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Maximum principles for elliptic systems and
the problem of the minimum matrix norm
of a characteristic matrix, revisited

Ioan A. Rus

Abstract. In 1968, the existence of a maximum principle for some systems of
partial differential equations led us to the following problem (see I.A. Rus, Studia
Univ. Babeş-Bolyai, 15(1968), No. 1, 19-26 and Glasnik Matematički, 5(1970),
No. 2, 356): Let A ∈ Rn×n be a matrix and ‖·‖2 the spectral norm on Rn×n. The
problem is to determine, min

x∈R
‖A − xI‖2. In this paper we study the evolution of

this interesting relation between the theory of partial differential equations and
the matrix theory. An application of an elliptic partial differential equation with
complex valued coefficients is presented. New maximum principles are given and
the case of infinite systems is also studied. Some open problems are formulated.
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1. Introduction

Some time ago, studying maximum principle for elliptic systems of second order
we was conducted to the following problem (see [37]-[41]):

Let ‖·‖2 be the spectral norm on Rn×n and A ∈ Rn×n be a matrix. The problem
is to determine, min

x∈R
‖A− xI‖2.

In 1971, E. Deutsch informed me that H. Heinrich (see [15] and [16]) studied
a similar problem in the case of Frobenius norm, ‖·‖F , column sum norm, ‖·‖1, and
row sum norm, ‖·‖∞. The problem corresponding to the spectral norm was studied
by A.S. Mureşan ([29]) and by I.C. Chifu ([5] and [6]). In 1975, S. Friedland studied
the following problem (see [11]):
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Let A,B ∈ Cn×n be nonzero matrices such that A 6= xB for any x ∈ R. Let
d := min

x∈R
‖A− xB‖2. The problem is to study the solution set of the equation:

‖A− xB‖2 = d.

The aim of the present paper is to revisit the ”abstract model” in [37], to give
new maximum principles in terms of spectral norms and to consider the case of elliptic
equations with complex valued coefficients and the case of an infinite system of elliptic
equations. Some open problems are also formulated.

2. Preliminaries

2.1. Vector norms and matrix norms

Let us denote by K, R or C. If x ∈ Kn, then, x =

x1

...
xn

 and x∗ = (x1, . . . , xn).

We consider on Kn the following norms:

‖x‖∞ := max
1≤k≤n

|xk|

and

‖x‖p :=
( n∑

k=1

|xk|p
) 1

p

, for p ≥ 1.

If, ‖·‖, is a norm on Kn then we denote by the same symbol the operatorial
norm (subordonate norm, or natural norm) on Kn×n corresponding to the norm, ‖·‖,
on Kn.

So, we have ‖A‖∞ = max
1≤k≤n

( n∑
j=1

|akj |
)

, ‖A‖1 = max
1≤j≤n

( n∑
k=1

|akj |
)

and ‖A‖2 =

(
ρ(A∗A)

) 1
2 - the spectral norm of A.

We also consider on Kn×n the Frobenius (or Euclidean) norm defined by

‖A‖F :=
( n∑

k,j=1

|akj |2
) 1

2

.

This norm is not induced by any norm on Kn, but is a matrix norm, i.e.,

‖A ·B‖F ≤ ‖A‖F · ‖B‖F , ∀ A,B ∈ Kn×n.

For an operator norm on Kn×n, ‖·‖, we have that

‖Ax‖ ≤ ‖A‖‖x‖, ∀ A ∈ Kn×n and x ∈ Kn.

We also have that, ‖A‖2 ≤ ‖A‖F , ∀ A ∈ Kn×n. For the minimum norm problem
we mention the following result
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Heinrich’s Theorem. Let A ∈ Cn×n. Then,

min
z∈C

‖A− zI‖F =
(
‖A‖2

F − 1
n
|trA|2

) 1
2

.

From this theorem we have

Theorem 2.1. Let A ∈ Rn×n. Then,

min
x∈R

‖A− xI‖F =
(
‖A‖2

F − 1
n
|trA|2

) 1
2

.

For more considerations of the above notions and results see: [17] (especially
Chapter 37 by R. Byers and B.N. Dalta), [1], [35], [2], [15], [16], [36], [42], [3], . . .

2.2. Elliptic systems of second order

Let Ω ⊂ Rn be an open subset. Let us consider the following second order system
of partial differential equations:

n∑
k=1

n∑
j=1

Akj
∂2u

∂xk∂xj
+ F

(
x, u,

∂u

∂x1
, . . . ,

∂u

∂xn

)
= 0 (2.1)

where Akj : Ω → Rm×m, F : Ω× Rm × Rnm → Rm.
There are many points of view in classifying systems of partial differential equa-

tions (see for example, [27], [10], [8], [20], [4], [13], [23], [31], [34], . . . ).
In this paper we need the following notions.

