH-regular
summability matrices A and T . Also we will show that these characterize the A-
statistical comparisons for both bounded as well as arbitrary double sequences.

Theorem 2.1. Let A = (aj,k,m,n) and T = (tj,k,m,n) be nonnegative RH-regular
summability matrices. Then the followings are equivalent:

(i) χN2 ∈ m
(
W (T, p, q) ∩ l∞2 , c2

A (b)
)
,

(ii) W (T, p, q) ∩ l∞2 ⊆ c2
A (b) ,

(iii) A ∈
(
W (T, p, q) ∩ l∞2 , c2

)
,

(iv) For any subset K ⊆ N2, δ2
T (K) = 0 implies that δ2

A (K) = 0,

(v) A ∈
(
W (T, p, q) ∩ l∞2 , c2

)
and A preserves the strong limits of T.

Proof. It is obvious that the first three parts are equivalent. To show that (iii) im-
plies (iv), suppose that (iii) holds. Assume the contrary and let K be a subset of
nonnegative integers with δ2

T (K) = 0 but

lim sup
j,k

∑
(m,n)∈K

aj,k,m,n > 0. (2.1)

So, K must be an infinitive set since A is RH-regular and P − limj,k aj,k,m,n = 0 for
each (m,n) ∈ N2. (Since δ2

T (K) = 0, and T is RH-regular, it must be that N×N−K
must also be infinitive). Now take a sequence x which is the indicator of the set K .
Note that for any p, q > 0, we have

P − lim
j,k

∑
m,n

|tj,k,m,n| |xm,n − 0|pq = P − lim
j,k

∑
m,n

tj,k,m,nxm,n

= P − lim
j,k

∑
(m,n)∈K

tj,k,m,n

= δ2
T (K) = 0.

Hence, x ∈ W (T, p, q) ∩ l∞2 . By A ∈
(
W (T, p, q) ∩ l∞2 , c2

)
, it must be that (Ax)j,k is

convergent. Combining this with (2.1) we obtain that the density δ2
A (K) exists and

so P − limj,k (Ax)j,k = δ2
A (K) > 0. Consider the matrix D that keeps all the columns

of A whose positions correspond with the set K and fills the rest of the columns
with zero matrices. Because of P − limj,k (Dx)j,k = P − limj,k (Ax)j,k > 0, a straight
forward extension of an argument of Maddox provides a contradiction. Suppose now
(iv) holds, and let x ∈ W (T, p, q) ∩ l∞2 , so that

P − lim
j,k

∑
m,n

tj,k,m,n |xm,n − L|pq = 0,

for some number L. So x is T -statistically convergent. Then for any ε > 0, define the
set K = {(m,n) : |xm,n − L| > ε} . And we have δ2

T (K) = 0. Then by assumption, it
must be that δ2

A (K) = 0. Since x is bounded, let |xm,n| ≤ C for all m,n. So, for any
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p, q > 0, we have∑
m,n

aj,k,m,n |xm,n − L|pq =
∑

(m,n)∈K

aj,k,m,n |xm,n − L|pq +

∑
(m,n)∈Kc

aj,k,m,n |xm,n − L|pq

≤ (2C)pq
∑

(m,n)∈K

aj,k,m,n + εpq
∑

(m,n)∈Kc

aj,k,m,n

≤ (2C)pq
∑

(m,n)∈K

aj,k,m,n + εpq
∑

(m,n)∈Kc

aj,k,m,n.

Letting j, k →∞ , we obtain

P − lim
j,k

∑
(m,n)

aj,k,m,n |xm,n − L|pq = 0.

So that, (Ax)j,k → L and A preserves the strong limit of T , which gives (v). Observe
that (v) trivially implies(iii) . �

The following proposition collects the last result’s various equivalent forms. For
this purpose we introduce the notation

WL (T, p, q) :=

{
x : P − lim

j,k

∑
m,n

tj,k,m,n |xm,n − L|pq = 0

}
.

