Fekete-Szegö problem for a class of analytic functions

S. Sivaprasad Kumar and Virendra Kumar

Abstract

In the present investigation, by taking $\phi(z)$ as an analytic function, sharp upper bounds of the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for functions belonging to the class $\mathcal{M}_{g, h}^{\alpha}(\phi)$ are obtained. A few applications of our main result are also discussed.

Mathematics Subject Classification (2010): 30C45, 30C80.
Keywords: Analytic functions, convex functions, Fekete-Szegö inequality, starlike functions, subordination.

1. Introduction

Let \mathcal{A} be the class of analytic functions f defined on the unit disk $\Delta:=\{z \in \mathbb{C}$: $|z|<1\}$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions. For two functions f and g analytic in Δ we say that f is subordinate to g or g is superordinate to f, denoted by $f \prec g$, if there is an analytic function w with $|w(z)| \leq|z|$ such that $f(z)=g(w(z))$. If g is univalent, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(\Delta) \subseteq g(\Delta)$.

A function $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ is said to be in the class \mathcal{P} if $\operatorname{Re} p(z)>0$. Let ϕ be an analytic univalent function in Δ with positive real part and $\phi(\Delta)$ be symmetric with respect to the real axis, starlike with respect to $\phi(0)=1$ and $\phi^{\prime}(0)>0$. Ma and Minda [6] gave a unified presentation of various subclasses of starlike and convex functions by introducing the classes $\mathcal{S}^{*}(\phi)$ and $\mathcal{C}(\phi)$ satisfying $z f^{\prime}(z) / f(z) \prec \phi(z)$ and $1+z f^{\prime \prime}(z) / f^{\prime}(z) \prec \phi(z)$ respectively, which includes several well-known classes as special case. For example, when $\phi(z)=(1+A z) /(1+B z)(-1 \leq B<A \leq 1)$ the class $\mathcal{S}^{*}(\phi)$ reduces to the class $\mathcal{S}^{*}[A, B]$ introduced by Janowski [3].

Ali et al.[1] introduced the class $\mathcal{M}(\alpha, \phi)$ of α-convex functions with respect to ϕ consisting of functions f in \mathcal{A}, satisfying

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \phi(z)
$$

The class $\mathcal{M}(\alpha, \phi)$ includes several known classes namely $\mathcal{S}^{*}(\phi), \mathcal{C}(\phi)$ and $\mathcal{M}(\alpha,(1+(1-2 \alpha) z) /(1-z))=: \mathcal{M}(\alpha)$. The class $\mathcal{M}(\alpha)$ is the class of α-convex functions, introduced and studied by Miller and Mocanu [7]. Several coefficient problems for p - valent analytic functions were considered by Ali et al. [2].

In 1933, Fekete and Szegö proved that

$$
\left|a_{2}^{2}-\mu a_{3}\right| \leq \begin{cases}4 \mu-3 & (\mu \geq 1) \\ 1+\exp \left(-\frac{2 \mu}{1-\mu}\right) & (0 \leq \mu \leq 1) \\ 3-4 \mu, & (\mu \leq 0)\end{cases}
$$

holds for the functions $f \in \mathcal{S}$ and the result is sharp. The problem of finding the sharp bounds for the non-linear functional $\left|a_{3}-\mu a_{2}^{2}\right|$ of any compact family of functions is popularly known as the Fekete-Szegö problem. Keogh and Merkes [4], in 1969, obtained the sharp upper bound of the Fekete-Szegö functional $\left|a_{2}^{2}-\mu a_{3}\right|$ for functions in some subclasses of \mathcal{S}. For many results on Fekete-Szegö problems see [1, 2, 9, 10, $12,13,14]$.

