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A simple proof of the fundamental theorem
of calculus for the Lebesgue integral

Rodrigo López Pouso

Abstract. This paper contains a new elementary proof of the Fundamental The-
orem of Calculus for the Lebesgue integral. The hardest part of our proof simply
concerns the convergence in L1 of a certain sequence of step functions, and we
prove it using only basic elements from Lebesgue integration theory.
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1. Introduction

Let f : [a, b] −→ R be absolutely continuous on [a, b], i.e., for every ε > 0 there
exists δ > 0 such that if {(aj , bj)}n

j=1 is a family of pairwise disjoint subintervals of
[a, b] satisfying

n∑
j=1

(bj − aj) < δ,

then
n∑

j=1

|f(bj)− f(aj)| < ε.

Classical results ensure that f has a finite derivative almost everywhere in I =
[a, b], and that f ′ ∈ L1(I), see [3] or [9, Corollary 6.83]. These results, which we shall
use in this paper, are the first steps in the proof of the main connection between
absolute continuity and Lebesgue integration: the Fundamental Theorem of Calculus
for the Lebesgue integral.
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Theorem 1.1. If f : I = [a, b] −→ R is absolutely continuous on I, then

f(b)− f(a) =
∫ b

a

f ′(x) dx in Lebesgue’s sense.

In this note we present a new elementary proof to Theorem 1.1 which seems more
natural and easy than the existing ones. Indeed, our proof can be sketched simply as
follows:

1. We consider a well–known sequence of step functions {hn}n∈N which tends to f ′

almost everywhere in I and, moreover,∫ b

a

hn(x) dx = f(b)− f(a) for all n ∈ N.

2. We prove, by means of elementary arguments, that

lim
n→∞

∫ b

a

hn(x) dx =
∫ b

a

f ′(x) dx.

More precise comparison with the literature on Theorem 1.1 and its several
proofs will be given in Section 3.

In the sequel m stands for the Lebesgue measure in R.

2. Proof of Theorem 1.1

For each n ∈ N we consider the partition of the interval I = [a, b] which divides
it into 2n subintervals of length (b− a)2−n, namely

xn,0 < xn,1 < xn,2 < · · · < xn,2n ,

where xn,i = a + i(b− a)2−n for i = 0, 1, 2, . . . , 2n.
Now we construct a step function hn : [a, b) −→ R as follows: for each x ∈ [a, b)

there is a unique i ∈ {0, 1, 2, . . . , 2n − 1} such that

x ∈ [xn,i, xn,i+1),

and we define

hn(x) =
f(xn,i+1)− f(xn,i)

xn,i+1 − xn,i
=

2n

b− a
[f(xn,i+1)− f(xn,i)].

On the one hand, the construction of {hn}n∈N implies that

lim
n→∞

hn(x) = f ′(x) for a.a. x ∈ [a, b]. (2.1)

To prove (2.1), we fix x ∈ (a, b) such that f ′(x) exists and x 6= xn,i for all n ∈ N
and all i ∈ {1, 2, . . . , 2n − 1}. Now for each n ∈ N we consider the unique index
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i ∈ {0, 1, 2, . . . , 2n − 1} such that x ∈ (xn,i, xn,i+1) and we have

|f ′(x)− hn(x)| =
∣∣∣∣f ′(x)− f(xn,i+1)− f(x) + f(x)− f(xn,i)

xn,i+1 − xn,i

∣∣∣∣
=

∣∣∣∣f ′(x)
xn,i+1 − x + x− xn,i

xn,i+1 − xn,i

−f(xn,i+1)− f(x)
xn,i+1 − x

xn,i+1 − x

xn,i+1 − xn,i

−f(x)− f(xn,i)
x− xn,i

x− xn,i

xn,i+1 − xn,i

∣∣∣∣
≤

∣∣∣∣f ′(x)− f(xn,i+1)− f(x)
xn,i+1 − x

∣∣∣∣ +
∣∣∣∣f ′(x)− f(x)− f(xn,i)

x− xn,i

∣∣∣∣ ,

which yields (2.1).
On the other hand, for each n ∈ N we compute∫ b

a

hn(x)dx =
2n−1∑
i=0

∫ xn,i+1

xn,i

hn(x)dx =
2n−1∑
i=0

[f(xn,i+1)− f(xn,i)] = f(b)− f(a),

and therefore it only remains to prove that

lim
n→∞

∫ b

a

hn(x) dx =
∫ b

a

f ′(x) dx.