Definition 2.2. The system (2.1) is called elliptic on Ω if

det
( n∑

k=1

n∑
j=1

Akj(x)λkλj

)
6= 0

for all x ∈ Ω and all λ ∈ Rn \ {0}.

Definition 2.3. The system (2.1) is called strongly elliptic on Ω, if
n∑

k=1

n∑
j=1

(
τ∗Akj(x)τ

)
λkλj > 0, for all x ∈ Ω,

for all τ ∈ Rm \ {0} and all λ ∈ Rn \ {0}.

Definition 2.4. The system (2.1) satisfies Somigliana’s condition on Ω, if
n∑

k=1

n∑
j=1

τ∗k Akj(x)τj > 0, for all x ∈ Ω,

for all τk ∈ Rm, k = 1, n with
n∑

k=1

‖τk‖ 6= 0.
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3. Basic idea and examples

The basic idea of the paper [37] may be presented as follows.
For a subset Ω ⊂ Rn we denote

F(Ω, Rm) :=
{
u | u : Ω → Rm

}
.

Let D ⊂ Rp, 1 ≤ p ≤ n and X ⊂ F(Ω, Rm) be a linear subspace. By definition

〈·, ·〉 : X ×X → F(D, R)

is a generalized inner product on X if the following axioms are satisfied:
(i) 〈u, v〉 = 〈v, u〉, ∀ u, v ∈ X;

(ii) 〈λu, v〉 = λ〈u, v〉, ∀ u, v ∈ X, ∀ λ ∈ R;
(iii) 〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉, ∀ u1, u2, v ∈ X;
(iv) 〈u, u〉 ≥ 0, ∀ u ∈ X and 〈u, u〉 = 0 ⇔ u = 0.

Let 〈·, ·〉 be a generalized inner product on X, L : X → F(Ω, Rm) be a linear
operator and Y ⊂ F(D, R) be a linear subspace. In which conditions for each u ∈ X,
there exists a linear operator Tu : Y → F(D, R) such that

〈u, L(u)〉(x) = ‖u‖(x)Tu(‖u‖)(x),

for all x ∈ D, with ‖u‖(x) 6= 0.
Let us consider the equations

L(u) = 0 (3.1)

and
Tu(v) = 0. (3.2)

If the pair L, Tu is a solution of the above problem and u is a solution of (3.1)
and iff all solution of (3.2) has a property (p), then the norm, ‖u‖, of u has the
property (p).

Example 3.1. Let Ω ⊂ Rn be an open set, X := C2(Ω, Rm), D := Ω, Y := C2(Ω, R)
and

〈u, v〉 :=
m∑

k=1

ukvk.

As L, let us take the following operator

L(u) := ∆u +
n∑

k=1

Bk
∂u

∂xk
+ Cu

where Bk, C ∈ F(Ω, Rm×m).
Let u ∈ C2(Ω, Rm) and x ∈ Ω be such that ‖u‖(x) 6= 0. Then

u(x) = ‖u‖(x)e(x), with 〈e, e〉(x) = 1.

So, in all point x ∈ Ω, where ‖u‖(x) 6= 0, we have〈
e,

∂e

∂xk

〉
= 0, k = 1,m, and

〈 ∂e

∂xk
,

∂e

∂xk

〉
+

〈
e,

∂2e

∂x2
k

〉
= 0.
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This relations imply that

〈u, L(u)〉 = ‖u‖〈e, L(‖u‖e)〉 = ‖u‖Tu(‖u‖)
where

Tu(v) = ∆v +
m∑

k=1

〈
e,Bke

〉 ∂v

∂xk
+ 〈e, Le〉v.

From a well known maximum principle for an elliptic differential equation we
have (see [12], [34], [33])

Theorem 3.2. Let L be such that

〈e, Le〉(x) < 0 (3.3)

for all e ∈ C2(Ω, Rm), with ‖e‖ = 1 and all x ∈ Ω.
Then the norm of each solution u ∈ C2(Ω, R) of (3.1) has no positive local

maximums in Ω.

Remark 3.3. For the case when Ω is open and bounded and u ∈ C2(Ω, Rm)∩C(Ω, Rm)
see [37] and [38].

Remark 3.4. The problem is in which conditions on Bk and C we have the condition
(3.3) ?

