The order of convexity for a new integral operator

Laura Stanciu and Daniel Breaz

Abstract

In this paper we consider a new integral operator $I\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)$ for analytic functions $f_{i}(z), g_{i}(z)$ in the open unit disk \mathcal{U}. The main object of the present paper is to study the order of convexity for this integral operator.

Mathematics Subject Classification (2010): 30C45.
Keywords: Analytic functions, integral operator, starlike functions, convex functions, general Schwarz lemma.

1. Introduction and preliminaries

Let \mathcal{A} denote the class of functions of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the open unit disk

$$
\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}
$$

and satisfy the following usual normalization condition

$$
f(0)=f^{\prime}(0)-1=0 .
$$

We denote by \mathcal{S} the subclass of \mathcal{A} consisting of functions $f(z)$ which are univalent in \mathcal{U}.

Definition 1.1. A function f belonging to \mathcal{S} is a starlike function by the order α, $0 \leq \alpha<1$ if f satisfies the inequality

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in \mathcal{U}
$$

We denote this class by $\mathcal{S}^{*}(\alpha)$.

Definition 1.2. A function f belonging to \mathcal{S} is a convex function by the order $\alpha, 0 \leq$ $\alpha<1$ if f satisfies the inequality

$$
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)>\alpha, z \in \mathcal{U}
$$

We denote this class by $\mathcal{K}(\alpha)$.
A function $f \in \mathcal{S}$ is in the class $\mathcal{P}(\alpha)$ if and only if

$$
\operatorname{Re}\left(f^{\prime}(z)\right)>\alpha, z \in \mathcal{U}
$$

In [1], Frasin and Jahangiri introduced the class $\mathcal{B}(\mu, \alpha)$ defined as follows.
Definition 1.3. A function $f(z) \in \mathcal{A}$ is said to be a member of the class $\mathcal{B}(\mu, \alpha)$ if and only if

$$
\begin{equation*}
\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu}-1\right|<1-\alpha \tag{1.1}
\end{equation*}
$$

$z \in \mathcal{U} ; 0 \leq \alpha<1 ; \mu \geq 0$.
Note that the condition (1.1) is equivalent to

$$
\operatorname{Re}\left(f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu}\right)>\alpha
$$

for $z \in \mathcal{U} ; 0 \leq \alpha<1 ; \mu \geq 0$.
Clearly, $\mathcal{B}(1, \alpha)=\mathcal{S}^{*}(\alpha), \mathcal{B}(0, \alpha)=\mathcal{P}(\alpha)$ and $\mathcal{B}(2, \alpha)=\mathcal{B}(\alpha)$ the class which has been introduced and studied by Frasin and Darus [2] (see also [3]).
Let \mathcal{S}_{β}^{*} be the subclass of \mathcal{A} consisting of the functions f which satisfy the inequality

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\beta, 0<\beta \leq 1 ; z \in \mathcal{U} \tag{1.2}
\end{equation*}
$$

and let \mathcal{S}_{β} be the subclass of \mathcal{A} consisting of the functions f which satisfy the inequality

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<\beta, 0<\beta \leq 1 ; z \in \mathcal{U} \tag{1.3}
\end{equation*}
$$

For $f_{i}(z), g_{i}(z) \in \mathcal{A}$ and $\delta_{i}, \gamma_{i} \in \mathbb{C}$, we define the integral operator $I_{\beta}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)$ given by

$$
\begin{equation*}
I_{\beta}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(\frac{f_{i}(t)}{t}\right)^{\delta_{i}}\left(e^{g_{i}(t)}\right)^{\gamma_{i}} d t \tag{1.4}
\end{equation*}
$$

In order to prove our main results, we recall the following lemma.
Lemma 1.4. (General Schwarz Lemma) (see [4]). Let the function f be regular in the disk $\mathcal{U}_{R}=\{z \in \mathbb{C}:|z|<R\}$, with $|f(z)|<M$ for fixed M. If f has one zero with multiplicity order bigger than m for $z=0$, then

$$
|f(z)| \leq \frac{M}{R^{m}}|z|^{m}, z \in \mathcal{U}_{R}
$$

The equality can hold only if

$$
f(z)=e^{i \theta} \frac{M}{R^{m}} z^{m}, \text { where } \theta \text { is constant } .
$$