The Hadamard product (or convolution) of $f(z)$, given by (1.1) and $g(z)=$ $z+\sum_{n=2}^{\infty} g_{n} z^{n}$ is defined by

$$
(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} g_{n} z^{n}=:(g * f)(z)
$$

Recently, using the Hadamard product Murugusundaramoorthy et al. [8] introduced a new class $M_{g, h}(\phi)$ of functions $f \in \mathcal{A}$ satisfying

$$
\frac{(f * g)(z)}{(f * h)(z)} \prec \phi(z) \quad\left(g_{n}>0, h_{n}>0, g_{n}-h_{n}>0\right),
$$

where $g, h \in \mathcal{A}$ and are given by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n} \text { and } h(z)=z+\sum_{n=2}^{\infty} h_{n} z^{n} \tag{1.2}
\end{equation*}
$$

Motivated by the work of Ma and Minda [6] and others [1, 2, 4, 8], in the present paper, we introduce a more general class $M_{g, h}^{\alpha}(\phi)$ defined using convolution and subordination and deduce Fekete-Szegö inequality for this class. Certain applications of our results are also discussed. In fact our results extend several earlier known works in $[4,6,8]$.
Definition 1.1. Let g and h are given by (1.2) with $g_{n}>0, h_{n}>0$ and $g_{n}-h_{n}>0$. A function $f \in \mathcal{A}$ given by (1.1) is said to be in the class $M_{g, h}^{\alpha}(\phi)$, if it satisfies

$$
\begin{equation*}
(1-\alpha) \frac{(f * g)(z)}{(f * h)(z)}+\alpha \frac{(f * g)^{\prime}(z)}{(f * h)^{\prime}(z)} \prec \phi(z) \quad(\alpha \geq 0) \tag{1.3}
\end{equation*}
$$

where ϕ is an analytic function with $\phi(0)=1$ and $\phi^{\prime}(0)>0$.

Note that in Definition 1.1, we are not assuming $\phi(\Delta)$ to be symmetric with respect to the real axis and starlike with respect to $\phi(0)=1$. In order to prove the class $M_{g, h}^{\alpha}(\phi)$ is non empty, consider the function $f(z)=z /(1-z)$. Assuming

$$
\Phi(z)=(1-\alpha) \frac{(f * g)(z)}{(f * h)(z)}+\alpha \frac{(f * g)^{\prime}(z)}{(f * h)^{\prime}(z)}
$$

we have $\Phi(z)=1+(1+\alpha)\left(g_{2}-h_{2}\right) z+\cdots$. Clearly $\Phi(0)=1$ and $\Phi^{\prime}(0)=(1+\alpha)\left(g_{2}-\right.$ $\left.h_{2}\right)>0$, thus $f(z)=z /(1-z) \in M_{g, h}^{\alpha}(\phi)$.

Remark 1.2. For various choices of the functions g, h, ϕ and the real number α, the class $M_{g, h}^{\alpha}(\phi)$ reduces to several known classes, we enlist a few of them below:

1. The class $M_{g, h}^{0}(\phi)=: M_{g, h}(\phi)$, introduced and studied by Murugusundaramoorthy et al. [8].
2. If we set

$$
\begin{equation*}
g(z)=\frac{z}{(1-z)^{2}}, \quad h(z)=\frac{z}{(1-z)} \tag{1.4}
\end{equation*}
$$

and $\phi(z)=(1+z) /(1-z)$, then the class $M_{g, h}^{\alpha}(\phi)$ reduces to the class of α-convex functions.
3. $M_{\frac{z}{(1-z)^{2}}, \frac{z}{(1-z)}}^{\alpha}(\phi)=: \mathcal{M}(\alpha, \phi)$.
4. For the functions g and h given by (1.4), $M_{g, h}^{\alpha}((1+z) /(1-z))=: \mathcal{M}(\alpha)$ is the class of α-convex functions.
5. $M_{\frac{z}{(1-z)^{2}}, \frac{z}{(1-z)}}^{0}(\phi)=: \mathcal{S}^{*}(\phi)$ and $M_{\frac{z}{(1-z)^{2}}, \frac{z}{(1-z)}}^{1}(\phi)=: \mathcal{C}(\phi)$ are the well known classes of ϕ-starlike and ϕ-convex functions respectively.