First of all we have that

〈e, Le〉 = −
n∑

k=1

〈 ∂e

∂xk
,

∂e

∂xk

〉
+

n∑
k=1

〈
e,Bk

∂e

∂xk

〉
+ 〈e, Ce〉 ≺ 0 (3.4)

(a function u ≺ 0 ⇔ u(x) < 0, ∀ x ∈ Ω).
On the other hand we remark that〈

e,Bk
∂e

∂xk

〉
=

〈
e, (Bk − bkI)

∂e

∂xk

〉
,

for all bk ∈ F(Ω, R).
So, we have the condition〈

e, Le−
n∑

k=1

bkI
∂e

∂xk

〉
≺ 0 (3.5)

and we have that, (3.4) ⇔ (3.5).

Now, let us suppose that
m∑

k=1

m∑
j=1

Ckj(x)λkλj ≤ −c(x)
m∑

k=1

|λk|2 (3.6)

for all λ ∈ Rm \ {0}, with c(x) ∈ R∗+, ∀ x ∈ Ω.
Since ∣∣〈e, (Bk − bkI)

∂e

∂xk

〉
(x)

∣∣ ≤ ‖Bk − bkI‖2(x)‖ ∂e

∂xk
‖, ∀ x ∈ Ω

from Theorem 3.2 it follows
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Theorem 3.5. We suppose that in Theorem 3.2 we put instead the condition (3.3) the
following:

(i) the matrix C satisfies condition (3.6) with c =
n∑

k=1

c2
k;

(ii) there exist bk ∈ F(Ω, R) such that

‖Bk − bk‖2 ≤ 2ck, k = 1, n.

Then we have the conclusions in Theorem 3.2.

Remark 3.6. Since ‖·‖2 ≤ ‖·‖F , by Theorem 2.1 we can take in Theorem 3.5,

ck :=
1
2
(
‖Bk‖2

F − 1
m
|trBk|2

) 1
2 .

Remark 3.7. In a similar way we have

Theorem 3.8 (see [37], [38]). Let us consider the following second order system

L(u) :=
n∑

k=1

n∑
j=1

Akj
∂2u

∂xk∂xj
+

n∑
k=1

Bk
∂u

∂xk
+ Cu = 0. (3.7)

We suppose that:

(i) Ω ⊂ Rn is an open subset and Akj , Bk, C : Ω → Rm×m are arbitrary matriceal
functions;

(ii) the system (3.7) is strongly elliptic;
(iii) 〈e, Le〉 ≺ 0, for all e ∈ C2(Ω, Rm) such that ‖e‖ = 1.

In these conditions the norm of each solution, u ∈ C2(Ω, Rm), of (3.7) has no positive
local maximums.

Remark 3.9. For the maximum principles for elliptic equations and systems see [27],
[13], [34], [12], [21], [23], [33], [43], [44], [5], [6], [29], [30], . . .

Example 3.10. Let Ω = Ω1×Ω2 ⊂ Rn be an open subset, where Ω1 ⊂ Rp, Ω2 ⊂ Rn−p,
1 ≤ p < n, are domains with smooth boundary. If x ∈ Ω, then x = (x′, x′′) with
x′ = (x1, . . . , xp) ∈ Ω1, x′′ = (xp+1, . . . , xn) ∈ Ω2.

Let X := C2(Ω, Rm), D := Ω1, Y := C2(Ω, R) and

〈u, v〉 :=
∫
Ω2

( m∑
k=1

ukvk

)
dx′′.

For x ∈ Ω such that ‖u‖(x) 6= 0 we have

u(x) = ‖u‖(x1, . . . , xp)e(x), with 〈e, e〉 = 1;

and 〈
e,

∂e

∂xk

〉
= 0, k = 1, p,

〈 ∂e

∂xj
,

∂e

∂xk

〉
+

〈
e,

∂2e

∂xk∂xj

〉
= 0

for k, j = 1, p.
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Let us take

L(u) := ∆u +
n∑

k=1

Bk(x1, . . . , xp)
∂u

∂xk
+ C(x1, . . . , xp)u = 0 (3.8)

L(‖u‖e) =
p∑

k=1

∂2‖u‖
∂x2

k

e + 2
p∑

k=1

∂‖u‖
∂xk

∂e

∂xk
+

p∑
k=1

Bk
∂‖u‖
∂xk

e + ‖u‖Le.

So,

Tu(v) =
p∑

k=1

∂2v

∂x2
k

+
p∑

k=1

〈
e,Bke

〉 ∂v

∂xk
+ 〈e, Le〉v.

From the above considerations, we have

Theorem 3.11. Let L be such that

〈e, Le〉(x′) < 0, ∀ x′ ∈ Ω1, and

for all e ∈ C2(Ω, Rm) with ‖e‖ = 1.
Then the norm of each solution u ∈ C2(Ω, Rm) of, L(u) = 0, has no positive

local maximums in Ω1.

