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On a certain class of analytic functions

Saurabh Porwal and Kaushal Kishore Dixit

Abstract. In this paper, authors introduce a new class R(β, α, n) of Salagean-
type analytic functions. We obtain extreme points of R(β, α, n) and some sharp

bounds for Re
{

Dnf(z)
z

}
and Re

{
Dn−1f(z)

z

}
. Relevant connections of the results

presented here with various known results are briefly indicated.
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1. Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑

k=2

akzk, (1.1)

which are analytic in the open unit disc U = {z : |z| < 1} and normalized by the
condition f(0) = f ′(0)− 1 = 0.

Further, let S be the class of functions in A which are univalent in U . For
0 ≤ β < 1, α > 0 and n ∈ N0 = N ∪ 0, we let

R(β, α, n) =
{

f(z) ∈ A : Re

{
Dnf(z) + α(Dn+1f(z)−Dnf(z))

z

}
> β, z ∈ U

}
,

where Dn stands for Salagean derivative operator introduced by Salagean [9].
By specializing the parameters in the subclass R(β, α, n), we obtain the following

known subclasses of S studied earlier by various researchers.
(i) R(β, α, 1) ≡ R(β, α) studied by Gao and Zhou [4].
(ii) R(β, 1, 1) ≡ R(β) studied by various authors ([2], [3] and [8]), see also ([1], [6],
[11]).
(iii) R(β, 0, 1) ≡ Rβ studied by Hallenbeck [5].
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Now, we introduce Alexander operator Inf(z) : A → A, n ∈ N0 by

I0f(z) = f(z)

I1f(z) =
∫ z

0

f(t)
t

dt

................

Inf(z) = I1(In−1f(z)), n ∈ N.

Thus

Inf(z) = z +
∞∑

k=2

1
kn

akzk.

It can be easily seen that

Dn(Inf(z)) = f(z) = In(Dnf(z)).

In the present paper, we determine extreme points of R(β, α, n) and also to
obtain some sharp bounds for Re

{
Dnf(z)

z

}
and Re

{
Dn−1f(z)

z

}
.

2. Main results

Theorem 2.1. A function f(z) is in R(β, α, n), if and only if f(z) can be expressed
as,

f(z) =
∫
|x|=1

[
(2β − 1)z + 2(1− β)x

∞∑
k=0

(xz)k+1

(k + 1)n(kα + 1)

]
dµ(x), (2.1)

where µ(x) is the probability measure defined on the X = {x : |x| = 1}. For fixed α,
β, n and R(β, α, n) the probability measure µ defined on X are one-to-one by the
expression (2.1).

Proof. By the definition of R(β, α, n), f(z) ∈ R(β, α, n), if and only if
Dnf(z)+α(Dn+1f(z)−Dnf(z))

z − β

1− β
∈ P,

where P denotes the normalized well-known class of analytic functions which have
positive real part. By the aid of Herglotz expression of functions in P , we have

Dnf(z)+α(Dn+1f(z)−Dnf(z))
z − β

1− β
=
∫
|x|=1

1 + xz

1− xz
dµ(x),

which is equivalent to

Dnf(z) + α(Dn+1f(z)−Dnf(z))
z

=
∫
|x|=1

1 + (1− 2β)xz

1− xz
dµ(x).

So we have

In

[
z

{
Dnf(z) + α(Dn+1f(z)−Dnf(z))

z

}]
=
∫
|x|=1

Inz

{
1 + (1− 2β)xz

1− xz

}
dµ(x),
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or

f(z) + α(zf ′(z)− f(z)) =
∫
|x|=1

{
z +

∞∑
k=2

2(1− β)xk−1zk

kn

}
dµ(x),

that is,

z1− 1
α

∫ z

0

{
1
α

f(ζ) + (ζf ′(ζ)− f(ζ))
}

ζ
1
α−2dζ

=
1
α

∫
|x|=1

{
z1− 1

α

∫ z

0

{
ζ + 2(1− β)

∞∑
k=2

xk−1ζk

kn

}
ζ

1
α−2

}
dµ(x).

We obtain

f(z) =
∫
|x|=1

{
z + 2(1− β)

∞∑
k=2

xk−1zk

kn(αk + 1− α)

}
dµ(x),

or equivalently

f(z) =
∫
|x|=1

{
(2β − 1)z + 2(1− β)x

∞∑
k=0

(xz)k+1

(k + 1)n(αk + 1)

}
dµ(x).

This deductive process can be converse, so we have proved the first part of the
theorem. we know that both probability measure µ and class P , class P and R(β, α, n)
are one-to-one, so the second part of the theorem is true. Thus the proof of Theorem
2.1 is established. �

Corollary 2.2. The extreme points of the class R(β, α, n) are

fx(z) = (2β − 1)z + 2(1− β)x
∞∑

k=0

(xz)k+1

(k + 1)n(αk + 1)
, |x| = 1. (2.2)

Proof. Using the notation fx(z) equation (2.1) can be written as

fµ(z) =
∫
|x|=1

fx(z)dµ(x).

By Theorem 2.1, the map µ → fµ is one-to-one so the assertion follows (see [5]). �

Corollary 2.3. If f(z) = z +
∑∞

k=2 akzk ∈ R(β, α, n), then

|ak(z)| ≤ 2(1− β)
kn(αk + 1− α)

, (k ≥ 2).