Proposition 2.2. Let A = (aj,k,m,n) and T = (tj,k,m,n) be nonnegative RH-regular
summability matrices. The following statements are equivalent:

(i) st2T (b) ⊆ st2A (b) ,
(ii) W (T, p, q) ∩ l∞2 ⊆ W (A, s, t) ∩ l∞2 for some p, q, s, t > 0,
(iii) A ∈

(
W (T, p, q) ∩ l∞2 , c2

)
and A preserves the strong limits of T. That is,

WL (T, p, q) ∩ l∞2 ⊆ WL (A, s, t) ∩ l∞2 for every L,
(iv) For any subset K ⊆ N2, δ2

T (K) = 0 implies that δ2
A (K) = 0,

(v) st2,0
T (b) ⊆ st2,0

A (b) ,
(vi) st2T (b) ⊆ st2A (b) and A preserves the T -statistical limits,
(vii) WL (T, p, q) ∩ l∞2 ⊆ WL (A, s, t) ∩ l∞2 for some p, q, s, t > 0 and some real

number L,
(viii) W (T, p, q) ∩ l∞2 ⊆ c2

A (b) for some p, q > 0,
(ix) st2T ⊆ st2A and A preserves the T -statistical limits,
(x) st2T ⊆ st2A.

Proof. At fist we give the following notation:

stLT (b) := {x ∈ l∞2 : x is T − statistically convergent to L} .

Note that
stLT (b) = WL (T, p, q) ∩ l∞2

for any p, q > 0. Because of this, taking union over all L gives that (i) and (ii) are
equivalent. By theorem, we know that (iii) and (iv) are equivalent. Taking union over
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L shows that (iii) implies (ii) . To show that (ii) implies (iii) , clearly (ii) implies that
W (T, p, q) ∩ l∞2 ⊆ c2

A (b) . Hence, A ∈
(
W (T, p, q) ∩ l∞2 , c2

)
. Therefore, by theorem,

(iv) holds. Therefore, (iii) holds. Also theorem implies that (iv) and (viii) are equiv-
alent. While (vii) holds some L, if x ∈ WM (T, p, q) ∩ l∞2 then define a new squence
ym,n = xm,n − M + L. Since y ∈ WL (T, p, q) ∩ l∞2 , we have y ∈ WL (A, s, t) ∩ l∞2 .
This implies that∑

m,n

aj,k,m,n |xm,n −M |st =
∑
m,n

aj,k,m,n |ym,n − L|pq → 0.

So that, y ∈ WM (A, s, t) ∩ l∞2 . That is,

WM (T, p, q) ∩ l∞2 ⊆ WL (A, s, t) ∩ l∞2

for every M. If supremum over all M takes then (ii) holds. Now (ii) implies (iii)
and clearly (iii) implies (vii). Hence (i) and (iii) together imply (vi). Trivially (vi)
implies (i) .Also, (vi) implies (v) . Conversely (v) implies (vii) with L = 0. Hence, (i)
through (viii) are all equivalent. So far all arguments were for bounded sequences.
Now (ix) implies (x), and (x) implies (i) . To show that (i) implies (ix) , let x ∈ st2T
with T -statistical limit L. For ε > 0, define hm,n = 0 if |xm,n − L| < ε and hm,n = 1
otherwise. Hence, any such h ∈ st2,0

T (b) ⊆ st2,0
A (b) by (v) . This implies that x ∈ st2A

with L being the A-statistical limit, the proof is complete. �

3. Multipliers

In this section, we introduce multipliers on above some different spaces. Firstly,
we give some notations.

Definition 3.1. ([5]) Let A = (aj,k,m,n) be a non-negative RH-regular summability
matrix and let (αm,n) be a positive non-increasing double sequence. A double sequence
x = (xm,n) is A-statistically convergent to a number L with the rate of o(αm,n) if for
every ε > 0,

P − lim
j,k→∞

1
αj,k

∑
(m,n)∈K(ε)

aj,k,m,n = 0,

where
K(ε) :=

{
(m,n) ∈ N2 : |xm,n − L| ≥ ε

}
.

In this case, we write

xm,n − L = st2A − o(αm,n) as m,n →∞.

Definition 3.2. ([5]) Let A = (aj,k,m,n) and (αm,n) be the same as in Definition
3.1. Then, a double sequence x = (xm,n) is A-statistically bounded with the rate of
O(αm,n) if for every ε > 0,

sup
j,k

1
αj,k

∑
(m,n)∈L(ε)

aj,k,m,n < ∞,

where
L(ε) :=

{
(m,n) ∈ N2 : |xm,n| ≥ ε

}
.
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In this case, we write

xm,n = st2A −O(αm,n) as m,n →∞.

