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Fekete-Szego problem for a class of analytic
functions
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Abstract. In the present investigation, by taking ¢(z) as an analytic function,
sharp upper bounds of the Fekete-Szegd functional |as — pa3| for functions be-
longing to the class Mg ), (¢) are obtained. A few applications of our main result
are also discussed.
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1. Introduction

Let A be the class of analytic functions f defined on the unit disk A := {z € C :
|z| < 1} of the form

f(2) :z—f—Zanz". (1.1)
n=2

Let S be the subclass of A consisting of univalent functions. For two functions f
and g analytic in A we say that f is subordinate to g or g is superordinate to f, denoted
by f < g, if there is an analytic function w with |w(z)| < |z| such that f(z) = g(w(2)).
If ¢ is univalent, then f < g if and only if f(0) = ¢g(0) and f(A) C g(A).

A function p(z) = 1+p12+p2z2+.. . is said to be in the class P if Re p(z) > 0. Let
¢ be an analytic univalent function in A with positive real part and ¢(A) be symmetric
with respect to the real axis, starlike with respect to ¢(0) = 1 and ¢’(0) > 0. Ma and
Minda [6] gave a unified presentation of various subclasses of starlike and convex
functions by introducing the classes S*(¢) and C(¢) satisfying zf'(z)/f(z) < &(z)
and 1+ zf"(2)/f'(2) < &(z) respectively, which includes several well-known classes
as special case. For example, when ¢(z) = (1+ Az)/(1+ Bz) (-1 < B < A <1) the
class 8*(¢) reduces to the class S*[A, B] introduced by Janowski [3].
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Ali et al.[1] introduced the class M(a, ¢) of a-convex functions with respect to
¢ consisting of functions f in A, satisfying

LG L (Y
M=oy (“ f'<z>>*¢’( )

The class M(a,¢) includes several known classes namely S*(¢), C(¢) and
M(a, (1 + (1 —2a)2)/(1 — z)) =: M(c). The class M(«) is the class of a-convex
functions, introduced and studied by Miller and Mocanu [7]. Several coefficient prob-
lems for p- valent analytic functions were considered by Ali et al. [2].

In 1933, Fekete and Szego proved that

dp—3 (n=>1),
a3 — pas] < ¢ T+exp(—12;) (0<p<),
3— 4y, (1 <0)

holds for the functions f € S and the result is sharp. The problem of finding the sharp
bounds for the non-linear functional |az — pa3| of any compact family of functions
is popularly known as the Fekete-Szego problem. Keogh and Merkes [4], in 1969,
obtained the sharp upper bound of the Fekete-Szegt functional |a3 — pag| for functions
in some subclasses of S. For many results on Fekete-Szegé problems see [1, 2, 9, 10,
12, 13, 14].

The Hadamard product (or convolution) of f(z), given by (1.1) and g(z) =
Z4 >0 5 gn2™ is defined by

(f*9)(z —z+Zan9n =: (g% f)(2).

Recently, using the Hadamard product Murugusundaramoorthy et al. [8] intro-
duced a new class My ;(¢) of functions f € A satisfying

(f*9)(2)
(f *h)(2)
where g, h € A and are given by

=< (;5(2) (gn >0,hp > 0,9, — hyp > 0)7

z):z+Zgnz" and h(z *Z+th (1.2)
n=2

Motivated by the work of Ma and Minda [6] and others [1, 2, 4, 8], in the present
paper, we introduce a more general class M 1 (@) defined using convolution and sub-
ordination and deduce Fekete-Szego 1nequahty for this class. Certain applications of

our results are also discussed. In fact our results extend several earlier known works
in [4, 6, 8].

Definition 1.1. Let g and h are given by (1.2) with g, > 0,h, > 0 and g, — h,, > 0.
A function f € A given by (1.1) is said to be in the class M}, (¢), if it satisfies

N CIR I (C
M= T Fraye 0@ @20, (1.3)

where ¢ is an analytic function with ¢$(0) =1 and ¢'(0) >0
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Note that in Definition 1.1, we are not assuming ¢(A) to be symmetric with
respect to the real axis and starlike with respect to ¢(0) = 1. In order to prove the
class M), (¢) is non empty, consider the function f(2) = z/(1 — z). Assuming

(f*9)(z) ([ *9)(2)
(f«h)(z) ~ (fxh)(2)

we have ®(z) = 14 (14 a)(g2 —ha)z+--- . Clearly ®(0) = 1 and ®'(0) = (1+)(g2 —
ha) >0, thus f(2) = 2/(1 — 2) € Mg, ().

P(z)=(1-a)

Remark 1.2. For various choices of the functions g, h, ¢ and the real number «, the
class M' 4 (¢) reduces to several known classes, we enlist a few of them below:

1. The class Mgo’h

thy et al. [8].
2. If we set

(¢) =: My n(¢), introduced and studied by Murugusundaramoor-

z z

9(2) = m» h(z) = m

and ¢(z) = (1+2)/(1—2), then the class M} (¢) reduces to the class of a-convex
functions.