The following lemmas are required in order to prove our main results. Lemma 1.3 of Ali et al. [2], is a reformulation of the corresponding result for functions with positive real part due to Ma and Minda [6].

Let Ω be the class of analytic functions w, normalized by the condition $w(0)=0$, satisfying $|w(z)|<1$.

Lemma 1.3. [2] If $w \in \Omega$ and $w(z):=w_{1} z+w_{2} z^{2}+\cdots(z \in \Delta)$, then

$$
\left|w_{2}-t w_{1}^{2}\right| \leq \begin{cases}-t & (t \leq-1) \\ 1 & (-1 \leq t \leq 1) \\ t & (t \geq 1)\end{cases}
$$

For $t<-1$ or $t>1$, equality holds if and only if $w(z)=z$ or one of its rotations. For $-1<t<1$, equality holds if and only if $w(z)=z^{2}$ or one of its rotations. Equality holds for $t=-1$ if and only if $w(z)=z(\lambda+z) /(1+\lambda z) \quad(0 \leq \lambda \leq 1)$ or one of its rotations, while for $t=1$, equality holds if and only if $w(z)=-z(\lambda+z) /(1+\lambda z) \quad(0 \leq$ $\lambda \leq 1$) or one of its rotations.

Lemma 1.4. [4] (see also [11]) If $w \in \Omega$, then, for any complex number t,

$$
\left|w_{2}-t w_{1}^{2}\right| \leq \max \{1 ;|t|\}
$$

and the result is sharp for the functions given by $w(z)=z^{2}$ or $w(z)=z$.

2. Fekete-Szegö problem

We begin with the following result:
Theorem 2.1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$. If $f(z)$ given by (1.1) belongs to the class $M_{g, h}^{\alpha}(\phi)$, then, for any real number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1} A}{(1+2 \alpha)\left(g_{3}-h_{3}\right)} & \left(\mu \leq \sigma_{1}\right) \tag{2.1}\\ \frac{B_{1}}{(1+2 \alpha)\left(g_{3}-h_{3}\right)} & \left(\sigma_{1} \leq \mu \leq \sigma_{2}\right) \\ \frac{B_{1} A}{(1+2 \alpha)\left(h_{3}-g_{3}\right)} & \left(\mu \geq \sigma_{2}\right)\end{cases}
$$

where

$$
\begin{aligned}
A & =\frac{B_{2}}{B_{1}}-\frac{\left[(1+3 \alpha)\left(h_{2}^{2}-h_{2} g_{2}\right)+\mu(1+2 \alpha)\left(g_{3}-h_{3}\right)\right] B_{1}}{(1+\alpha)^{2}\left(g_{2}-h_{2}\right)^{2}} \\
\sigma_{1} & :=\frac{\left(B_{2}-B_{1}\right)(1+\alpha)^{2}\left(g_{2}-h_{2}\right)^{2}-(1+3 \alpha)\left(h_{2}^{2}-h_{2} g_{2}\right) B_{1}^{2}}{(1+2 \alpha)\left(g_{3}-h_{3}\right) B_{1}^{2}}
\end{aligned}
$$

and

$$
\sigma_{2}:=\frac{\left(B_{2}+B_{1}\right)(1+\alpha)^{2}\left(g_{2}-h_{2}\right)^{2}-(1+3 \alpha)\left(h_{2}^{2}-h_{2} g_{2}\right) B_{1}^{2}}{(1+2 \alpha)\left(g_{3}-h_{3}\right) B_{1}^{2}}
$$

and for any complex number μ

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{2(1+2 \alpha)\left(g_{3}-h_{3}\right)} \max \{1 ;|t|\} \tag{2.2}
\end{equation*}
$$

where

$$
t:=\frac{\left[(1+3 \alpha)\left(h_{2}^{2}-h_{2} g_{2}\right)+\mu(1+2 \alpha)\left(g_{3}-h_{3}\right)\right] B_{1}^{2}-B_{2}(1+\alpha)^{2}\left(g_{2}-h_{2}\right)^{2}}{(1+\alpha)^{2}\left(g_{2}-h_{2}\right)^{2} B_{1}}
$$