Now, we define the subspaces of A-statistically convergent double sequences as
follows:

st2A,a : =
{
x : xm,n − L = st2A − o (αm,n) , as m,n →∞, for some L

}
,

st2A,O(a) : =
{
x : xm,n − L = st2A −O (αm,n) , as m,n →∞, for some L

}
,

st2,0
A,a : =

{
x : xm,n = st2A − o (αm,n) , as m,n →∞

}
,

st2,0
A,O(a) : =

{
x : xm,n = st2A −O (αm,n) , as m,n →∞

}
,

st2A,a (b) : = st2A,a ∩ l∞2 ,

st2A,O(a) (b) : = st2A,O(a) ∩ l∞2 ,

st2,0
A,a (b) : = st2,0

A,a ∩ l∞2 ,

st2,0
A,O(a) (b) : = st2,0

A,O(a) ∩ l∞2 .

For each Z ⊂ N2, we let c2
Z denote the set of double sequences which convergence

along Z and c2
Z (b) bounded members of c2

Z . Note that c2
Z is the convergence domain

of a nonnegative RH−regular summability method. It is also easy to verify that
m

(
c2
Z

)
= c2

Z ; M
(
c2
Z

)
= c2

Z (b) , and st2A (b) = ∪
{
c2
Z (b) : δ2

A (Z) = 1
}
.

Theorem 3.3. m
(
st2A,a (b)

)
= st2A,a (b) , and m

(
st2A,O(a) (b)

)
= st2A,O(a) (b) .

Proof. Let u ∈ m
(
st2A,a (b)

)
. Then ux ∈ st2A,a (b) for all x ∈ st2A,a (b) . Especially,

x = χN2 ∈ st2A,a (b) , hence u ∈ st2A,a (b) , which shows m
(
st2A,a (b)

)
⊂ st2A,a (b) .

Conversely, suppose that u ∈ st2A,a (b) and take x ∈ st2A,a (b) . Then, by the discussion
preceding Section 2 we get ux ∈ st2A,a (b) , by this u ∈ m

(
st2A,a (b)

)
, i.e., st2A,a (b) ⊂

m
(
st2A,a (b)

)
. The same argument works for the second part of the theorem. �

One may now expect that m
(
st2,0

A,a (b)
)

= st2,0
A,a (b) . However , as the next

example shows, it is not the case.

Example 3.4. Take α = χN2 and A = C (1, 1) . Then st2,0
A,a (b) = st2,0 (b) , the set of all

bounded statistically null double sequences. Now define a double bounded sequence
u = (um,n) by

um,n =

 1 , m, n are odds,
−1 , m, n are evens,
0 , otherwise.

Then ux ∈ st2,0 (b) for every x ∈ st2,0 (b) . Hence u ∈ m
(
st2,0 (b)

)
, but u /∈ st2,0 (b) .

So, the next result characterizes the multipliers from st2,0
A,a (b) into itself.

Theorem 3.5. m
(
st2,0

A,a (b)
)

= l∞2 .
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Proof. If u ∈ m
(
st2,0

A,a (b)
)

, then ux ∈ st2,0
A,a (b) ⊂ l∞2 for all x ∈ st2,0

A,a (b) .To show

that this implies that u ∈ l∞2 , first observe that c2
0 j st2,0

A,a (b) ; and from this case

u ∈ m
(
st2,0

A,a (b)
)

if and only if the matrix Tu = (tj,k,m,n) =
(
uj,kδ

(j,k)
(m,n)

)
maps

st2,0
A,a (b) into itself, where δ

(j,k)
(m,n) is the Kronecker delta. Hence, it also maps c2

0 into

l∞2 , which implies that sup
j,k

∑
m,n

|tj,k,m,n| = sup
j,k

∑
m,n

∣∣∣uj,kδ
(j,k)
(m,n)

∣∣∣ = sup
j,k

|uj,k| < ∞. Con-

versely, suppose u ∈ l∞2 and let z ∈ st2,0
A,a (b) , then

{(m,n) : |um,nzm,n| ≥ ε} j

{
(m,n) : |zm,n| ≥

ε

1 + ‖u‖2,∞

}
.

