On a certain class of analytic functions

Saurabh Porwal and Kaushal Kishore Dixit

Abstract

In this paper, authors introduce a new class $R(\beta, \alpha, n)$ of Salageantype analytic functions. We obtain extreme points of $R(\beta, \alpha, n)$ and some sharp bounds for $\operatorname{Re}\left\{\frac{D^{n} f(z)}{z}\right\}$ and $\operatorname{Re}\left\{\frac{D^{n-1} f(z)}{z}\right\}$. Relevant connections of the results presented here with various known results are briefly indicated. Mathematics Subject Classification (2010): 30C45.

Keywords: Analytic, Salagean derivative, extreme points.

1. Introduction

Let A denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z:|z|<1\}$ and normalized by the condition $f(0)=f^{\prime}(0)-1=0$.

Further, let S be the class of functions in A which are univalent in U. For $0 \leq \beta<1, \alpha>0$ and $n \in N_{0}=N \cup 0$, we let

$$
R(\beta, \alpha, n)=\left\{f(z) \in A: \operatorname{Re}\left\{\frac{D^{n} f(z)+\alpha\left(D^{n+1} f(z)-D^{n} f(z)\right)}{z}\right\}>\beta, z \in U\right\}
$$

where D^{n} stands for Salagean derivative operator introduced by Salagean [9].
By specializing the parameters in the subclass $R(\beta, \alpha, n)$, we obtain the following known subclasses of S studied earlier by various researchers.
(i) $R(\beta, \alpha, 1) \equiv R(\beta, \alpha)$ studied by Gao and Zhou [4].
(ii) $R(\beta, 1,1) \equiv R(\beta)$ studied by various authors ([2], [3] and [8]), see also ([1], [6], [11]).
(iii) $R(\beta, 0,1) \equiv R_{\beta}$ studied by Hallenbeck [5].

Now, we introduce Alexander operator $I^{n} f(z): A \rightarrow A, n \in N_{0}$ by

$$
\begin{aligned}
& I^{0} f(z)=f(z) \\
& I^{1} f(z)=\int_{0}^{z} \frac{f(t)}{t} d t
\end{aligned}
$$

$$
I^{n} f(z)=I^{1}\left(I^{n-1} f(z)\right), n \in N
$$

Thus

$$
I^{n} f(z)=z+\sum_{k=2}^{\infty} \frac{1}{k^{n}} a_{k} z^{k}
$$

It can be easily seen that

$$
D^{n}\left(I^{n} f(z)\right)=f(z)=I^{n}\left(D^{n} f(z)\right)
$$

In the present paper, we determine extreme points of $R(\beta, \alpha, n)$ and also to obtain some sharp bounds for $\operatorname{Re}\left\{\frac{D^{n} f(z)}{z}\right\}$ and $\operatorname{Re}\left\{\frac{D^{n-1} f(z)}{z}\right\}$.

2. Main results

Theorem 2.1. A function $f(z)$ is in $R(\beta, \alpha, n)$, if and only if $f(z)$ can be expressed as,

$$
\begin{equation*}
f(z)=\int_{|x|=1}\left[(2 \beta-1) z+2(1-\beta) \bar{x} \sum_{k=0}^{\infty} \frac{(x z)^{k+1}}{(k+1)^{n}(k \alpha+1)}\right] d \mu(x) \tag{2.1}
\end{equation*}
$$

where $\mu(x)$ is the probability measure defined on the $X=\{x:|x|=1\}$. For fixed α, β, n and $R(\beta, \alpha, n)$ the probability measure μ defined on X are one-to-one by the expression (2.1).