3. M%ﬁ(qﬁ) = M(a, ¢).

4. For the functions g and h given by (1.4), M), ((1+ 2)/(1 — 2)) =: M(a) is the
class of a-convex functions.

5 M° . - (¢) = S*(¢) and M! . - (¢) =: C(¢) are the well known

(1—2)2’(1-=2) (1—2)2°(1-2)
classes of ¢-starlike and ¢-convex functions respectively.

(1.4)

The following lemmas are required in order to prove our main results. Lemma 1.3
of Ali et al. [2], is a reformulation of the corresponding result for functions with positive
real part due to Ma and Minda [6].

Let € be the class of analytic functions w, normalized by the condition w(0) = 0,
satisfying |w(z)| < 1.

Lemma 1.3. [2] If w € Q and w(z) := w1z + we2? + -+ (2 € A), then

—t (t<-1),
lwy —tw?| << 1 (=1<t<1),
t (t>1).

Fort < —1 ort > 1, equality holds if and only if w(z) = z or one of its rotations. For
—1 < t < 1, equality holds if and only if w(z) = 2% or one of its rotations. Equality
holds for t = —1 if and only if w(z) = z(A+ 2)/(1 + Az) (0 < X < 1) or one of its
rotations, while fort = 1, equality holds if and only if w(z) = —z(A+2)/(1+Az) (0 <
A< 1) or one of its rotations.

Lemma 1.4. [4] (see also [11]) If w € Q, then, for any complex number t,
lwy — tw?| < max{1;|t|}

and the result is sharp for the functions given by w(z) = 2% or w(z) = z.
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2. Fekete-Szego problem
We begin with the following result:

Theorem 2.1. Let ¢(z) =1+ Biz+ Baz? + . If f(2) given by (1.1) belongs to the
class Mg, (¢), then, for any real number p,

BiA
(HM};W (1 < o),
lag — pa3| < W (01 < p <o), (2.1)
Tzt (2 02),
where
4= B2 [(1430)(h3 — hags) + p(1 +20)(gs — ha)| By
B, (1+ a)?(g2 — ha)? ’
oy e B2 =B+ a)?(g2 — h2)? — (1 4 30) (h3 — hago) BY
(1+2a)(gs — hs) B}
and
- (B2 + B1)(1 + @)?(g2 — h2)? — (1 4 3a)(h3 — haga) B}

(1+2a)(gs — hs) B} ’
and for any complexr number

B
2 — nall < 1 1: |t 2.2
|a‘3 MCL2| = 2(1 + 20()(93 — I’Lg) maX{ 7| |}7 ( )
where
y . [0+ 30)(h3 — hago) + p(1 + 20)(g3 — hy)|BY — Ba(1 + @)*(g2 — ho)*

(1+ a)2(g2 — h2)? B4
Proof. If f € Mj ,,(¢), then there exits an analytic function w(z) = wiz+wez? 4 €

() such that
(f*x9)(z) | (f*9)(2)

C=tmme Ty — e 23)
A computation shows that
leJra( — ho)z + [az(gs — h3) + a3(h3 — hogs)]2® + - - (2.4)
(f*h)(z) 2192 2 3193 3 AU 292 ) .
m = 1+ 2as(go — ha)z + [3as(gs — ha) +4a5(h3 — hago)]2® +--- (2.5)
and
d(w(z)) = 1+ Bywy 2z + (Bywsy + Bow?)22. (2.6)
From (2.3), (2.4), (2.5) and (2.6), we have
(14 a)(g2 — h2)as = Biws (2.7)
and
(1 + 20()(93 — h3)a3 + (1 + 304)(]1% — hggg)ag = Biws + ng%. (28)
A computation using (2.7) and (2.8) give
o = 03] = g oy e — ) (2.9)

14+ 2&)(92 — hg)
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where
B 14+3a)(h2 —h 1+2 3 — hs)|B
po— D2 [(1 4 3a)(h3 292)2+M( + 24)(93 3)|B1 (2.10)
Bl (1 + Oé) (gg — hg)
Now the first inequality (1.3) is established as follows by an application of Lemma 1.3.
If
B + [(1+3a)(h3 — haga) + p(1 +20a)(gs — h3)|Bs <_1
By (1+a)*(g2 — ha)? -
then

< (B2 — B1)(1+ @)?(g2 — ha)® — (1 + 3a)(h — hag2) BY _ -
- (1 +2a)(gs — hs) B} '

and Lemma 1.3, gives

s — ] < B A
PTHR= T 20) (g5 — ha)
For
1< By [(1 + 3e) (h3 — h292)2+M(1 + 23)(93 — h3)| By <1
By (14 a)?(g2 — h2)

we have 01 < pu < 09, where 07 and o are as given in the statement of theorem. Now
an application of Lemma 1.3 yields

a3 — pa] <
bR (1+2a)(gs — h3)
For
By [0+ 30)(1 ~ haga) + (1 + 20)(gs — s)lBy |
By (14 a)*(g2 — he)? 7
we have p > o9 and it follows from Lemma 1.3 that