Thus, since zm,n = st2A−o (am,n) , we obtain um,nxm,n = st2A−o (am,n) . Also it is clear

that uz is bounded, and hence l∞2 j m
(
st2,0

A,a (b)
)

, and the proof is complete. �

Theorem 3.6. m
(
st2A (b)

)
= ∪

{
M

(
c2
Z

)
: δ2

A (Z) = 1
}

.

Proof. m
(
st2A (b)

)
= st2A (b) = ∪

{
c2
Z (b) : δ2

A (Z) = 1
}

= ∪
{
M

(
c2
Z

)
: δ2

A (Z) = 1
}

.
Before proving the following theorem, we observe that, in general,

c2
0 ⊆ m

(
st2A (b) , c2

)
⊆ c2.

The first inclusion follows from noting ux ∈ c2
0 ⊆ st2A (b) for any u ∈ c2

0 and x ∈
l∞2 .The second inclusion follows from χN2 ∈ st2A (b) . Note that if st2A (b) = c2, then
m

(
st2A (b) , c2

)
= c2. The next theorem shows that this the only situation for which

m
(
st2A (b) , c2

)
= c2. �

Theorem 3.7. m
(
st2A (b) , c2

)
= c2

0 and m
(
c2, st2A (b)

)
= st2A (b) .

Proof. First we show that m
(
st2A (b) , c2

)
= c2

0. All we need to establish is that if
u ∈ c2 and lim u = l 6= 0, then u /∈ m

(
st2A (b) , c2

)
. Let z ∈ st2A (b) , z /∈ c2, and,

without loss of generality, suppose z is A−statistically convergent to 1. Then there
is an ε > 0 such that K = {(m,n) : |zm,n − 1| ≥ ε} is an infinite set. Note that
δ2
A (K) = 0.

Define x by xm,n = χKc (m,n) and observe that x is convergent in A−density
to 1, hence x ∈ st2A (b) . Also note xu converges to l 6= 0 along Kc and to 0 along K,
hence xu /∈ c2 and thus u /∈ m

(
st2A (b) , c2

)
.

Now we show that m
(
c2, st2A (b)

)
= st2A (b). As χN2 ∈ c2, m

(
c2, st2A (b)

)
⊆

st2A (b) . The reserve inclusion follows from noting that if u ∈ st2A (b) and x ∈ c2 ⊆
st2A (b), then ux is A−statistically convergent. �

Theorem 3.8. (i) m
(
c2
0, st

2,0
A (b)

)
= l∞2 ,

(ii) m
(
st2,0

A (b) , c2
0

)
=

{
u ∈ l∞2 : uχE ∈ c2

0 for all E such that δ2
A (E) = 0

}
.

Proof. The proof of (i) follows from noting

l∞2 = m
(
c2
0, c

2
0

)
⊆ m

(
c2
0, st

2,0
A (b)

)
⊆ l∞2 .
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Next we prove (ii) . First note that if δ2
A (E) = 0, then χE ∈ st2,0

A (b) and thus, if

u ∈ m
(
st2,0

A (b) , c2
0

)
, uχE ∈ c2

0, or u goes 0 along E.

Hence,
m

(
st2,0

A (b) , c2
0

)
⊆

{
u ∈ l∞2 : uχE ∈ c2

0 for all E such that δ2
A (E) = 0

}
.

Now suppose that u is a bounded sequence such that u tends to 0 along every
A−null set and suppose x is bounded and convergent to 0 in A−density. Then there
is an K ⊆ N2 such that, xχKc ∈ c2

0, δ2
A (K) = 0. As ux = uxχKc + uxχK and both

terms of the right hand side are null double sequences , ux ∈ c2
0.

Now suppose x ∈ st2,0
A (b) . Then there is a sequence

(
xj,k

)
, each xj,k convergent

in A−density to 0, such that xj,k converges to x in l∞2 . Now uxj,k → ux in l∞2 , and
as uxj,k ∈ c2

0 for all j, k and c2
0 is closed, ux ∈ c2

0. Thus{
u ∈ l∞2 : uχE ∈ c2

0 for all E such that δ2
A (E) = 0

}
⊆ m

(
st2,0

A (b) , c2
0

)
and hence the theorem.