Proof. By the definition of $R(\beta, \alpha, n), f(z) \in R(\beta, \alpha, n)$, if and only if

$$
\frac{\frac{D^{n} f(z)+\alpha\left(D^{n+1} f(z)-D^{n} f(z)\right)}{z}-\beta}{1-\beta} \in P
$$

where P denotes the normalized well-known class of analytic functions which have positive real part. By the aid of Herglotz expression of functions in P, we have

$$
\frac{\frac{D^{n} f(z)+\alpha\left(D^{n+1} f(z)-D^{n} f(z)\right)}{z}-\beta}{1-\beta}=\int_{|x|=1} \frac{1+x z}{1-x z} d \mu(x)
$$

which is equivalent to

$$
\frac{D^{n} f(z)+\alpha\left(D^{n+1} f(z)-D^{n} f(z)\right)}{z}=\int_{|x|=1} \frac{1+(1-2 \beta) x z}{1-x z} d \mu(x)
$$

So we have

$$
I^{n}\left[z\left\{\frac{D^{n} f(z)+\alpha\left(D^{n+1} f(z)-D^{n} f(z)\right)}{z}\right\}\right]=\int_{|x|=1} I^{n} z\left\{\frac{1+(1-2 \beta) x z}{1-x z}\right\} d \mu(x)
$$

or

$$
f(z)+\alpha\left(z f^{\prime}(z)-f(z)\right)=\int_{|x|=1}\left\{z+\sum_{k=2}^{\infty} \frac{2(1-\beta) x^{k-1} z^{k}}{k^{n}}\right\} d \mu(x)
$$

that is,

$$
\begin{gathered}
z^{1-\frac{1}{\alpha}} \int_{0}^{z}\left\{\frac{1}{\alpha} f(\zeta)+\left(\zeta f^{\prime}(\zeta)-f(\zeta)\right)\right\} \zeta^{\frac{1}{\alpha}-2} d \zeta \\
=\frac{1}{\alpha} \int_{|x|=1}\left\{z^{1-\frac{1}{\alpha}} \int_{0}^{z}\left\{\zeta+2(1-\beta) \sum_{k=2}^{\infty} \frac{x^{k-1} \zeta^{k}}{k^{n}}\right\} \zeta^{\frac{1}{\alpha}-2}\right\} d \mu(x) .
\end{gathered}
$$

We obtain

$$
f(z)=\int_{|x|=1}\left\{z+2(1-\beta) \sum_{k=2}^{\infty} \frac{x^{k-1} z^{k}}{k^{n}(\alpha k+1-\alpha)}\right\} d \mu(x)
$$

or equivalently

$$
f(z)=\int_{|x|=1}\left\{(2 \beta-1) z+2(1-\beta) \bar{x} \sum_{k=0}^{\infty} \frac{(x z)^{k+1}}{(k+1)^{n}(\alpha k+1)}\right\} d \mu(x)
$$

This deductive process can be converse, so we have proved the first part of the theorem. we know that both probability measure μ and class P, class P and $R(\beta, \alpha, n)$ are one-to-one, so the second part of the theorem is true. Thus the proof of Theorem 2.1 is established.

Corollary 2.2. The extreme points of the class $R(\beta, \alpha, n)$ are

$$
\begin{equation*}
f_{x}(z)=(2 \beta-1) z+2(1-\beta) \bar{x} \sum_{k=0}^{\infty} \frac{(x z)^{k+1}}{(k+1)^{n}(\alpha k+1)},|x|=1 \tag{2.2}
\end{equation*}
$$

Proof. Using the notation $f_{x}(z)$ equation (2.1) can be written as

$$
f_{\mu}(z)=\int_{|x|=1} f_{x}(z) d \mu(x)
$$

By Theorem 2.1, the map $\mu \rightarrow f_{\mu}$ is one-to-one so the assertion follows (see [5]).
Corollary 2.3. If $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in R(\beta, \alpha, n)$, then

$$
\left|a_{k}(z)\right| \leq \frac{2(1-\beta)}{k^{n}(\alpha k+1-\alpha)}, \quad(k \geq 2)
$$

The results are sharp.
Proof. The coefficient bounds are maximized at an extreme point. Now from (2.2), $f_{x}(z)$ can be expressed as

$$
\begin{equation*}
f_{x}(z)=z+2(1-\beta) \sum_{k=2}^{\infty} \frac{x^{k-1} z^{k}}{k^{n}(\alpha k+1-\alpha)},|x|=1 \tag{2.3}
\end{equation*}
$$

and the result follows.