Proof. If $f \in \mathcal{M}_{g, h}^{\alpha}(\phi)$, then there exits an analytic function $w(z)=w_{1} z+w_{2} z^{2}+\cdots \in$ Ω such that

$$
\begin{equation*}
(1-\alpha) \frac{(f * g)(z)}{(f * h)(z)}+\alpha \frac{(f * g)^{\prime}(z)}{(f * h)^{\prime}(z)}=\phi(w(z)) \tag{2.3}
\end{equation*}
$$

A computation shows that

$$
\begin{gather*}
\frac{(f * g)(z)}{(f * h)(z)}=1+a_{2}\left(g_{2}-h_{2}\right) z+\left[a_{3}\left(g_{3}-h_{3}\right)+a_{2}^{2}\left(h_{2}^{2}-h_{2} g_{2}\right)\right] z^{2}+\cdots \tag{2.4}\\
\frac{(f * g)^{\prime}(z)}{(f * h)^{\prime}(z)}=1+2 a_{2}\left(g_{2}-h_{2}\right) z+\left[3 a_{3}\left(g_{3}-h_{3}\right)+4 a_{2}^{2}\left(h_{2}^{2}-h_{2} g_{2}\right)\right] z^{2}+\cdots \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\phi(w(z))=1+B_{1} w_{1} z+\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right) z^{2} . \tag{2.6}
\end{equation*}
$$

From (2.3), (2.4), (2.5) and (2.6), we have

$$
\begin{equation*}
(1+\alpha)\left(g_{2}-h_{2}\right) a_{2}=B_{1} w_{1} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
(1+2 \alpha)\left(g_{3}-h_{3}\right) a_{3}+(1+3 \alpha)\left(h_{2}^{2}-h_{2} g_{2}\right) a_{2}^{2}=B_{1} w_{2}+B_{2} w_{1}^{2} \tag{2.8}
\end{equation*}
$$

A computation using (2.7) and (2.8) give

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{B_{1}}{(1+2 \alpha)\left(g_{2}-h_{2}\right)}\left[w_{2}-t w_{1}^{2}\right] \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
t:=-\frac{B_{2}}{B_{1}}+\frac{\left[(1+3 \alpha)\left(h_{2}^{2}-h_{2} g_{2}\right)+\mu(1+2 \alpha)\left(g_{3}-h_{3}\right)\right] B_{1}}{(1+\alpha)^{2}\left(g_{2}-h_{2}\right)^{2}} \tag{2.10}
\end{equation*}
$$

Now the first inequality (1.3) is established as follows by an application of Lemma 1.3.
If

$$
-\frac{B_{2}}{B_{1}}+\frac{\left[(1+3 \alpha)\left(h_{2}^{2}-h_{2} g_{2}\right)+\mu(1+2 \alpha)\left(g_{3}-h_{3}\right)\right] B_{1}}{(1+\alpha)^{2}\left(g_{2}-h_{2}\right)^{2}} \leq-1
$$

then

$$
\mu \leq \frac{\left(B_{2}-B_{1}\right)(1+\alpha)^{2}\left(g_{2}-h_{2}\right)^{2}-(1+3 \alpha)\left(h_{2}^{2}-h_{2} g_{2}\right) B_{1}^{2}}{(1+2 \alpha)\left(g_{3}-h_{3}\right) B_{1}^{2}}:=\sigma_{1}
$$

and Lemma 1.3, gives

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1} A}{(1+2 \alpha)\left(g_{3}-h_{3}\right)}
$$