Remark 3.12. As in the case of condition (3.3), the problem is in which conditions
we have

〈e, Le〉(x′) < 0 (3.9)
for all e ∈ C2(Ω, Rm) with ‖e‖ = 1 and all x′ ∈ Ω1.

First of all we have that

〈e, Le〉 =
∫
Ω2

p∑
k=1

(
−

m∑
j=1

( ∂ej

∂xk

)2
)

dξ′′ +
∫
Ω2

n∑
k=p

m∑
j=1

ej
∂2ej

∂xk
dξ′′

+
p∑

k=1

∫
Ω2

m∑
j=1

ej

(
Bk

∂e

∂xk

)
j
dξ′′ +

n∑
k=p+1

∫
Ω2

m∑
j=1

ej

(
Bk

∂e

∂xk

)
j
dξ′′

+
∫
Ω2

∑
ckjekejdξ′′.

From this relation and for a well known maximum principle for an elliptic equa-
tion, we have

Theorem 3.13. Let us suppose that

(i) −
p∑

j=1

〈τj , τj〉E +
p∑

k=1

〈η, (Bk − bkI)τk〉E +
n∑

k=p+1

〈η, Bkτk〉E + 〈η, cη〉e ≺ 0 for all

η, τk ∈ Rm \ {0}, and for some bk ∈ F(Ω1, R), k = 1, p;
(ii) u ∈ C2(Ω, Rm) is a solution of (3.9) such that, u

∣∣
Ω1×∂Ω2

= 0.

Then the norm of u has no positive local maximums in Ω1.
Here, 〈·, ·〉E denotes the Euclidean inner product.
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Remark 3.14. For the case of p = 1 see [21].

Remark 3.15. For the case of a class of systems which satisfy Somiglian’s condition
see [41].

Remark 3.16. It is clear that, in all of above cases, a solution for the minimum norm
problem is very important.

4. An application to an elliptic equation with complex valued
coefficients

Let us consider the following elliptic equation

∆u +
∑
k=1

pk
∂u

∂xk
+ qu = 0 (4.1)

where pk, q : Ω → C with Ω ⊂ Rn an open subset.
By a solution of (4.1) we understand a function u ∈ C2(Ω, C) which satisfies the

equation (4.1).
The equation (4.1) is equivalent with the following system of elliptic equations

∆
(

Reu
Imu

)
+

m∑
k=1

(
Repk − Impk

Impk Repk

)
∂

∂xk

(
Reu
Imu

)
+

(
Req − Imq
Imq Req

)
·
(

Reu
Imu

)
= 0.

If in Theorem 3.5 we take bk := Repk, we have from this theorem the following
result.

Theorem 4.1. Let us consider the equation (4.1). We suppose that

Req(x) < −1
4

n∑
k=1

(
Impk(x)

)2
, ∀ x ∈ Ω.

If u ∈ C2(Ω, C) is a solution of (4.1), then, |u| has no positive local maximums in Ω.

Remark 4.2. For a similar results, see [28].

5. Infinite elliptic systems of partial differential equations

We start this section with some words on infinite matrices.
Let A ∈ KN∗×N∗ be an infinite matrix which is row-column-finite. This matrix

induces the linear operator
Ã : l2(K) → KN∗ .

By definition the matrix A is 2-bounded if:
(i) Ã(l2(K)) ⊂ l2(K);

(ii) the operator Ã : l2(K) → l2(K) is a bounded operator.
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By definition, the 2-norm of A is the norm of Ã, i.e.,

‖A‖2 := sup
{
‖Ãx‖2 | x ∈ l2(K) with ‖x‖2 = 1

}
.

It is clear that we have

‖Ax‖2 ≤ ‖A‖2‖x‖2,

for all x ∈ l2(K) and all 2-bounded matrices A.

Example 5.1. Let Ω ⊂ Rn be an open subset. We consider

X :=
{
u : Ω → l2(R)

∣∣ u ∈ C2(Ω, l2(R)),
∂u

∂xk
∈ C1(Ω, l2(R))

and
∂2u

∂x2
k

∈ C(Ω, l2(R)
}
,

and

〈u, v〉 :=
∞∑

k=1

ukvk.

Now, let us consider the following infinite system

L(u) := ∆u +
n∑

k=1

Bk
∂u

∂xk
+ Cu = 0 (5.1)

where Bk, C : Ω → RN∗×N∗ are row-column-finite matrices. We have

Theorem 5.2. We suppose that:
(i) the matrices Bk(x), C(x) are 2-bounded for all x ∈ Ω;

(ii)
〈e, Le〉 ≺ 0, ∀ e ∈ X with 〈e, e〉 = 1. (5.2)

If u ∈ X is a solution of (5.1), then ‖u‖2 has no positive local maximums in Ω.