Let us prove that, in fact, we have convergence in L1(I), i.e.,

lim
n→∞

∫ b

a

|hn(x)− f ′(x)| dx = 0. (2.2)

Let ε > 0 be fixed and let δ > 0 be one of the values corresponding to ε/4 in the
definition of absolute continuity of f .

Since f ′ ∈ L1(I) we can find ρ > 0 such that for any measurable set E ⊂ I we
have ∫

E

|f ′(x)| dx <
ε

4
whenever m(E) < ρ. (2.3)

The following lemma will give us fine estimates for the integrals when many of
the |hn| are ”large”. We postpone its proof for better readability.

Lemma 2.1. For each ε > 0 there exist k, nk ∈ N such that

k ·m
({

x ∈ I : sup
n≥nk

|hn(x)| > k

})
< ε.

Lemma 2.1 guarantees that there exist k, nk ∈ N such that

k ·m
({

x ∈ I : sup
n≥nk

|hn(x)| > k

})
< min

{
δ,

ε

4
, ρ

}
. (2.4)

Let us denote

A =
{

x ∈ I : sup
n≥nk

|hn(x)| > k

}
,
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which, by virtue of (2.4) and (2.3), satisfies the following properties:

m(A) < δ, (2.5)

k ·m(A) <
ε

4
, (2.6)∫

A

|f ′(x)| dx <
ε

4
. (2.7)

We are now in a position to prove that the integrals in (2.2) are smaller than ε
for all sufficiently large values of n ∈ N. We start by noticing that (2.7) guarantees
that for all n ∈ N we have∫

I

|hn(x)− f ′(x)| dx =
∫

I\A
|hn(x)− f ′(x)| dx +

∫
A

|hn(x)− f ′(x)| dx

<

∫
I\A

|hn(x)− f ′(x)| dx +
∫

A

|hn(x)| dx +
ε

4
. (2.8)

The definition of the set A implies that for all n ∈ N, n ≥ nk, we have

|hn(x)− f ′(x)| ≤ k + |f ′(x)| for almost all x ∈ I \A,

so the Dominated Convergence Theorem yields

lim
n→∞

∫
I\A

|hn(x)− f ′(x)| dx = 0. (2.9)

From (2.8) and (2.9) we deduce that there exists nε ∈ N, nε ≥ nk, such that for
all n ∈ N, n ≥ nε, we have∫

I

|hn(x)− f ′(x)| dx <
ε

2
+

∫
A

|hn(x)| dx. (2.10)

Finally, we estimate
∫

A
|hn| for each fixed n ∈ N, n ≥ nε. First, we decompose

A = B ∪ C, where

B = {x ∈ A : |hn(x)| ≤ k} and C = A \B.

We immediately have∫
B

|hn(x)| dx ≤ k ·m(B) ≤ k ·m(A) <
ε

4
(2.11)

by (2.6).
Obviously,

∫
C
|hn| < ε/4 when C = ∅. Let us see that this inequality holds true

when C 6= ∅. For every x ∈ C = {x ∈ A : |hn(x)| > k} there is a unique index i ∈
{0, 1, 2, . . . , 2n− 1} such that x ∈ [xn,i, xn,i+1). Since |hn| is constant on [xn,i, xn,i+1)
we deduce that [xn,i, xn,i+1) ⊂ C. Thus there exist indices il ∈ {0, 1, 2, . . . , 2n − 1},
with l = 1, 2, . . . , p and il 6= il̃ if l 6= l̃, such that

C =
p⋃

l=1

[xn,il
, xn,il+1).
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Therefore
p∑

l=1

(xn,il+1 − xn,il
) = m(C) ≤ m(A) < δ by (2.5),

and then the absolute continuity of f finally comes into action:∫
C

|hn(x)| dx =
p∑

l=1

∫ xn,il+1

xn,il

|hn(x)| dx

=
p∑

l=1

|f(xn,il+1)− f(xn,il
)| < ε

4
.