2. The order of convexity for the integral operator

$$
I\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)
$$

Theorem 2.1. Let the functions $f_{i}, g_{i} \in \mathcal{A}$ and suppose that $\left|g_{i}(z)\right| \leq M_{i}, M_{i} \geq 1$ for all $i \in\{1,2, \ldots, n\}$. If $f_{i} \in \mathcal{S}_{\beta_{i}}^{*}, 0<\beta_{i} \leq 1$ and $g_{i} \in \mathcal{B}\left(\mu_{i}, \alpha_{i}\right), \mu_{i} \geq 0,0 \leq \alpha_{i}<1$ then the integral operator $I\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)$ defined by (1.4) is in $\mathcal{K}(\lambda)$, where

$$
\lambda=1-\sum_{i=1}^{n}\left[\left|\delta_{i}\right| \beta_{i}+\left|\gamma_{i}\right|\left(2-\alpha_{i}\right) M_{i}^{\mu_{i}}\right]
$$

and

$$
\sum_{i=1}^{n}\left[\left|\delta_{i}\right| \beta_{i}+\left|\gamma_{i}\right|\left(2-\alpha_{i}\right) M_{i}^{\mu_{i}}\right]<1, \delta_{i}, \gamma_{i} \in \mathbb{C}
$$

for all $i \in\{1,2, \ldots, n\}$.
Proof. From (1.4) we obtain

$$
I^{\prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)=\prod_{i=1}^{n}\left(\frac{f_{i}(z)}{z}\right)^{\delta_{i}}\left(e^{g_{i}(z)}\right)^{\gamma_{i}}
$$

and

$$
\begin{gathered}
I^{\prime \prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)= \\
\sum_{i=1}^{n}\left[\delta_{i}\left(\frac{f_{i}(z)}{z}\right)^{\delta_{i}-1}\left(\frac{z f_{i}^{\prime}(z)-f_{i}(z)}{z^{2}}\right)\left(e^{g_{i}(z)}\right)^{\gamma_{i}}\right] \prod_{\substack{k=1 \\
k \neq i}}^{n}\left(\frac{f_{k}(z)}{z}\right)^{\delta_{k}}\left(e^{g_{k}(z)}\right)^{\gamma_{k}} \\
+\sum_{i=1}^{n}\left[\left(\frac{f_{i}(z)}{z}\right)^{\delta_{i}} \gamma_{i}\left(e^{g_{i}(z)}\right)^{\gamma_{i}-1} g_{i}^{\prime}(z) e^{g_{i}(z)}\right] \prod_{\substack{k=1 \\
k \neq i}}^{n}\left(\frac{f_{k}(z)}{z}\right)^{\delta_{k}}\left(e^{g_{k}(z)}\right)^{\gamma_{k}}
\end{gathered}
$$

After the calculus we obtain that

$$
\begin{equation*}
\frac{z I^{\prime \prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}{I^{\prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}=\sum_{i=1}^{n}\left[\delta_{i}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right)+\gamma_{i} z g_{i}^{\prime}(z)\right] . \tag{2.1}
\end{equation*}
$$

It follows from (2.1) that

$$
\begin{align*}
& \left|\frac{z I^{\prime \prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}{I^{\prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}\right| \leq \sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left|\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right|+\left|\gamma_{i}\right|\left|z g_{i}^{\prime}(z)\right|\right] \\
& \quad \leq \sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left|\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right|+\left|\gamma_{i}\right|\left|g_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\mu_{i}}\right|\left|\frac{g_{i}(z)}{z}\right|^{\mu_{i}}|z|\right] \tag{2.2}
\end{align*}
$$

Since $\left|g_{i}(z)\right| \leq M_{i}, z \in \mathcal{U}$ applying the General Schwarz Lemma for the functions g_{i}, we have

$$
\left|g_{i}(z)\right| \leq M_{i}|z|, \quad z \in \mathcal{U}
$$

for all $i \in\{1,2, \ldots, n\}$.
Because $f_{i} \in \mathcal{S}_{\beta_{i}}^{*}, 0<\beta_{i} \leq 1, i \in\{1,2, \ldots, n\}$, we apply in the relation (2.2) the inequalities (1.2) and we obtain

$$
\begin{equation*}
\left|\frac{z I^{\prime \prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}{I^{\prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}\right| \leq \sum_{i=1}^{n}\left[\left|\delta_{i}\right| \beta_{i}+\left|\gamma_{i}\right|\left|g_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\mu_{i}}\right| M_{i}^{\mu_{i}}\right] \tag{2.3}
\end{equation*}
$$