For

$$
-1 \leq-\frac{B_{2}}{B_{1}}+\frac{\left[(1+3 \alpha)\left(h_{2}^{2}-h_{2} g_{2}\right)+\mu(1+2 \alpha)\left(g_{3}-h_{3}\right)\right] B_{1}}{(1+\alpha)^{2}\left(g_{2}-h_{2}\right)^{2}} \leq 1
$$

we have $\sigma_{1} \leq \mu \leq \sigma_{2}$, where σ_{1} and σ_{2} are as given in the statement of theorem. Now an application of Lemma 1.3 yields

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{(1+2 \alpha)\left(g_{3}-h_{3}\right)}
$$

For

$$
-\frac{B_{2}}{B_{1}}+\frac{\left[(1+3 \alpha)\left(h_{2}^{2}-h_{2} g_{2}\right)+\mu(1+2 \alpha)\left(g_{3}-h_{3}\right)\right] B_{1}}{(1+\alpha)^{2}\left(g_{2}-h_{2}\right)^{2}} \geq 1
$$

we have $\mu \geq \sigma_{2}$ and it follows from Lemma 1.3 that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1} A}{(1+2 \alpha)\left(h_{3}-g_{3}\right)}
$$

Now the second inequality (2.2) fallows by an application of Lemma 1.4 as follows:

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & =\frac{B_{1}}{(1+2 \alpha)\left(g_{2}-h_{2}\right)}\left[w_{2}-t w_{1}^{2}\right] \\
& \leq \frac{B_{1}}{(1+2 \alpha)\left(g_{3}-h_{3}\right)} \max \{1 ;|t|\}
\end{aligned}
$$

where t is given by (2.10).
Remark 2.2. If we set $\alpha=1, g$ and h are as given by (1.4), then Theorem 2.1 reduces to the result [6, Theorem 3] of Ma and Minda. When $\alpha=0$, Theorem 2.1 reduces to the result [8, Theorem 2.1], proved by Murugusundaramoorthy et al. Note that there were few typographical errors in the assertion of the result [8, Theorem 2.1] and it is rectified in the following corollary:

Corollary 2.3. [8, Theorem 2.1] Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$. If $f(z)$ given by (1.1) belongs to the class $M_{g, h}(\phi)$, then for any real number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{g_{3}-h_{3}}\left(\frac{B_{2}}{B_{1}}-\frac{\left[\left(h_{2}^{2}-h_{2} g_{2}\right)+\mu\left(g_{3}-h_{3}\right)\right] B_{1}}{\left(g_{2}-h_{2}\right)^{2}}\right) & \left(\mu \leq \sigma_{1}\right) \\ \frac{B_{1}}{g_{3}-h_{3}} & \left(\sigma_{1} \leq \mu \leq \sigma_{2}\right) \\ \frac{B_{1}}{g_{3}-h_{3}}\left(\frac{\left[\left(h_{2}^{2}-h_{2} g_{2}\right)+\mu\left(g_{3}-h_{3}\right)\right] B_{1}}{\left(g_{2}-h_{2}\right)^{2}}-\frac{B_{2}}{B_{1}}\right) & \left(\mu \geq \sigma_{2}\right)\end{cases}
$$

where

$$
\sigma_{1}:=\frac{\left(B_{2}-B_{1}\right)\left(g_{2}-h_{2}\right)^{2}-\left(h_{2}^{2}-h_{2} g_{2}\right) B_{1}^{2}}{\left(g_{3}-h_{3}\right) B_{1}^{2}}
$$

and

$$
\sigma_{2}:=\frac{\left(B_{2}+B_{1}\right)\left(g_{2}-h_{2}\right)^{2}-\left(h_{2}^{2}-h_{2} g_{2}\right) B_{1}^{2}}{\left(g_{3}-h_{3}\right) B_{1}^{2}} .
$$

Here below, we discuss some applications of Theorem 2.1:
Corollary 2.4. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$. Assume that

$$
g(z)=z+\sum_{n=2}^{\infty} \frac{n \Gamma(n+1) \Gamma(2-\delta)}{\Gamma(n-\delta+1)} z^{n} \quad \text { and } h(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\delta)}{\Gamma(n-\delta+1)} z^{n} .
$$