This inequality, along with (2.10) and (2.11), guarantee that for all n ∈ N,
n ≥ nε, we have ∫

I

|hn(x)− f ′(x)| dx < ε,

thus proving (2.2) because ε was arbitrary. The proof of Theorem 1.1 is complete.

Now we go back to Lemma 2.1. A more general version, which seems interesting
in its own right, will be established instead. We split it into two parts for better
readability.

A first result, elementary but absent from many textbooks, complements Tcheby-
shev’s inequality for integrable functions. It is however an old result which we can
already find in Hobson’s book [6, page 526]. A proof is included for the convenience
of readers.

Proposition 2.2. Let A ⊂ R be a measurable set. If g ∈ L1(A) then

lim
k→∞

k ·m ({x ∈ A : |g(x)| ≥ k}) = 0. (2.12)

Proof. Standard results guarantee that
∞∑

n=0

n ·m({x ∈ A : n ≤ |g(x)| < n + 1}) ≤
∞∑

n=0

∫
{x : n≤|g(x)|<n+1}

|g(x)| dx

=
∫
∪∞n=0{x : n≤|g(x)|<n+1}

|g(x)| dx

=
∫

A

|g(x)| dx,

hence the series on the left-hand side is convergent.
For all k ∈ N we have

k ·m ({x ∈ A : |g(x)| ≥ k}) = k ·
∞∑

n=k

m ({x ∈ A : n ≤ |g(x)| < n + 1})

≤
∞∑

n=k

n ·m({x ∈ A : n ≤ |g(x)| < n + 1}),

and then (2.12) obtains. �
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Now we proceed with our extended version of Lemma 2.1.

Proposition 2.3. Let A ⊂ R be a measurable set with m(A) < ∞. Assume that gn :
A −→ R ∪ {−∞,+∞} is measurable for each n ∈ N and

lim
n→∞

gn(x) = g(x) ∈ R for almost all x ∈ A. (2.13)

Then for every k ∈ N we have

lim
j→∞

m

({
x ∈ A : sup

n≥j
|gn(x)| ≥ k

})
= m ({x ∈ A : |g(x)| ≥ k}) , (2.14)

and, if g ∈ L1(A) then

lim
k→∞

lim
j→∞

k ·m
({

x ∈ A : sup
n≥j

|gn(x)| ≥ k

})
= 0, (2.15)

which implies the result in Lemma 2.1 for gn = hn and g = f ′.

Proof. Let N ⊂ A be a null–measure set such that (2.13) holds for all x ∈ A \N and
let k ∈ N be fixed.

We define a family of measurable sets

Ej =
{

x ∈ A \N : sup
n≥j

|gn(x)| ≥ k

}
(j ∈ N).

Notice that Ej+1 ⊂ Ej for every j ∈ N, and m(E1) ≤ m(A) < ∞, hence

lim
j→∞

m(Ej) = m

 ∞⋂
j=1

Ej

 = m ({x ∈ A \N : |g(x)| ≥ k}) ,

so (2.14) is proven.
Now (2.14) and (2.12) yield (2.15). �

3. Final remarks

The sequence {hn}n∈N is used in other proofs of Theorem 1.1, see [1] or [11].
The novelty in this paper is our elementary and self–contained proof of (2.2).

Our proof avoids somewhat technical results often invoked to prove Theorem 1.1.
For instance, we do not use any sophisticated estimate for the measure of image sets
such as [4, Theorem 7.20], [9, Lemma 6.88] or [11, Proposition 1.2], see also [7]. We
do not use the following standard lemma either (usually proven by means of Vitali’s
Covering Theorem): an absolutely continuous function having zero derivative almost
everywhere is constant, see [4, Theorem 7.16] or [9, Lemma 6.89]. It is worth having
a look at [5] for a proof of that lemma using tagged partitions; see also [2] for a proof
based on full covers [10].

Concise proofs of Theorem 1.1 follow from the Radon–Nikodym Theorem, see
[1], [4] or [8], but this is far from being elementary.

Finally, it is interesting to note that (2.2) is an almost trivial consequence of
Lebesgue’s Dominated Convergence Theorem when f is Lipschitz continuous on I.



Fundamental theorem of calculus 145

Acknowledgements. The author is grateful to Professor R. Ortega for his valuable
comments on a previous version of this paper.

References
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