Corollary 2.4. If $f(z) \in R(\beta, \alpha, n)$, then for $|z|=r<1$

$$
|f(z)| \leq r+2(1-\beta) \sum_{k=2}^{\infty} \frac{r^{k}}{k^{n}(\alpha k+1-\alpha)}
$$

The result follows from (2.3).
Next, we determine the sharp lower bound of $\operatorname{Re}\left\{\frac{D^{n} f(z)}{z}\right\}$ and $\operatorname{Re}\left\{\frac{D^{n-1} f(z)}{z}\right\}$ for $f(z) \in R(\beta, \alpha, n)$. Since $R(\beta, \alpha, n)$ is rotationally invariant, we may restrict our attention to the extreme point of

$$
\begin{equation*}
g(z)=z+2(1-\beta) \sum_{k=2}^{\infty} \frac{z^{k}}{k^{n}(\alpha k+1-\alpha)} . \tag{2.4}
\end{equation*}
$$

Theorem 2.5. If $f(z) \in R(\beta, \alpha, n)$, then for $|z| \leq r<1$ we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n} f(z)}{z}\right\} \geq 1+2(1-\beta) \sum_{k=2}^{\infty} \frac{(-r)^{k-1}}{\alpha(k-1)+1}>1+2(1-\beta) \sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{\alpha(k-1)+1} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n} f(z)}{z}\right\} \leq 1+2(1-\beta) \sum_{k=2}^{\infty} \frac{(-r)^{k-1}}{\alpha(k-1)+1}<1+2(1-\beta) \sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{\alpha(k-1)+1} \tag{2.6}
\end{equation*}
$$

These inequalities are both sharp.
Proof. We need only consider $g(z)$ defined by (2.4). We have

$$
\begin{equation*}
\frac{D^{n} g(z)}{z}=1+2(1-\beta) \sum_{k=2}^{\infty} \frac{z^{k-1}}{\alpha(k-1)+1} \tag{2.7}
\end{equation*}
$$

It can be written as

$$
\begin{equation*}
\frac{D^{n} g(z)}{z}=1+2 \frac{(1-\beta)}{\alpha} \int_{0}^{1} t^{\frac{1}{\alpha}} \frac{z}{1-t z} d t \tag{2.8}
\end{equation*}
$$

So we have

$$
\begin{equation*}
R e\left\{\frac{D^{n} g(z)}{z}\right\}=1+2 \frac{(1-\beta)}{\alpha} \int_{0}^{1} t^{\frac{1}{\alpha}} R e\left\{\frac{z}{1-t z}\right\} d t \tag{2.9}
\end{equation*}
$$

Since $k(z)=\frac{z}{1-t z}$ is convex in $U, k(\bar{z})=\overline{k(z)}$ and $k(z)$ maps real axis to real axis, we have

$$
-\frac{r}{1+t r} \leq \operatorname{Re}\left\{\frac{z}{1-t z}\right\} \leq \frac{r}{1-t r},(|z| \leq r)
$$

Substituting the last inequalities in (2.9) and expanding the integrand into the power series of t and integrating it, we can obtain the inequalities (2.5) and (2.6).

The sharpness can be seen from (2.7).
Theorem 2.6. $D^{n-1}[R(\beta, \alpha, n)] \subset S$ for $\beta \geq \beta_{0}$ and this result can not be extended to $\beta<\beta_{0}$, where

$$
\beta_{0}=1+\frac{1}{2}\left(\sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{\alpha(k-1)+1}\right)^{-1}
$$

Proof. Let $f(z) \in R(\beta, \alpha, n)$.
Now using (2.5)

$$
\begin{equation*}
\left(D^{n-1} f(z)\right)^{\prime}=1+2(1-\beta) \sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{\alpha(k-1)+1} \geq 0 \tag{2.10}
\end{equation*}
$$

$D^{n-1} f(z) \in S$, that is, if $\beta \geq \beta_{0}$, we have $D^{n-1}[R(\beta, \alpha, n)] \subset S$. The result can not be extended to $\beta<\beta_{0}$ because $\left(D^{n-1} f(-1)\right)^{\prime}=0$ at $\beta=\beta_{0}$. Thus $\left(D^{n-1} f(-r)\right)^{\prime}=0$ for some $r=r(\beta)<1$ when $\beta<\beta_{0}$.