If $f(z)$ given by (1.1) belongs to the class $M_{g, h}^{\alpha}(\phi)$, then for any real number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{(2-\delta)(3-\delta) B_{1}}{12(1+2 \alpha)}\left(\frac{B_{2}}{B_{1}}-\frac{[12 \mu(1+2 \alpha)(2-\delta)-4(3-\delta)(1+3 \alpha)] B_{1}}{4(3-\delta)(1+\alpha)^{2}}\right) & \left(\mu \leq \sigma_{1}\right), \\ \frac{(2-\delta)(3-\delta) B_{1}}{12(1+\alpha)} & \left(\sigma_{1} \leq \mu \leq \sigma_{2}\right), \\ \frac{(2-\delta)(3-\delta) B_{1}}{12(1+2 \alpha)}\left(\frac{[12 \mu(1+2 \alpha)(2-\delta)-4(3-\delta)(1+3 \alpha)] B_{1}}{4(3-\delta)(1+\alpha)^{2}}-\frac{B_{2}}{B_{1}}\right) & \left(\mu \geq \sigma_{2}\right),\end{cases}
$$

where

$$
\sigma_{1}:=\frac{(3-\delta)\left[\left(B_{1}-B_{2}\right)(1+\alpha)^{2}+(1+3 \alpha) B_{1}^{2}\right]}{3(2-\delta)(1+2 \alpha) B_{1}^{2}}
$$

and

$$
\sigma_{2}:=\frac{(3-\delta)\left[\left(B_{1}+B_{2}\right)(1+\alpha)^{2}+(1+3 \alpha) B_{1}^{2}\right]}{3(2-\delta)(1+2 \alpha) B_{1}^{2}} .
$$

Remark 2.5. Taking $\alpha=8 / \pi^{2}, B_{2}=16 / 3 \pi^{2}$ and $\delta=1$ in Corollary 2.4, we have the result of Ma and Minda [5, Theorem 2]. When $\alpha=0$, the above Corollary 2.4 reduces to [8, Corollary 3.2] of Murugusundaramoorthy et al. Note that there were few typographical errors in the assertion of [8, Corollary 3.2] and the following result is the corrected one:

Corollary 2.6. [8, Corollary 3.2] Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$. If $f(z)$ given by (1.1) belongs to the class $M_{g, h}(\phi)$, then, for any real number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{(2-\delta)(3-\delta) B_{1}}{12}\left(\frac{B_{2}}{B_{1}}-\frac{[12 \mu(2-\delta)-4(3-\delta)] B_{1}}{4(3-\delta)}\right) & \left(\mu \leq \sigma_{1}\right), \\ \frac{(2-\delta)(3-\delta) B_{1}}{12} & \left(\sigma_{1} \leq \mu \leq \sigma_{2}\right), \\ \frac{(2-\delta)(3-\delta) B_{1}}{12}\left(\frac{[12 \mu(2-\delta)-4(3-\delta)] B_{1}}{4(3-\delta)}-\frac{B_{2}}{B_{1}}\right) & \left(\mu \geq \sigma_{2}\right),\end{cases}
$$

where

$$
\sigma_{1}:=\frac{(3-\delta)\left[B_{1}-B_{2}+B_{1}^{2}\right]}{3(2-\delta) B_{1}^{2}}
$$

and

$$
\sigma_{2}:=\frac{(3-\delta)\left[B_{1}+B_{2}+B_{1}^{2}\right]}{3(2-\delta) B_{1}^{2}}
$$

Putting $\phi(z)=(1+z) /(1-z), g$ and h are as given by (1.4) in Theorem 2.1, we deduce the following result:

Corollary 2.7. Let $f(z)$ is given by (1.1) belongs to the class $\mathcal{M}(\alpha)$, then, for any real number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{\left(\alpha^{2}+8 \alpha+3\right)-4 \mu(1+2 \alpha)}{(1+\alpha)^{2}(1+2 \alpha)} & \left(\mu \leq \sigma_{1}\right) \\ \frac{1}{(1+2 \alpha)} & \left(\sigma_{1} \leq \mu \leq \sigma_{2}\right), \\ \frac{4 \mu(1+2 \alpha)-\left(\alpha^{2}+8 \alpha+3\right)}{(1+\alpha)^{2}(1+2 \alpha)} & \left(\mu \geq \sigma_{2}\right)\end{cases}
$$

where $\sigma_{1}:=\frac{1+3 \alpha}{2(1+2 \alpha)}$ and $\sigma_{2}:=\frac{\alpha^{2}+5 \alpha+2}{2(1+2 \alpha)}$.
Note that for $\alpha=0$, Corollary 2.7 reduces to a result in [4] (see also [14]). By taking $\phi(z)=(1+z) /(1-z), g$ and h, given by (1.4) in second result of Theorem 1.3, we have the following result:

Corollary 2.8. Let $f(z)$ is given by (1.1) belongs to the class $\mathcal{M}(\alpha)$, then for any complex number μ

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{1+2 \alpha} \max \left\{1 ;\left|\frac{4 \mu(1+2 \alpha)-\left(\alpha^{2}+8 \alpha+3\right)}{(1+\alpha)^{2}}\right|\right\}
$$

Remark 2.9. For $\alpha=1$, the above Corollary 2.8 reduces to the result [4, Corollary 1] of Keogh and Merkes.

References

[1] Ali, R. M., Lee, S. K., Ravichandran, V. and Subramaniam, S., The Fekete-Szego coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc., 35(2009), no. 2, 119-142.
[2] Ali, R.M., Ravichandran, V. and Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput., 187(2007), no. 1, 35-46.
[3] Janowski, W., Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23(1970/1971), 159-177.
[4] Keogh, F.R. and Merkes, E.P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
[5] Ma, W.C. and Minda, D., Uniformly convex functions. II, Ann. Polon. Math., 58(1993), no. 3, 275-285.
[6] Ma, W.C. and Minda, D., A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.
[7] Miller, S.S. and Mocanu, P.T., Differential subordinations, Monographs and Text Books in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
[8] Murugusundaramoorthy, G., Kavitha, S. and Rosy T., On the Fekete-Szegö problem for some subclasses of analytic functions defined by convolution, Proc. Pakistan Acad. Sci., 44(2007), no. 4, 249-254.
[9] Ravichandran, V., Gangadharan, A. and Darus, M., Fekete-Szegö inequality for certain class of Bazilevic functions, Far East J. Math. Sci. (FJMS), 15(2004), no. 2, 171-180.
[10] Ravichandran, V., Darus, M., Khan, M.H. and Subramanian, K.G., Fekete-Szego inequality for certain class of analytic functions, Aust. J. Math. Anal. Appl., 1(2004), no. 2, Art. 4, 7 pp.
[11] Ravichandran, V., Polatoglu, Y., Bolcal, M. and Sen, A., Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat. Hacet. J. Math. Stat., 34(2005), 9-15.
[12] Sivaprasad Kumar, S. and Virendra Kumar, Fekete-Szegö problem for a class of analytic functions defined by convolution, Tamkang J. Math., 44(2013), no. 2, 187-195.
[13] Sivaprasad Kumar, S. and Virendra Kumar, On the Fekete-Szegö inequality for certain class of analytic functions, submitted.
[14] Srivastava, H.M., Mishra, A.K. and Das, M.K., The Fekete-Szegő problem for a subclass of close-to-convex functions, Complex Variables Theory Appl., 44(2001), no. 2, 145-163.
S. Sivaprasad Kumar
"Delhi Technological" University
Department of Applied Mathematics
Delhi-110042, India
e-mail: spkumar@dce.ac.in
Virendra Kumar
"Delhi Technological" University
Department of Applied Mathematics
Delhi-110042, India
e-mail: vktmaths@yahoo.in