The results are sharp.

Proof. The coefficient bounds are maximized at an extreme point. Now from (2.2),
fx(z) can be expressed as

fx(z) = z + 2(1− β)
∞∑

k=2

xk−1zk

kn(αk + 1− α)
, |x| = 1, (2.3)

and the result follows. �
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Corollary 2.4. If f(z) ∈ R(β, α, n), then for |z| = r < 1

|f(z)| ≤ r + 2(1− β)
∞∑

k=2

rk

kn(αk + 1− α)
.

The result follows from (2.3).

Next, we determine the sharp lower bound of Re
{

Dnf(z)
z

}
and Re

{
Dn−1f(z)

z

}
for f(z) ∈ R(β, α, n). Since R(β, α, n) is rotationally invariant, we may restrict our
attention to the extreme point of

g(z) = z + 2(1− β)
∞∑

k=2

zk

kn(αk + 1− α)
. (2.4)

Theorem 2.5. If f(z) ∈ R(β, α, n), then for |z| ≤ r < 1 we have

Re

{
Dnf(z)

z

}
≥ 1+2(1−β)

∞∑
k=2

(−r)k−1

α(k − 1) + 1
> 1+2(1−β)

∞∑
k=2

(−1)k−1

α(k − 1) + 1
, (2.5)

and

Re

{
Dnf(z)

z

}
≤ 1+2(1−β)

∞∑
k=2

(−r)k−1

α(k − 1) + 1
< 1+2(1−β)

∞∑
k=2

(−1)k−1

α(k − 1) + 1
. (2.6)

These inequalities are both sharp.

Proof. We need only consider g(z) defined by (2.4). We have

Dng(z)
z

= 1 + 2(1− β)
∞∑

k=2

zk−1

α(k − 1) + 1
. (2.7)

It can be written as
Dng(z)

z
= 1 + 2

(1− β)
α

∫ 1

0

t
1
α

z

1− tz
dt. (2.8)

So we have

Re

{
Dng(z)

z

}
= 1 + 2

(1− β)
α

∫ 1

0

t
1
α Re

{
z

1− tz

}
dt. (2.9)

Since k(z) = z
1−tz is convex in U , k(z) = k(z) and k(z) maps real axis to real axis,

we have

− r

1 + tr
≤ Re

{
z

1− tz

}
≤ r

1− tr
, (|z| ≤ r).

Substituting the last inequalities in (2.9) and expanding the integrand into the power
series of t and integrating it, we can obtain the inequalities (2.5) and (2.6).

The sharpness can be seen from (2.7). �

Theorem 2.6. Dn−1 [R(β, α, n)] ⊂ S for β ≥ β0 and this result can not be extended to
β < β0 , where

β0 = 1 +
1
2

( ∞∑
k=2

(−1)k−1

α(k − 1) + 1

)−1

.
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Proof. Let f(z) ∈ R(β, α, n).
Now using (2.5)(

Dn−1f(z)
)′

= 1 + 2(1− β)
∞∑

k=2

(−1)k−1

α(k − 1) + 1
≥ 0. (2.10)

Dn−1f(z) ∈ S, that is, if β ≥ β0, we have Dn−1 [R(β, α, n)] ⊂ S . The result can not
be extended to β < β0 because

(
Dn−1f(−1)

)′ = 0 at β = β0 . Thus
(
Dn−1f(−r)

)′ = 0
for some r = r(β) < 1 when β < β0. �

.

Theorem 2.7. If f(z) ∈ R(β, α, n), then for |z| ≤ r < 1

Re

{
Dn−1f(z)

z

}
≥ 1 + 2(1− β)

∞∑
k=2

(−r)k−1

k[α(k − 1) + 1]
(2.11)

> 1 + 2(1− β)
∞∑

k=2

(−1)k−1

k[α(k − 1) + 1]
.

The result is sharp.

Proof. According to the same reasoning as in Theorem 2.5, we need only consider
g(z) defined by (2.4). We have

Dn−1g(z)
z

= 1 + 2(1− β)
∞∑

k=2

zk−1

k[α(k − 1) + 1]

= 1 + 2
(1− β)

α

∫ 1

0

t
1
α

(∫ 1

0

vz

1− tvz
dv

)
dt.

Thus

Re

{
Dn−1g(z)

z

}
= 1 + 2

(1− β)
α

∫ 1

0

t
1
α

(∫ 1

0

vRe

{
z

1− tvz

}
dv

)
dt

> 1− 2
(1− β)

α

∫ 1

0

t
1
α

(∫ 1

0

vr

1 + tvr
dv

)
dt

= 1 + 2(1− β)
∞∑

k=2

(−r)k−1

k[α(k − 1) + 1]

> 1 + 2(1− β)
∞∑

k=2

(−1)k−1

k[α(k − 1) + 1]
.

The sharpness can be seen from (2.4). �

Remark 2.8. If we put n = 1 in Theorem 2.1, 2.5 and 2.7 then we obtain the corre-
sponding results due to Gao and Zhou [4].
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Remark 2.9. If we put n = 1, α = 1 in Theorem 2.1, 2.5, 2.7 then we obtain the
corresponding results due to Silverman [10].

Remark 2.10. If we put n = 1, α = 0 in Theorem 2.1, 2.5, 2.7 then we obtain the
corresponding results due to Hallenbeck [5].
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