Theorem 2.7. If $f(z) \in R(\beta, \alpha, n)$, then for $|z| \leq r<1$

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{D^{n-1} f(z)}{z}\right\} \geq 1+2(1-\beta) \sum_{k=2}^{\infty} \frac{(-r)^{k-1}}{k[\alpha(k-1)+1]} \tag{2.11}\\
\quad>1+2(1-\beta) \sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{k[\alpha(k-1)+1]}
\end{gather*}
$$

The result is sharp.
Proof. According to the same reasoning as in Theorem 2.5, we need only consider $g(z)$ defined by (2.4). We have

$$
\begin{aligned}
& \frac{D^{n-1} g(z)}{z}=1+2(1-\beta) \sum_{k=2}^{\infty} \frac{z^{k-1}}{k[\alpha(k-1)+1]} \\
& =1+2 \frac{(1-\beta)}{\alpha} \int_{0}^{1} t^{\frac{1}{\alpha}}\left(\int_{0}^{1} \frac{v z}{1-t v z} d v\right) d t
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{D^{n-1} g(z)}{z}\right\}=1+2 \frac{(1-\beta)}{\alpha} \int_{0}^{1} t^{\frac{1}{\alpha}}\left(\int_{0}^{1} v R e\left\{\frac{z}{1-t v z}\right\} d v\right) d t \\
& >1-2 \frac{(1-\beta)}{\alpha} \int_{0}^{1} t^{\frac{1}{\alpha}}\left(\int_{0}^{1} \frac{v r}{1+t v r} d v\right) d t \\
& =1+2(1-\beta) \sum_{k=2}^{\infty} \frac{(-r)^{k-1}}{k[\alpha(k-1)+1]} \\
& >1+2(1-\beta) \sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{k[\alpha(k-1)+1]}
\end{aligned}
$$

The sharpness can be seen from (2.4).
Remark 2.8. If we put $n=1$ in Theorem 2.1, 2.5 and 2.7 then we obtain the corresponding results due to Gao and Zhou [4].

Remark 2.9. If we put $n=1, \alpha=1$ in Theorem 2.1, 2.5, 2.7 then we obtain the corresponding results due to Silverman [10].

Remark 2.10. If we put $n=1, \alpha=0$ in Theorem 2.1, 2.5, 2.7 then we obtain the corresponding results due to Hallenbeck [5].

References

[1] Ali, R.M., On a subclass of starlike functions, Rocky Mount. J. Math., 24(1994), 447-451.
[2] Chichra, P.N., New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc., 62(1977), 37-44.
[3] Gao, C.Y., On the starlikeness of the Alexander integral operator, Proc. Japan Acad. Ser. A Math. Sci., 68(1992), 330-333.
[4] Gao, C.Y. and Zhou, S.Q., Certain subclass of starlike functions, Appl. Math. Comput., 187(2007), 176-182.
[5] Hallenbeck, D.J., Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc., 192(1974), 285-292.
[6] Hashidume, Y. and Owa, S., Majorization problems for certain analytic functions, Int. J. Open Problems Compt. Math., 1(2008), no. 3, 179-187.
[7] Krzyz, J., A counter example concerning univalent functions, Mat. Fiz. Chem., 2(1962), 57-58.
[8] Owa, S., Hayami T. and Kuroki, K., Some properties of certain analytic functions, Int. J. Math. Math. Sci., (2007) Art. ID 91592, 1-9.
[9] Salagean, G.S., Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1(1983), 362-372.
[10] Silverman, H., A class of bounded starlike functions, Int. J. Math. Math. Sci., 17(1994), 249-252.
[11] Singh, R. and Singh, S., Starlikeness and convexity of certain integrals, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 35(1981), 45-47.

Saurabh Porwal
Department of Mathematics
U.I.E.T. Campus, C.S.J.M. University, Kanpur-208024
(U.P.), India
e-mail: saurabhjcb@rediffmail.com
Kaushal Kishore Dixit
Department of Engineering Mathematics
Gwalior Institute of Information Technology, Gwalior-474015
(M.P.), India
e-mail: kk.dixit@rediffmail.com