The proof is similar with that of Theorem 3.2.

Remark 5.3. As in the case of Theorem 3.2, the problem is to study in which conditions
on Bk and C we have (5.2). We have

Theorem 5.4. We suppose that:
(i) the matrices Bk(x), C(x) are 2-bounded for all x ∈ Ω;

(ii) there exist ck, bk ∈ F(Ω, R), k = 1,m such that:
(a) ‖Bk − bk‖2 ≤ 2ck, k = 1,m;

(b) 〈ξ, C(x)ξ〉 < −
m∑

k=1

c2
k, ∀ ξ ∈ l2(R), with 〈ξ, ξ〉 = 1.

If u ∈ X, with ‖u‖2, ‖ ∂u
∂xk

‖2 and ‖ ∂2u
∂x2

k
‖2, k = 1,m, uniformly convergent on each

compact in Ω, is a solution of (5.1), then ‖u‖2 has no positive local maximums in Ω.

Remark 5.5. For more informations on infinite matrices see: [35], [7], [14], [25], [18],
[19], [22], [24], [26], . . .
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6. Research directions and open problems

The above considerations give rise to the following questions.

Problem 6.1. Use the above technique to study some maximum principles for the
following elliptic system in an open subset Ω ⊂ Rm:

n∑
k=1

n∑
j=1

Akj
∂2u

∂xk∂xj
+

n∑
k=1

Bk
∂u

∂xk
+ Cu = 0

where Akj , Bk, C : Ω → Cm×m and u ∈ C2(Ω, Cn).
References: [28], [27], [31], [10], . . .

Problem 6.2. Let Ω ⊂ Rm be an open subset. Use the above technique to study
maximum principles for the following parabolic system:

n∑
k=1

n∑
j=1

Akj(x, t)
∂2u

∂xk∂xj
+

n∑
k=1

Bk(x, t)
∂u

∂xk
+ C(x, t)u− ∂u

∂t
= 0

for (x, t) ∈ Ω×]0, T [. Here Akj , Bk, C : Ω×]0, T [→ Rm×m.
A similar problem holds for the case of complex valued matrices Akj , Bk and C.
References: [37], [38], [6], . . .

Problem 6.3. Use the maximum principles in this paper to study the uniqueness of
the solution of Dirichlet problem for elliptic systems.

For example, let us consider the following uniformly elliptic operator in an open
and bounded Ω ⊂ Rn

L = L0 + c(x) := −
n∑

k=1

n∑
j=1

akj
∂2

∂xk∂xj
+

n∑
k=1

bk(x) + c(x)

with smooth coefficients and smooth boundary Γ of Ω (u ∈ C2(Ω) ∩ C(Ω))

L(u) = f (6.1)

u
∣∣
Γ

= g (6.2)
The following result is given in [32]:

Theorem of equivalent statements. We suppose that we have uniqueness for the
problem (6.1) + (6.2). Then the following statements are equivalent:
(i) there exists v ∈ C2(Ω) ∩ C(Ω) such that v(x) > 0 for x ∈ Ω and L(v) ≥ 0 in Ω;

(ii) for all smooth c1 ≥ c we have uniqueness for L1 = L0 + c1 and Ω;
(iii) for all smooth open Ω1 ⊂ Ω we have uniqueness for L and Ω1;
(iv) f ≥ 0 in Ω, g = 0 on Γ imply u ≥ 0 in Ω;
(iv′) the corresponding Green function for L and Ω, G(x, y) ≥ 0 for all x, y ∈ Ω;
(v) f = 0 on Ω, g ≥ 0 on Γ imply u ≥ 0 in Ω;
(v′) ∂G(x,y)

∂νy
≥ 0 for all x ∈ Ω and y ∈ Γ, where νy is the inner conormal at y ∈ Γ.

The problem is to give a similar result for a strongly elliptic system of second
order.
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Problem 6.4. Let A ∈ Rn×n. Determine some upper estimations for

min
x∈R

‖A− xI‖2.

A similar problem for A ∈ RN∗×N∗ .
References: [1], [5], [6], [17], [7], [14], [22], [24], [26], . . .

Problem 6.5. Let A ∈ Cn×n. Determine some upper estimations for

min
z∈C

‖A− zI‖2.

A similar problem for A ∈ CN∗×N∗ .
References: [1], [7], [14], [15], [16], [24], . . .
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