B A
(1+2a)(hs —g3)

las — pa3| <

Now the second inequality (2.2) fallows by an application of Lemma 1.4 as follows:

By

as — pa?|l = wy — tw?
| 3 2 2| (1+20()(gg—h2)[ 2 1]
B,
< max{1;|t|},
~ (1+2a)(g3 — ha) sy
where ¢ is given by (2.10). O

Remark 2.2. If we set a = 1, g and h are as given by (1.4), then Theorem 2.1 reduces
to the result [6, Theorem 3] of Ma and Minda. When « = 0, Theorem 2.1 reduces to
the result [8, Theorem 2.1], proved by Murugusundaramoorthy et al. Note that there
were few typographical errors in the assertion of the result [8, Theorem 2.1] and it is
rectified in the following corollary:
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Corollary 2.3. [8, Theorem 2.1] Let ¢(z) = 1 + Byz + Boz? + ---. If f(2) given by
(1.1) belongs to the class My 1 (¢), then for any real number p,

By (& _ [(hgfh292)+#(93*h3)]5’1> (1< o1)

gs—hs \ B (g2—h2)?
lag — ,ua%\ < 93131% (01 < p<o9),
h2—h _hs)|B
a1ty ) e
where
o1 = (B2 — B1)(g2 — h2)? — (h3 — hago) B
' (93 - h3)B1
and
oy = (Bz + B1)(g2 — h2)? — (h3 — hag2)B

(93 — h3) B}
Here below, we discuss some applications of Theorem 2.1:

Corollary 2.4. Let ¢(z) =1+ Bz + Byz? +--- . Assume that

n(n+)02-0) , F(n+1)I'(2-9) ,
g(2) —Z+Z Tn—o+1) z _Z+Z n75+1) 2"

If f(2) given by (1.1) belongs to the class M, ($), then for any real number p,

(2-8)(3-6)B1 (@ _ [12u(1+2a)(2—5)—4(3—5)(1+3a)131) (1 < o)

12(1+2a) B 4(3=68)(1+a)2
a3 = pa3| < (271%%22)31 (01 S pu<o2),
—08)(3=98 a)(2—96)— —0 a
(2122§3‘+2a))31 ([12u(1+2 )ﬁg_;)éf&ﬂxus NB1 _ %) (1> 02),
where
e B=0)(B1 = Bs)(1+)? + (1 43a)BY]
e 3(2—-6)(1+2a)B2
and
oo e B=0)(B1+ Bs)(1+)” + (1 +3a) B
2 1= .

32— 0)(1 + 20)B2

Remark 2.5. Taking a = 8/72, By = 16/37% and § = 1 in Corollary 2.4, we have
the result of Ma and Minda [5, Theorem 2]. When « = 0, the above Corollary 2.4
reduces to [8, Corollary 3.2] of Murugusundaramoorthy et al. Note that there were
few typographical errors in the assertion of [8, Corollary 3.2] and the following result
is the corrected one:

Corollary 2.6. [8, Corollary 3.2] Let ¢(z) = 1+ Byz + Boz? + -+ . If f(2) given by
(1.1) belongs to the class My (), then, for any real number p,

2—9)(3—9)B 12p(2—6)—4(3—90)]B
00D, (B2 _ BB AGOB) (<),
jag — pa3| < § CRUE05 (01 < p <o),

—5)(3=6 —5)—4(3—6
= )(132 = ([12y(2 4()3—45()3 15 %) (1> 09),
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where
o = (3—10)[B1 — By + Bj]
e 3(2—0)B2
and
o (3 —0)[By + Bz + B?]
2 1=

3(2—0)B?

Putting ¢(z) = (1 + 2)/(1 — z), g and h are as given by (1.4) in Theorem 2.1,
we deduce the following result:

Corollary 2.7. Let f(z) is given by (1.1) belongs to the class M(«), then, for any real
number L,

(a®+8a+3)—4u(1+2a) (n < ov),

) 1(1—}-04)2(1+201)
laz — pasz] < 5o . (o1 < p <o),
4p(14+2a)—(a”+8a+3)
(I+a)2(1+2a) (k> 02),
2
where o1 := 2(111320;) and oy = %

Note that for o = 0, Corollary 2.7 reduces to a result in [4] (see also [14]). By
taking ¢(z) = (1+2)/(1—2), g and h, given by (1.4) in second result of Theorem 1.3,
we have the following result:

Corollary 2.8. Let f(z) is given by (1.1) belongs to the class M(a), then for any
complex number

|ag — paj| < max{1~’4'u(l+2a)(a2+8a+3)‘}.

’ 1+ a2

Remark 2.9. For a = 1, the above Corollary 2.8 reduces to the result [4, Corollary 1]
of Keogh and Merkes.

1+ 2«
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