From (2.3) and (1.1), we see that

$$
\begin{aligned}
& \left|\frac{z I^{\prime \prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}{I^{\prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}\right| \\
\leq & \sum_{i=1}^{n}\left[\left|\delta_{i}\right| \beta_{i}+\left|\gamma_{i}\right|\left(\left|g_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\mu_{i}}-1\right|+1\right) M_{i}^{\mu_{i}}\right] \\
\leq & \sum_{i=1}^{n}\left[\left|\delta_{i}\right| \beta_{i}+\left|\gamma_{i}\right|\left(2-\alpha_{i}\right) M_{i}^{\mu_{i}}\right] \\
= & 1-\lambda .
\end{aligned}
$$

So, the integral operator $I\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)$ defined by (1.4) is in $\mathcal{K}(\lambda)$. This completes the proof.

Setting $n=1$ in Theorem 2.1 we obtain
Corollary 2.2. Let the functions $f, g \in \mathcal{A}$ and suppose that $|g(z)| \leq M, M \geq 1$. If $f \in \mathcal{S}_{\beta}^{*}, 0<\beta \leq 1$ and $g \in \mathcal{B}(\mu, \alpha), \mu \geq 0,0 \leq \alpha<1$ then the integral operator

$$
I(f ; g)(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\delta}\left(e^{g(t)}\right)^{\gamma} d t
$$

is in $\mathcal{K}(\lambda)$, where

$$
\lambda=1-\left[|\delta| \beta+|\gamma|(2-\alpha) M^{\mu}\right]
$$

and

$$
\left[|\delta| \beta+|\gamma|(2-\alpha) M^{\mu}\right]<1, \delta, \gamma \in \mathbb{C}
$$

Theorem 2.3. Let the functions $f_{i}, g_{i} \in \mathcal{A}$ and suppose that $\left|f_{i}(z)\right| \leq M_{i},\left|g_{i}(z)\right| \leq N_{i}$, $M_{i} \geq 1, N_{i} \geq 1$ for all $i \in\{1,2, \ldots, n\}$. If $f_{i} \in \mathcal{S}_{\beta_{i}}, 0<\beta_{i} \leq 1$ and $g_{i} \in \mathcal{B}\left(\mu_{i}, \alpha_{i}\right)$, $\mu_{i} \geq 0,0<\alpha_{i}<1$ then the integral operator $I\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)$ defined by (1.4) is in $\mathcal{K}(\lambda)$ where

$$
\lambda=1-\sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left(\left(\beta_{i}+1\right) M_{i}+1\right)+\left|\gamma_{i}\right|\left(2-\alpha_{i}\right) N_{i}^{\mu_{i}}\right]
$$

and

$$
\sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left(\left(\beta_{i}+1\right) M_{i}+1\right)+\left|\gamma_{i}\right|\left(2-\alpha_{i}\right) N_{i}^{\mu_{i}}\right]<1, \quad \delta_{i}, \gamma_{i} \in \mathbb{C}
$$

for all $i \in\{1,2, \ldots, n\}$.

Proof. If we make the similar operations to the proof of Theorem 2.1, we have

$$
\begin{equation*}
\frac{z I^{\prime \prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}{I\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}=\sum_{i=1}^{n}\left[\delta_{i}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right)+\gamma_{i} z g_{i}^{\prime}(z)\right] . \tag{2.4}
\end{equation*}
$$

From the relation (2.4), we obtain that

$$
\begin{align*}
& \qquad\left|\frac{z I^{\prime \prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}{I^{\prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}\right| \\
& \leq \sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left(\left|\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}\right|+1\right)+\left|\gamma_{i}\right|\left|z g_{i}^{\prime}(z)\right|\right] \\
& \leq \sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left(\left|\frac{z^{2} f_{i}^{\prime}(z)}{f_{i}^{2}(z)}\right|\left|\frac{f_{i}(z)}{z}\right|+1\right)+\left|\gamma_{i}\right|\left|g_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\mu_{i}}\right|\left|\frac{g_{i}(z)}{z}\right|^{\mu_{i}}|z|\right] . \tag{2.5}
\end{align*}
$$