Note that m
(
st2,0

A (b) , c2
0

)
can be a variety of spaces. In particular m

(
c2
0, c

2
0

)
=

l∞2 and, if c2
0,Z denotes the sequences that converge to 0 along Z, then

m
(
c2
0,Z (b) , c2

0

)
= c2

0,Z (b) . �

4. A Steinhaus-type result

The well known Theorem of Steinhaus knows that if T is a regular matrix then
χN is not a multipler from l∞ into cT := {x : Tx ∈ c} . It may be true if regularity
condition on A is replaced by coregularity. Maddox [10] proved that χN is not a
multipler from l∞ into fT := {x : Tx ∈ f} either, where f denotes the space of all
almost convergent sequences [9]. It is known that almost convergence and statistical
convergence are not compatible summability methods [11]. So there seems some hope
that χN might be a multiplier from l∞ into (stA)T := {x : Tx ∈ stA} . However, it has
been shown in [1] that it is not the case. Of course χN is not a multipler from l∞ into
the space (stA,a)T := {x : Tx ∈ stA,a} either. Furthermore Demirci, Khan and Orhan
gave an alternate proof of it. What we offer in this study is to prove the theorem
which is characterized χN2 is not a multiplier from l∞2 into

(
st2A,a

)
T

.

Definition 4.1. Let A = (aj,k,m,n) be a non-negative RH-regular summability matrix.
The characteristic χ defined by

χ (A) = lim
j,k

∑
m,n

aj,k,m,n −
∑
m,n

lim
j,k

aj,k,m,n.

If χ (A) = 0 then we say A is co-null, if χ (A) 6= 0 then we say A is co-regular.

K2
0 = {A : χ (A) = 0} ,

K2 = {A : χ (A) 6= 0} .

Now, we give the following lemma before the proof of theorem;
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Lemma 4.2. ([2]) A ∈
(
l∞2 , c2 (b)

)
if and only if the condition

∑
j,k

|aj,k,m,n| ≤ C < ∞

holds and
(i) limj,k aj,k,m,n = αm,n for each (m,n) ∈ N2,

(ii) limj,k

k∑
n=1

|aj,k,m,n| exists for each m ∈ N and

(iii) limj,k

j∑
m=1

|aj,k,m,n| exists for each n ∈ N,

(iv)
∑
j,k

|aj,k,m,n| converges,

(v) limj,k

∑
m

∑
n
|aj,k,m,n − αm,n| = 0.

Theorem 4.3. Let A and B be conservative matrices and suppose that A ∈ (l∞2 , c2
B(b)).

Then
(i) BA ∈ K2

0 ,
(ii) If B ∈ K2 then A ∈ K2

0 .

Proof. (i) Because of A ∈
(
l∞2 , c2

B (b)
)

we have B (Ax) ∈ c2 (b) for all x ∈ l∞2 . Now A

and B conservative implies B (Ax) = (BA) x for all x ∈ l∞2 , therefore (BA) x ∈ c2 (b)
for all x ∈ l∞2 , so that BA ∈

(
l∞2 , c2 (b)

)
⊂ K2

0 from Lemma 4.2.
(ii) By (i) and the fact that χ is a scalar homomorphism we have χ (B) χ (A) = 0,

whence the result. �

Theorem 4.4. Let A be a nonnegative RH-regular summability method. If T is a co-
regular summabilty matrix, then χN2 is not a multiplier from l∞2 into

(
st2A,a

)
T

:={
x : Tx ∈ st2A,a

}
.

Proof. Suppose χN2 ∈ m
(
l∞2 ,

(
st2A,a

)
T

)
, then l∞2 ⊂

(
st2A,a

)
T

. Hence Tx ∈ l∞2 and

Tx ∈ st2A,a ⊂ st2A for all x ∈ l∞2 . Then we have Tx ∈ c2
A. So T : l∞2 → c2

A. Since A is
RH-regular, it follows from Theorem 4.3 that T is co-null double matrix which is a
contradiction. �
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