Since $\left|f_{i}(z)\right| \leq M_{i},\left|g_{i}(z)\right| \leq N_{i}, z \in \mathcal{U}$ applying the General Schwarz Lemma for the functions f_{i}, g_{i}, we obtain

$$
\left|f_{i}(z)\right| \leq M_{i}|z|, \quad z \in \mathcal{U} \text { and }\left|g_{i}(z)\right| \leq N_{i}|z|, z \in \mathcal{U}
$$

for all $i \in\{1,2, \ldots, n\}$.
Because $f_{i} \in \mathcal{S}_{\beta_{i}}, 0<\beta_{i} \leq 1 i \in\{1,2, \ldots, n\}$, we apply in the relation (2.5) the inequality (1.3) and we obtain

$$
\begin{gather*}
\left|\frac{z I^{\prime \prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}{I^{\prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}\right| \\
\leq \sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left(\left(\left|\frac{z^{2} f_{i}^{\prime}(z)}{f_{i}^{2}(z)}-1\right|+1\right) M_{i}+1\right)+\left|\gamma_{i}\right|\left|g_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\mu_{i}}\right| N_{i}^{\mu_{i}}\right] \\
\leq \sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left(\left(\beta_{i}+1\right) M_{i}+1\right)+\left|\gamma_{i}\right|\left|g_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\mu_{i}}\right| N_{i}^{\mu_{i}}\right] \tag{2.6}
\end{gather*}
$$

From (2.6) and (1.1) we obtain

$$
\begin{aligned}
& \quad\left|\frac{z I^{\prime \prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}{I^{\prime}\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)}\right| \\
& \leq \sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left(\left(\beta_{i}+1\right) M_{i}+1\right)+\left|\gamma_{i}\right|\left(\left|g_{i}^{\prime}(z)\left(\frac{z}{g_{i}(z)}\right)^{\mu_{i}}-1\right|+1\right) N_{i}^{\mu_{i}}\right] \\
& \leq \sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left(\left(\beta_{i}+1\right) M_{i}+1\right)+\left|\gamma_{i}\right|\left(2-\alpha_{i}\right) N_{i}^{\mu_{i}}\right] \\
& =1-\lambda .
\end{aligned}
$$

So, the integral operator $I\left(f_{1}, \ldots, f_{n} ; g_{1}, \ldots, g_{n}\right)(z)$ defined by (1.4) is in $\mathcal{K}(\lambda)$. This completes the proof.

Setting $n=1$ in Theorem 2.3 we obtain

Corollary 2.4. Let the functions $f, g \in \mathcal{A}$ and suppose that $|f(z)| \leq M,|g(z)| \leq N$, $M \geq 1, N \geq 1$. If $f \in \mathcal{S}_{\beta}, 0<\beta \leq 1$ and $g \in \mathcal{B}(\mu, \alpha), \mu \geq 0,0<\alpha<1$ then the integral operator

$$
I(f ; g)(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\delta}\left(e^{g(t)}\right)^{\gamma} d t
$$

is in $\mathcal{K}(\lambda)$ where

$$
\lambda=1-\left[|\delta|((\beta+1) M+1)+|\gamma|(2-\alpha) N^{\mu}\right]
$$

and

$$
\left[|\delta|((\beta+1) M+1)+|\gamma|(2-\alpha) N^{\mu}\right]<1, \delta, \gamma \in \mathbb{C}
$$

Acknowledgement. This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the European Social Fund-Investing in People.

References

[1] Frasin, B.A. and Jahangiri, J., A new and comprehensive class of analytic functions, Anal. Univ. Ordea Fasc. Math., 15(2008), 59-62.
[2] Frasin, B.A. and Darus, M., On certain analytic univalent functions, Internat. J. Math. and Math. Sci., 25(5)(2001), 305-310.
[3] Frasin, B.A., A note on certain analytic and univalent functions, Southeast Asian J. Math., 28(2004), 829-836.
[4] Nehari, Z., Conformal mapping, McGraw-Hill Book Comp., New York, 1952.
Laura Stanciu
University of Piteşti
Department of Mathematics
Târgul din Vale Str., No. 1
110040, Piteşti, Arges
Romania
e-mail: laura_stanciu_30@yahoo.com
Daniel Breaz
"1 Decembrie 1918" University of Alba Iulia
Department of Mathematics
Alba Iulia, Str. N. Iorga, 510000, No. 11-13
400084 Cluj-Napoca, Romania
e-mail: dbreaz@uab.ro

